
Search methods for general permutation problems (Bachelor’s

thesis)

Arthur Toenz

July 31, 2012



Contents

1 Introduction 1

2 Preliminaries 3
2.1 Permutation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Permutation Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 The Cauchy’s two-line notation . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 The one-line notation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 The cycle notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Algorithm & Strategy selection 9
3.1 The idea within the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The sift-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Strategy selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Experiments 15
4.1 The Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 The Pancake Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 The TopSpin Puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Conclusion 18

1



Abstract

A permutation problem considers the task where an initial order of objects (ie, an initial
mapping of objects to locations) must be reordered into a given goal order by using
permutation operators. Permutation operators are 1:1 mappings of the objects from their
locations to (possibly other) locations. An example for permutation problems are the well-
known Rubik’s Cube and TopSpin Puzzle. Permutation problems have been a research area
for a while, and several methods for solving such problems have been proposed in the last
two centuries. Most of these methods focused on finding optimal solutions, causing an
exponential runtime in the worst case.
In this work, we consider an algorithm for solving permutation problems that has been
originally proposed by M. Furst, J. Hopcroft & E. Luks in 1980 ([1]). This algorithm
has been introduced on a theoretical level within a proof for ”Testing Membership and
Determining the Order of a Group”, but has not been implemented and evaluated on
practical problems so far. In contrast to the other abovementioned solving algorithms, it
only finds suboptimal solutions, but is guaranteed to run in polynomial time. The basic
idea is to iteratively reach subgoals, and then to let them fix when we go further to reach
the next goals. We have implemented this algorithm and evaluated it on different models,
as the Pancake Problem and the TopSpin Puzzle .



Chapter 1

Introduction

In combinatoric mathematics, a permutation is the action of rearranging objects from
an order into another. This means that all present objects of the considered world are
still present after the permutation, as it is just a reordering. And thus, a permutation
on objects in a world is a 1 to 1 transformation of the world in itself. Permutation
problems have first appeared in games and logic puzzles, quickly followed by the Artificial
Intelligence research domain. Permutations games are single-player games. One of the
first permutation games/problems was the Taquin, also named the Fifteen Puzzle (about
1870 [4]). It is a sliding-puzzle composed of a 4×4 box containing 15 numbered squares
tiles, arranged in a random order. The goal is, using sliding moves (thanks to the empty
space left by the 15 tiles in the 16-places square), to place the tiles in increasing order,
from left to right and downwards. There are some variations of this game, with a larger
or fewer number of tiles.
In permutation problems, we are looking for a strategy, consisting of a sequence of moves
with the help of which we can reach the goal configuration.
It is absolutely possible, depending on the problem, that the possible moves do not allow
to reach a given goal, and thus this goal may be unreachable. But in this paper, we will
only consider problems with a reachable goal, this means solvable problems.

There are several possible approaches for solving permutation problems. The existent per-
mutation problem solvers always focused on finding optimal strategies, which are strategies
with a shortest move sequence. But the problem of this approach is that it needs exponen-
tial runtime. The nearest-to optimum way to solve them seems to be the use of heuristic
search algorithms like A∗ ([2]) or IDA∗ ([3]) together with relevant heuristics [?]. A* algo-
rithm is an extension of Edgar Dijkstra’s 1959 algorithm, and achieves better performance
by using heuristics combined with a best-first search.

But the algorithm we are interested in here belongs to the class of the suboptimal algo-
rithms, but has the interesting property to run in polynomial runtime. It is based on the
assumption that the length of the move-sequence to the goal is less important than the
speed with which we can find it.

The contribution of this thesis is the investigation of a suboptimal but polynomial algo-
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rithm for solving general permutation problems. This algorithm has been proposed by
Sirs Furst, Hopcroft & Luks in 1980 ([1]) in the context of a proof on group appartenance,
but has not been implemented and evaluated so far. The idea of the algorithm is to place
iteratively each object on its goal place, letting every previously successfully placed objects
fix. It uses the fact that permutations are cyclic. We have implemented this algorithm and
evaluated it on some benchmark problems: the pancake sorting problem and the TopSpin
puzzle. The results show that the strategies selected by the algorithm are non-optimal,
but not very far from the optimal ones. The results show also that the algorithm is quick,
which correlates with our expectations.
The remainder of the thesis is organized as follows. In chapter 2, we provide the preliminar-
ies for this work. In chapter 3, we explain the algorithm and the strategy selection, and we
go through an example. In chapter 4 we detail the experiments and the results. In chapter
5, we sum up the discussion and propose further working directions and possibilities.
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Chapter 2

Preliminaries

2.1 Permutation Problems

Formally, what is a Permutation Problem ?
A permutation problem is a problem in which we want to transform a world from a world
state (initial state) into another one (goal state) using generators (the elementar permu-
tations, the possible moves).

Definition (Permutation Problem)
A permutation problem is a tuple (O, W0, Wf , G), where:

• O is a set of n objects to rearrange

• W0 is the initial state of the world W (W is a vector consisting of n places, labeled
W[0] to W[n])

• Wf is the to goal state of the world to reach

• G is the set of possible actions, the generators

It is important to know that generator(state) = state
We are looking for a strategy S, consisting of a sequence (i.e. a composition) of generators
with the help of which we can reach the goal configuration. Mathematically, this is equiva-
lent to: S =

∏k Gi (composition of generators) and S(W0) = Wf (the strategy transforms
the initial world state in the goal world state). This means S = Gi(Gj(Gk(...(W0)...)).
There can be more than one possible strategy.

The optimal strategy Soptimal is the strategy with the shortest move sequence. It would

be in our notation Soptimal =
∏k Gi with k minimal (i.e. with the minimal sequence of

moves) and S(W0) = Wf .

We will see in the next sections how we model all these components.
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2.2 Modelling

A world W is represented as a vector (each place assimilated to a label). This will allow
us to use special notations for permutations, which will dramatically simplify the task.
The object set O is represented as different objects named O1 to On. Each one is placed
in a unique location of W.

Let’s see how we are going to model a world into a vector:
Example:
Let’s represent the 3×3 Rubik’s Cube world in a model. We choosed the Rubik’s Cube to
show how we are going to model any problem, because it is a worldwide-known problem,
and its 3-dimensionality will show best the method to represent any problem world as a
1-dimensional vector.
Here is the famous Rubik’s Cube (invented in 1974 by the hungarian Ernõ Rubik):

The 3×3 Rubik’s Cube is composed of 3 · (32) − 1 = 26 (there is no central cube) cubes,
which all seem to be able to move on each face of the Cube and seem not to be bound to
the Cube without even falling apart. In fact, there is an axis system in the center of it,
patented by Rubik, which allows the small cubes to rotate around the Cube. There are in
total 6 ∗ 9 = 54 colored faces on the cube (the inner faces can never be seen). The goal of
this puzzle is to reconstitute the Rubik’s Cube as above, with each 3×3 face of the same
color. But how could a 3-dimensional problem world be represented in a (1-dimensional)
Vector ? For this purpose, we need to label each small face. Let’s describe for instance
the front face as follow:
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1 2 3

4 5 6

7 8 9

Then, the right-face will be:

10 11 12

13 14 15

16 17 18

And so on, until the down-face. We will then have labelled 54 places.

With that, the 3×3-Rubik’s Cube World is represented.
Plus, as it is now represented as an array, we will be able to represent every state of W,
Wi, as a vector of length 54. The first place of the array will represent the first place of
the start-cube, and will contain the number of the current subface on it, and likewise for
the second, third places, and so on.
For example: Let’s consider an already solved Cube as start Cube. The 1-9 face (front
face) will for instance be all red, the 10-18 face (right face) all green, the 28-36 face (back
face) all white and the 46-54 face (left face) all black. If we rotate the first row of the front
face left, we will get three green squares and six red ones on the front face. And as the
labels correspond to the colors, the new World-representation-vector after this first move,
W1, will be as follows:
〈10,11,12,4,5,6,7,8,9,36,35,34,13,14,15,16,17,18,25,22,19,26,23,20,27,24,21,28,29,30,
31,32,33,48,47,46,37,38,39,40,41,42,43,44,45,1,2,3,49,50,51,52,53,54〉
The 3x3 Rubik’s Cube World is represented, but not yet ready to be used.
It lacks on generators (this will come in next section).
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Here the labelled 3x3 Rubik’s Cube in 2D-representation:

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

43 44 45

40 41 42

37 38 39

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

46 47 48

49 50 51

52 53 54

2.3 Permutation Representation

There exist several different notations for representing a permutation. In the following,
we will introduce three of them:

→ The Cauchy’s two-line notation

→ The one-line notation

→ The cycle notation

2.3.1 The Cauchy’s two-line notation

Let’s take an example to explain it:

p =

(
1 2 3 4
2 3 4 1

)
6



The first line of the two-line notation from Cauchy represent the locations. In the second
line we can find each location’s image according to the permutation.
For instance, if we want to apply p on a set s = {3 4 2 1}, we will have:

p(3) = 2, p(4) = 3, p(2) = 4, p(1) = 1
which means
”object 3 (in location 1) goes to the location 2”,
”object 4 (in location 2) goes to the location 3”,
”object 2 (in location 3) goes to the location 4” and
”object 1 (in location 4) goes to the location 1”

p(s) = p(〈3, 4, 2, 1〉) = 〈1, 3, 4, 2〉

2.3.2 The one-line notation

The one-line is just the second line of the Cauchy two-line notation. It is true that the
first line of the two-line notation is not really important, if we admit that it is always 1..n,
the numbering of the locations. The one-line notation corresponding to the example in
the two-line notation would be:
(2 3 4 1)

2.3.3 The cycle notation

This other notation uses the cyclic nature of permutations and expresses it as a product
of cycles. Those cycles correspond to the ”orbits” of the permutation. To begin, here is
an example that illustrates the cyclic nature of permutations:
We will use here the one-line notation. We consider a world wo and a permutation p
w0 = 〈1, 2, 3, 4〉
p = (3 4 1 2)
p(w0) = w1 = 〈3, 4, 1, 2〉
p(w1) = p(p(wo)) = 〈1, 2, 3, 4〉 → p(p(w0)) = w0

After a finite number of moves (here, 2), we are back in the same position. Then, the
permutation is cyclic. The same will work with any permutation, but it might take longer
than two moves.

The cycle notation:
The example above will be noted as follows in cycle notation: p = (1 3)(2 4)
Each ”cycle”, we will call it subpermutation, is represented in parenthesis, and is a
permutation, namely the one mapping the values in itself to the following values in itself;
and mapping the other (non-mentionned in the subpermutation) objects into themselves.
For the first subpermutation of p, p1, we have p1 = (1 3). This means the object on the
place 1 will go to place 3, and as it is a cycle, the object on place 3 will go to place 1 (the
next value for the last value is the first one).
On another example, p = (1 2 3), object on place 1 will go to place 2, object on place 2
to place 3 and object on place 3 to place 1.
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Properties:

i) the cycles are all disjunct (since they are part of a unique permutation)

ii) (a b c) is fully equivalent to (b c a) or even (c a b) (only order is important in the
cycle)

iii) (a b)(c d) is fully equivalent to (c d)(a b) (resulting directly from property i), as
cycles are disjunct)

iv) the identity permutation, which maps all locations to themselves, can simply be
noted () or id

v) a subpermutation will be at least from length 2, otherwise it is just an identity
permutation

vi) ((a b c)(d e))−1 = (c b a)(e d) (just invert the order to get the inverse of the permu-
tation). This means (a b)−1 = (b a) = (a b), following property ii).

Concatenation/Sequencing:

During our future calculations, we will need to concatenate permutations. To concatenate
two permutations, an easy method is to take a standard-world, to apply both permuta-
tions and to abstract the concatenation from the result. We will write it then from right
to left (order is here important). This means p2.p1(w0) will be w1 = p1(w0) followed by
w2 = p2(w1).
With w0 = {a b c}, p1 = (1 3) and p2 = (2 3 1):
→ w2 = p2.p1(w0) =?
p1(w0) = {c b a} = w1

p2(w1) = {a c b} = w2

Then, we compare w2 with w0, and it appears that p2.p1 = (2 3), which is much more
compact than (2 3 1).(1 3), and respects the cycle notation.

Inverse of a concatenation:
The inverse (p2.p1)

−1 of a concatenation of permutations is simply the concatenation of
the inverses of the permutations, in reversed order:

Proof. (p2.p1)
−1 =?

We know that p.p−1 = id for any permutation p, then we have:
p?.p2.p1 = id
p−1
1 .p−1

2 .p2.p1 = p−1
1 .(p−1

2 .p2).p1 = p−1
1 .id.p1 = p−1

1 .p1 = id

What are the advantages of using the cycle notation ?

- We just need to note the moving objects, while Cauchy’s notation must always be
complete.

- The property vi) is very useful to avoid complicated calculations for the inverses.

- The concatenation method makes thing much more clear (although it would be
possible too with the Cauchy notation)
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Chapter 3

The Algorithm & Strategy
selection

3.1 The idea within the algorithm

Because of the cyclic nature of permutations (see 2.3.3), it might be comfortable to ac-
cept to introduce cycles in the strategy sequence, if it makes it possible to avoid extra-
calculations. This means, cycles will have no impact on the accuracy of the strategy.
(Consequently, a way to improve the output-strategy could be to transform the strategy
after using the suboptimal algorithm, by detecting cycles in it).
The basic idea of the sift algorithm is to place iteratively each object on its goal location,
letting every successfully placed objects (from the former steps) fix. The problem size
decreases then virtually in each step.

We have choosen the cycle notation for permutations (2.3.3), as it is very handy and has
several useful properties (2.3.3).

3.2 The sift-algorithm

The sift algorithm was proposed by Sirs Furst, Hopcroft and Luks in 1980, within a math-
ematical proof on group appartenance ([1]). Its purpose is to produce a permutation-
matrice that will allow us to reach any goal state ou of this start position. This means:
a problem → a permutation-matrix, for whatever we want as a goal state. We will name
the permutation-matrice M, the Matrice Expand of the generator set G.
Each cell ci,j of M, in row i and column j, will represent a particular action:
Letting all objects successfully placed in rows 1 to i-1 fix, map the object on location j on
location i. (this means that we want to be able to map an object to the place i, using a
permutation of this row, letting all previous successfully placed objects fix on their places)
As a result, we will have an upper-triangular matrice, with id’s on the diagonal (mapping
j to i where i==j is nothing more than to do nothing):
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M =


id ∗ ...
0 id ∗ ...
0 0 id ∗ ...
0 ... ... ... ...
0 ... ... 0 id



It is an upper triangular matrice, because after each step of the strategy selection (i.e. af-
ter each choice of permutation, iteratively on the rows), an object more stays fix (because
it is now in its goal location). This means we have reduced the problem size for the next
subgoal and no more object needs to be placed on the location were we fixed the object.

In order to fill this upper-triangular matrice, we need the sift-procedure:

For a given permutation x, we will go iteratively over the rows. In each row, we will check
whether there exists a permutation y that does the same action than the permutation to
add or not. If it is the case, we have to go further in the iteration, and check with next
row, but this time not for just x, but y−1.x, in order to conserve the work accomplished
in the last row (and then as it is iterative, in every other preceding rows). If not, then
it means that we can insert it in the row, at the column j where we checked if object at
location j could already be placed at location i (the row index), with any permutation of
the row.

Here in pseudocode:
sift(x):
i ← 0
while (i 6= n− 1 and
there is a y in row i such that
y and x map i + 1 to the same letter)
do
i ← i + 1
x ← y−1x
if x is not a member of row i
then insert x in row i

We have now the sift-algorithm, it is time to populate the matrice. This can be done
within two steps:

1. Sift all generators.

2. Close the table, by running through all pairs (x,y) from the table, and sift their
product.

M. Furst, J. Hopcroft and E. Luks have showed in their work that the entire algorithm’s
running time is O(n6). It is because the coset representatives in M is at most n2, and
therefore the number of calls to sift is at most (n2)(n2)=n4. And, as the sift of a permu-
tation is maximal O(n2) itself, the entire algorithm will be O(n4.n2)=O(n6) in the worst
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case, a polynomial in n ([1]).

Now we have a matrice which contains actions which allow to reach any goal state from
the start position. It is time to extract a strategy out of it.

3.3 Strategy selection

Now that we have a Matrice M which allows us to reach every possible goal state, we are
ready to go. We know Wf , the goal state to reach. The selection of the Strategy S will
be straight forward, and as follows:

iteratively on i:
For each line i, select the permutation that will bring the object that should be at Wf [i]
from its current location to the location i.
Per definition, it will let all the objects from Wf [0] to Wf [i− 1] fix (thanks to the ”y−1x”
hat-trick in the sift-procedure).

3.4 Example

Here we will go through an example for the pancake problem with 5 pancakes 4.1.1. It
will illustrate and clarify everything we previously explained.
Pancakes will be represented by pi, with p1 the biggest pancake and p5 the smallest
pancake. The goal state will be a pyramid of pancakes, with the biggest pancake at the
bottom and the smallest at the top. This means Wf =

[
p1 p2 p3 p4 p5

]
.

Let’s take a random start state W0 =
[
p5 p3 p1 p2 p4

]
.

The generators will be as follows:

• g1 = (4 5) (flip the two top-pancakes)

• g2 = (3 5) (flip three pancakes)

• g3 = (2 5)(3 4) (flip four pancakes)

• g4 = (1 5)(2 4) (flip all five pancakes)

We then begin with M:

M =


id 0 0 0 0
0 id 0 0 0
0 0 id 0 0
0 0 0 id 0
0 0 0 0 id


The populating method says:

1. Sift all generators.

2. Close the table, by running through all pairs (x,y) from the table, and sift their
product.
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Let’s sift all generators to begin.
sift(g1):
i = 0
i 6= 4 AND there is a y in row i such that y and g1 map the same letter to 1 (g1 maps 1
to 1, and id does the same)

√

i = 1
x = y−1.x = id−1.g1 = g1
i 6= 4 AND there is a y in row i such that y and g1 map the same letter to 2 (g1 maps 2
to 2, and id does the same)

√

i = 2
x = y−1.x = id−1.g1 = g1
i 6= 4 AND there is a y in row i such that y and g1 map the same letter to 3 (g1 maps 3
to 3, and id does the same)

√

i = 3
x = y−1.x = id−1.g1 = g1
i 6= 4 AND there is a y in row i such that y and g1 map the same letter to 4 (g1 maps 5
to 4, and there is no other permutation that does the same) ×
g1 is not a member of row 3

√

then insert g1 in row 2, column (mapping from 4)-1.

M =


id 0 0 0 0
0 id 0 0 0
0 0 id 0 0
0 0 0 id g1
0 0 0 0 id


sift(g2):
i = 0
i 6= 4 AND there is a y in row i such that y and g2 map the same letter to 1 (g2 maps 1
to 1, and id does the same)

√

i = 1
x = y−1.x = id−1.g2 = g2
i 6= 4 AND there is a y in row i such that y and g2 map the same letter to 2 (g2 maps 2
to 2, and id does the same)

√

i = 2
x = y−1.x = id−1.g2 = g2
i 6= 4 AND there is a y in row i such that y and g2 map the same letter to 3 (g2 maps 5
to 3, and there is no other permutation that does the same) ×
g2 is not a member of row 2

√

then insert g2 in row 2, column (mapping from 3)-1.

M =


id 0 0 0 0
0 id 0 0 0
0 0 id 0 g2
0 0 0 id g1
0 0 0 0 id
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sift(g3):
i = 0
i 6= 4 AND there is a y in row i such that y and g3 map the same letter to 1 (g3 maps 1
to 1, and id does the same)

√

i = 1
x = y−1.x = id−1.g3 = g3
i 6= 4 AND there is a y in row i such that y and g3 map the same letter to 2 (g3 maps 5
to 2, and there is no other permutation that does the same) ×
g3 is not a member of row 1

√

then insert g3 in row 1, column (mapping from 2)-1.

M =


id 0 0 0 0
0 id 0 0 g3
0 0 id 0 g2
0 0 0 id g1
0 0 0 0 id


sift(g4):
i = 0
i 6= 4 AND there is a y in row i such that y and g4 map the same letter to 1 (g4 maps 5
to 1, and there is no other permutation that does the same) ×
g4 is not a member of row 0

√

then insert g4 in row 0, column (mapping from 1)-1.

M =


id 0 0 0 g4
0 id 0 0 g3
0 0 id 0 g2
0 0 0 id g1
0 0 0 0 id


All generators sifted. The exact same method will be used to close the table by sifting all
possible concatenation of the entries of the matrice (which are for now only generators).
sift(g4g1):
g4g1 = (4 1 5 2) (thanks to the concatenation method). i = 0
i 6= 4 AND there is a y in row i such that y and g4 map the same letter to 1 (g4 maps 4
to 1, and there is no other permutation that does the same) ×
g4 is not a member of row 0

√

then insert g4 in row 0, column (mapping from 1)-1.

M =


id 0 0 g4g1 g4
0 id 0 0 g3
0 0 id 0 g2
0 0 0 id g1
0 0 0 0 id


It would have been very long and uninteresting to do the whole table closure here. So,
here is how it looks like at the end:
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M =


id g4g3 g4g2 g4g1 g4
0 id g3g2 g3g1 g3
0 0 id g2g1 g2
0 0 0 id g1
0 0 0 0 id


Now we are able to extract the strategy. In row 0, we will choose g4g2, because it maps
the object on location 3 (p1) to the location 1.
g4g2 = (1 5 3)(2 4) (thanks to the concatenation method)
W1 = g4g2(W0) = g4g2(

[
p5 p3 p1 p2 p4

]
) =

[
p1 p2 p4 p3 p5

]
p1 is now placed.

It will stay there.

In row 1, we will choose id, because p2 is already well placed.

In row 2, we will choose g2g1, because it maps the object on location 4 (p3) to the location
3.
g2g1 = (3 4 5) (thanks to the concatenation method)
W2 = g2g1(W1) = g2g1(

[
p1 p2 p4 p3 p5

]
) =

[
p1 p2 p3 p5 p4

]
p3 is now placed.

It will stay there.

In row 3, we will choose g1, because it maps the object on location 5 (p4) to the location
4.
W3 = g1(W2) = g1(

[
p1 p2 p3 p5 p4

]
) =

[
p1 p2 p3 p4 p5

]
every object is now

placed.

In row 4, we choose id, because there is no other choice.

The strategy is then: S = g1.g2.g1.g4.g2
The found strategy has length 5.
We compared with the Pancake Solver from Gabriele Roeger ([?]), which found the optimal
solution with length 4.
It would have been Soptimal = g4.g1.g2.g3
This shows the non-optimality of the solver (we will come back to this point later).
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Chapter 4

Experiments

4.1 The Models

There were lots of models with which we could test our implementation. We choosed
the Pancake Problem and the TopSpin Puzzle, with different problem sizes, because they
are common benchmark problems, and thus it would be easy to compare the results with
another existing solver.

4.1.1 The Pancake Problem

The Pancake Problem is a sorting problem. The start world is a stack of n pancakes,
all from different sizes. The only possible actions are to flip the k top pancakes with a
spatula. The goal is, starting from a random position, to make a pyramid of pancakes, ie
to order them in increasing order.

We decided to model it as follows:
Let n be the number of pancakes. The pancakes will be represented by pi with p1 the
biggest pancake and pn the smallest pancake. The goal state to reach will be
Wf =

[
1 2 3 ... n

]
For this purpose, we will use the generators. These are (n − 1 n) (flip the two pancakes
on the top of the pile), (n − 2 n) (flip the three pancakes on the top of the pile), (n − 3
n)(n− 2 n− 1) (flip the four pancakes on the top of the pile), and so on, ...

4.1.2 The TopSpin Puzzle

Original TopSpin Puzzle:
The TopSpin Puzzle was invented by Ferdinand Lammertink, and patented on 3 Oct 1989.
”It consists of 20 numbered round pieces in one long looped track. You can slide all the
pieces of the loop along. There is also a turntable in the loop which can rotate any four
adjacent pieces so that they will be in reverse order. This in effect swaps two adjacent
pieces and the two pieces on either side of them. The aim is of course to place the pieces
in numerical order. In this game, as there are 20 numbered pieces, there are then 20!
possible positions.” (source: http://www.jaapsch.net/puzzles/topspin.htm)
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We will focus on smaller TopSpin Puzzles (n = 3..7), with different sized turntables
(size = 2..4).
Note that there exist some unsolvable TopSpin Puzzles ([?]).

To model the TopSpin Puzzle with n pieces and a k-sized turntable, we will do as follows:
The pieces will be labeled oi with i from 1 to n. The world’s start configuration could be
for instance

[
o3 o2 o1 o4 o6 o5

]
for n = 6. The generators would be:

- Turn all the pieces clockwise around the ovale : (1 2 3 ... n)
- Rotate the turntable clockwise : (n− k n− k + 1 ... n)
- Rotate the turntable counter-clockwise : (n n− 1 ... n− k)

4.2 Results

Calculations were made on the base of 100 random start positions. We calculated the
average time needed to find a solution and the average solution length. Every calculation
was made 10 times and we took the average values of them.

I) Pancake Problem:

n av. time (ms) av. solution length (moves)

3 0.90 1.42
4 2.3 2.6
5 6.44 4.16
6 15.81 5.6
7 36.52 8.79
8 81.51 10.75
9 167.61 14.96
10 311.2 12.3

II) TopSpin Puzzle:

n turn table size av. time (ms) av. solution length (moves)

4 2 3.16 7.83
5 2 8.02 30.21
5 3 8.33 44.81
7 2 43.61 116.86
7 3 64.81 348.23

Note: by the TopSpin Puzzle the variance in the average solution lengthes was big (some-
times +/- 5 moves). By this problem there is an implementation problem: the strategy
would correctly be selected, but the program is not able to convert the strategy in a suc-
cession of generators (it contains inverses of permutations). The strategies lengthes are
therefore not representative.
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In order to be able to compare the results, and specifically the length of found solutions,
with the Pancake Solver from M. Helmert and G. Roeger we have tested specific permu-
tation problems on both solvers. The goal was to estimate the ”distance” from our solver
to an optimal solver.
n = 3: Start world state: (o3 o1 o2). Our solution: g2.g1 (length 2). Optimal solution:
g2.g1 (length2)
n = 4: Start world state: (o4 o1 o3 o2). Our solution: g1.g2.g1.g3.g2 (length 5). Optimal
solution: g3.g2.g1 (length 3)
n = 5: Start world state: (o5 o3 o1 o2 o4). Our solution: g1.g2.g1.g4.g2 (length 5). Opti-
mal solution: g4.g1.g2.g3 (length 4)
n = 6: Start world state: (o6 o3 o5 o2 o4 o1). Our solution: g2.g1.g3.g2.g4.g3.g5 (length
7). Optimal solution has length 6.
Naturally, it could be of total fortuity, but we can see here that our solver finds quite
accurate solutions.

4.3 Discussion

As the results are averages from averages (except for the comparison with the pancake
solver from M. Helmert and G. Roeger), they are quite reliable. Variances were always
very small (it means that the algorithm is stable and the method sure), except for the
average solution lengthes for the TopSpin Puzzle. This shows that the problem is not very
stable, and that variations in the start position can lead to complications in the solving.

For the Pancake sorting problem, the theory has shown that the maximal number of
flips required to sort any stack of n pancakes must lie between 15

14n and 18
11n (source:

http : //en.wikipedia.org/wiki/Pancake sorting). As we can see here, the algorithm lies
between this range.
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Chapter 5

Conclusion

In this thesis, we have investigated a suboptimal algorithm for solving general permutation
problems. The results show that the strategies selected by the algorithm are non-optimal,
but not very far from the optimal ones. The results show also that the algorithm is quick,
which correlates with our expectations.

The big length of solutions for the TopSpin Puzzle is due to the fact that lots of cycles
are done.
Consequently, a way to improve the output-strategy could be to transform the strat-
egy after using the suboptimal algorithm, by detecting and deleting cycles in it.

Everything has been correctly implemented and the algorithm delivers correct solutions
for solvable problems. The only problem lies in the transformation of the strategies in
sequences of generators. Despite this fact, we reached the goals we had been fixing to
ourselves : the algorithm is quick but not optimal (speed: see the results; non-optimality:
see the example).

Future work: As above explained, a post-algorithm cycle-detection unit could be a big
improvement for the program, especially for the TopSpin Puzzle, in which there were lots
of cycles.
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