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Abstract

The operator-counting framework (Pommerening et al., 2014) is a framework in classical

planning for heuristics that are based on linear programming. The operator-counting frame-

work covers several kinds of state-of-the-art linear programming heuristics, among them the

post-hoc optimization heuristic (Pommerening et al., 2013). In this thesis we will use post-

hoc optimization constraints and evaluate them under altered cost functions instead of the

original cost function of the planning task. We show that such cost-altered post-hoc op-

timization constraints are also covered by the operator-counting framework and that it is

possible to achieve improved heuristic estimates with them, compared with post-hoc opti-

mization constraints under the original cost function. In our experiments we have not been

able found to achieve improved problem coverage, as we were not able to find a method for

generating favorable cost functions that work well in all domains.
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1
Introduction

The goal of classical planning, a field in Artificial Intelligence research, is to find a plan given

a formulation of a planning task. A plan is a sequence of actions that begins in the initial

state and ends in a goal state, as defined by the planning task. Since exhaustively searching

the state space for a plan is infeasible for larger planning tasks, heuristic search algorithms

employ a so-called heuristic function to estimate the distance from a specific state to a goal

condition in order to reduce the number of states that are required to explore to find a

solution. If the heuristic search algorithm A∗ (Hart et al., 1968) is used in conjunction with

an admissible heuristic, it finds an optimal plan: a plan with minimal total action costs

among all plans. Finding an optimal plan is the occupation of optimal planning, which we

will focus on in this thesis. Satisficing planning finds a plan of arbitrary length and will not

be discussed here.

Pattern databases (Edelkamp, 2001) derive an admissible heuristic from the cost of an

optimal plan in an abstraction of the original problem. An abstraction, or pattern, is a

simplified representation that discards some aspects of the original planning task. There

exist methods that can retrieve the stored goal distances efficiently, but since the goal

distance needs to be stored for every abstract state that is considered in a pattern, the size

of a single pattern is typically kept rather small due to memory constraints. This in turn

limits the heuristic information that a single pattern can provide.

It is possible to render pattern database heuristics more informative by combining the

heuristic estimates of multiple patterns into a single heuristic, but simply summing up the

individual pattern database heuristic estimates is not guaranteed to be admissible. As noted

by Edelkamp (2001), the maximum of multiple pattern database heuristics is admissible

and dominates a single pattern database heuristic. Edelkamp (2001) also introduce the

notion of disjoint pattern databases, of which the heuristic functions can be summed up

admissibly for stronger heuristic estimates than taking their maximum. Haslum et al. (2007)

extend this concept of additivity with the canonical heuristic that finds a maximal additive

subset out of a given set of patterns. Cost partitioning (Katz and Domshlak, 2010) adapts

the cost functions of abstract tasks to derive additive pattern sets from arbitrary sets of

abstractions. Using linear programs (LPs) to compute such an optimal cost partitioning

provides a very strong heuristic, yet Pommerening et al. (2013) note that the LPs involved
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in the heuristic computation for every state grow prohibitively large for realistic problem

sizes. While optimal cost partitioning provides a very strong approach to the admissible

combination of abstraction heuristics in theory, its performance implications often render it

infeasible to use in practice.

Pommerening et al. (2014) provide a framework for admissible integer/linear program-

ming heuristics called the operator-counting framework. This framework provides a prede-

fined structure for the optimization function and for the so-called operator-counting con-

straints of the linear program, while leaving it up to the specific implementation where the

information for the constraints is derived from. Pommerening et al. (2014) show that above-

mentioned optimal cost partitioning among other established as well as novel techniques can

be expressed as operator-counting constraints. The operator-counting framework enables us

to compare different linear programming heuristics from a theoretical perspective via their

constraints and to easily combine them in a single linear program.

The post-hoc optimization heuristic (Pommerening et al., 2013) is a heuristic based on

linear programming that dominates the canonical heuristic and achieves performance com-

parable to other state-of-the-art linear programming heuristics. Pommerening et al. (2014)

show that the post-hoc optimization heuristic can be represented in the operator-counting

framework by only a single operator-counting constraint, which are far fewer than are re-

quired for an optimal cost partitioning. A further optimization is that in each constraint the

post-hoc optimization heuristic ignores operators that are deemed to be non-contributing

for the corresponding heuristic.

In this thesis we will evaluate post-hoc optimization constraints under cost functions

that are different from the original cost function of the planning task. In chapter 2 there

is an introduction to SAS+ planning and the operator-counting framework with a focus on

post-hoc optimization constraints, which form the basis of our extension. In chapter 3 we

introduce cost-altered post-hoc optimization constraints and we show that they are operator-

counting constraints. We then show that cost-altered post-hoc optimization constraints

dominate regular post-hoc optimization constraints in some planning tasks, by providing a

constructed example. A discussion of experiment results that we obtained by running an

implementation of our method in the planning system Fast Downward (Helmert, 2011) is

found in chapter 4: throughout a set of established planning task domains, we compare our

implementation with regular post-hoc optimization constraints and other types of constraint

sets that are included in the operator-counting framework as provided by Fast Downward.



2
Background

In this section we provide a description of classical planning with finite-domain state vari-

ables in SAS+ as far as we will employ it throughout our thesis, as well as an explanation of

the operator-counting framework. We will then focus specifically on post-hoc optimization

constraints, which form the basis of our extension that is detailed in chapter 3.

2.1 Classical Planning
In this thesis we consider planning tasks that are formulated in SAS+(Bäckström and

Nebel, 1995).

Definition 1 (planning task). A planning task is a tuple Π = 〈V,O, s0, s∗, cost〉 where

• V is a set of finite-domain variables. Each variable v ∈ V has an associated finite

domain dom(v). A variable assignment is a function f : V ′ →
⋃
v∈V ′ dom(v) where

f(v) ∈ dom(v) for every v ∈ V ′ ⊆ V . The set of variables V ′ for which f is defined

is denoted as vars(f). A state is a total variable assignment, i.e. vars(f) = V . In a

partial state a subset of variables vars(f) ⊆ V is defined. We write s(v) ∈ dom(v) for

the assignment of a particular variable v ∈ V in (partial) state s. A state s is said to

be consistent with partial state s′, written s′ v s, if s(v) = s′(v) for all v ∈ vars(s′).

The set of all states is denoted as S(Π).

• O is a set of operators where each operator o ∈ O is a tuple o = 〈pre(o), eff (o)〉. The

partial state pre(o) is called the precondition of o, and the partial state eff (o) is called

the effect of operator o. An operator o is applicable in state s if pre(o) v s. The

successor s′ = s[o] under the application of applicable operator o in state s is the state

defined for all v ∈ V as

s′(v) =

eff (o)(v) if v ∈ vars(eff (o)),

s(v) otherwise.

• s0 is the initial state.

• s∗ is a partial state called the goal condition.
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• cost is a cost function, that is, a total function cost : O → N0 that assigns each

operator o ∈ O a non-negative cost.

A sequence of operators π = {o1, . . . , ok} is called applicable in state s if there is a

sequence of states {s0, . . . , sk} such that operator oi is applicable in state si−1 and si =

si−1[oi] for all i = 1, . . . , k. We write sk = s[π] for the last state in the sequence. An s-plan

is an applicable sequence of operators starting in state s where s[π] is a goal state: a state

consistent with the goal condition. The cost of an s-plan cost(π) =
∑k
i=1 cost(oi) is the sum

of all its associated action costs. An optimal s-plan is an s-plan with minimal costs among

all s-plans. An s0-plan starting in the initial state s0 is often just called a plan.

2.2 Heuristic Search
Informed search or heuristic search employs a function called the heuristic function that

estimates the cost of an s-plan from state s ∈ S(Π) to a state that is consistent with the

goal condition. The function h∗(s) = cost(π∗) for an optimal s-plan π∗ is called the perfect

heuristic, denoting the cost of the shortest possible s-plan to a goal state.

Definition 2 (properties of a heuristic function). Let Π = 〈V,O, s0, s∗, cost〉 be a planning

task. The heuristic function h : S(Π)× cost → N0 ∪ {∞} is

• admissible under cost if h(s, cost) ≤ h∗(s, cost) for all s ∈ S(Π), i.e. h never overesti-

mates the true cost of an optimal s-plan,

• goal-aware under cost if h(s, cost) = 0 for all s ∈ S(Π) that are consistent with the

goal condition s∗.

• consistent under cost if h(s, cost) ≤ cost(o) + h(s[o], cost) for every state s ∈ S(Π)

and operator o ∈ O that is applicable in s.

A heuristic that is goal-aware and consistent is also admissible (Russell and Norvig, 1995).

Optimal planning is concerned with finding an optimal plan for a given planning task

Π. The A∗ search algorithm (Hart et al., 1968) is a heuristic search algorithm that, in

conjunction with an admissible heuristic, returns an optimal plan for a planning task Π, if

such a plan exists.

2.3 Transition Systems and Abstraction Heuristics
It is often useful to interpret a planning task as a directed, labelled graph where the nodes

represent states, and the edges signify transitions between states under the application

of operators. This representation as a transition system can be used to derive heuristic

functions, as we will later see in the case of abstraction heuristics. This section about

transition systems and abstractions follows the explanations of Helmert et al. (2008).

Definition 3 (Transition system). A transition system is a tuple T = 〈S,L, T, s0, S∗, cost〉
where
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• S is a set of states where each state s ∈ S describes a node in the graph,

• L is a set of labels,

• T ⊆ S×L×S is a transition relation where every transition t = 〈s, l, s′〉 ∈ T describes

a labelled edge s
l−→ s′ in the graph,

• s0 ∈ S is the initial state,

• S∗ ⊆ S is a set of states that represent the goal states, and

• cost : L→ N0 is a cost function for every label l ∈ L.

A planning task Π = 〈V,O, s0, s∗, cost〉 induces a transition system

T = 〈S(Π), O, T, s0, S∗, cost〉, where

T =
{
〈s, o, s′〉 | s, s′ ∈ S(Π), o ∈ O, o is applicable in s and s[o] = s′

}
, and

S∗ = {s ∈ S(Π) | s∗ ⊆ s}.

An abstract task, or abstraction, is a transition system that represents a simplification of

a planning task which ignores some aspects of the original task by merging states as defined

by an abstraction function. Abstractions can be leveraged to create an admissible heuristic.

Definition 4 (abstraction). Let Π be a planning task and let T = 〈S,L, T, s0, S∗, cost〉 be

its transition system. The abstraction function α : S → Sα maps states to abstract states.

The transition system T α = 〈Sα, L, T ′, α(s0), S′∗〉 where T ′ = {〈α(s), l, α(s′)〉 | 〈s, l, s′〉 ∈ T}
and S′∗ = {α(s∗) | s∗ ∈ S∗} is called the induced abstraction of T under α.

Projections are a concrete class of abstractions suitable for SAS+ planning tasks. A

projection includes only a subset of state variables of the original planning task:

Definition 5 (projection). Let Π = 〈V,O, s0, s∗, cost〉 be a planning task with a set of state

variables V , and let T be the transition system of Π. The projection T V ′
of T onto a pattern,

that is a subset of variables V ′ ⊆ V , is the induced abstraction T α where α(s) = α(s′) if

s(v) = s′(v) for all v ∈ V ′. An atomic projection T {v} is a projection onto a single variable

v ∈ V .

Every abstraction defines a heuristic function via the goal distance in its transition

system:

Definition 6 (abstraction heuristic). Let Π = 〈V,O, s0, s∗, cost〉 be a planning task, let T
be its transition system, and let T α = 〈S,L, T, s0, S∗, cost〉 be the induced abstraction of T
under an abstraction function α. The abstraction heuristic hα assigns every state s ∈ S(Π)

the cost of the shortest path in the abstraction T α from the abstract state α(s) to any goal

state α(s∗) ∈ S∗.

Since an abstraction is a homomorphism, i.e. transitions are being preserved, the ab-

straction heuristic hα is admissible and consistent (Helmert et al., 2008).

A pattern database (Edelkamp, 2001) is a practical method for using patterns of a plan-

ning task as a basis for generating admissible heuristic estimates: in a precomputation step
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before the actual search, all the transition systems of desired patterns are constructed. The

shortest goal distances of all abstract states to their respective goal state are then stored

in a data structure, usually some sort of hash table. During the search this data structure

enables quick retrieval of the stored goal distances to serve as heuristic estimates for any

state. A disadvantage of this method is that the memory requirements for storing all goal

distances can be infeasible for larger patterns, which are often the most informative.

2.4 Operator-Counting
In recent years several heuristics based on linear programming have proven to be prac-

tical in optimal planning. Without going into details of the very diverse kinds of linear

programming heuristics, we will summarize the operator-counting framework (Pommeren-

ing et al., 2014). The operator-counting framework is a framework for heuristics that are

based on linear programming and it specifies a predefined structure for the constraints and

objective function of said heuristics. The operator-counting framework allows different linear

programming heuristics, provided that they can be expressed as so-called operator-counting

constraints, to be compared on the basis of their constraints.

Definition 7 (operator-counting constraints). Let Π = 〈V,O, s0, s∗, cost〉 be a planning task

and let s ∈ S(Π) be a state. The integer variables Counto for each operator o ∈ O are called

operator-counting variables. Let π be an s-plan and let occur(o, π) denote the number of

times that operator o is applied in π. A linear inequality c over operator-counting variables

is called an operator-counting constraint for state s if for every s-plan π, there exists a

feasible solution to c with Counto = occur(o, π) for all o ∈ O.

Operator-counting constraints serve as constraints for the operator-counting integer/lin-

ear program.

Definition 8 (operator-counting integer/linear program). Let Π = 〈V,O, s0, s∗, cost〉 be a

planning task. The operator-counting integer program IPC for the set of operator-counting

constraints C is

minimize
∑
o∈O

cost(o) · Counto subject to C

Given a state s ∈ S(Π) and constraint set C for s, the LP heuristic hLP
C (s) is the objective

value of the linear program LPC(s), which is the LP relaxation of IPC(s). The heuristic

value is ∞ if the LP is infeasible.

As noted by Korte and Vygen (2006), there exist polynomial-time algorithms for solving

Linear Programs, yet there are no known algorithms that are able to solve Integer Programs

in polynomial time. In consequence, it is often useful to lift the integer restrictions on the

operator-counting variables when computing IP/LP heuristics.

Intuitively, operator-counting constraints convey some information about how often an

operator is applied in an optimal plan. Pommerening et al. (2014) provide several specific

examples where the information can be derived from: they show that disjunctive action

landmarks (Zhu and Givan, 2003), the state-equation heuristic (Bonet, 2013), optimal cost
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partitioning (Katz and Domshlak, 2010), as well as the post-hoc optimization heuristic

(Pommerening et al., 2013) can all be expressed as operator-counting constraints. Pom-

merening et al. (2014) also note that adding operator-counting constraints to an existing

constraint set can never result in decreased heuristic estimates of the operator-counting

linear program since an additional constraint only ever reduces the set of feasible solutions.

2.4.1 Post-Hoc Optimization Constraints
Post-hoc optimization constraints (Pommerening et al., 2013) are a specific type of

operator-counting constraint that set operator-counting variables in relation to an admissi-

ble heuristic. Post-hoc optimization constraints “ignore” non-contributing operators, which

are operators that do not have an influence on the corresponding heuristic.

Definition 9 (non-contributing operators). Let Π = 〈V,O, s0, s∗, cost〉 be a planning task,

let s ∈ S(Π) be a state, and let h be a heuristic that is admissible under cost . Let cost ′ be

a cost function such that the heuristic value h(s, cost) remains an admissible estimate for

state s in the planning task Π′ = 〈V,O, s0, s∗, cost ′〉 with the cost function

cost ′(o) =

0 if o ∈ N

cost(o) otherwise.

Expressed formally, we require that h(s, cost) ≤ h∗(s, cost ′). Then, the set N ⊆ O is called

a set of non-contributing operators.

A Post-hoc optimization constraint is then an inequality over the remaining contributing

operators in relation to the corresponding heuristic value:

Definition 10 (post-hoc optimization constraint). Let Π = 〈V,O, s0, s∗, cost〉 be a planning

task, let s ∈ S(Π) be a state, let h be an admissible heuristic under cost , and let N be a

set of non-contributing operators. The post-hoc optimization constraint cPhO
h,N,cost,s is the

constraint

cPhO
h,N,cost,s :

∑
o∈O\N

cost(o) · Counto ≥ h(s, cost).

Pommerening et al. (2014) provide a representation of pattern database heuristics as

post-hoc operators constraints: operators that do not affect a given projection T α, that is,

they do not change a variable in the abstraction and thus do not induce any state-changing

transition, do not influence the abstraction heuristic hα. In consequence, these operators can

be seen as non-contributing and the post-hoc optimization constraint of a pattern database

heuristic is defined as follows:

Definition 11 (pattern database constraint). Let Π = 〈V,O, s0, s∗, cost〉 be a planning task

and let T α be a projection of Π. The pattern database constraint cPDB
α,cost,s is the constraint

cPDB
α,cost,s :

∑
o∈O,

o affects T α

cost(o) · Counto ≥ hα(s, cost).



3
Cost-Altered Post-Hoc Optimization Constraints

Our contribution is to evaluate post-hoc optimization constraints under altered cost func-

tions. A minimum solution of the operator-counting linear program under a set of regular

post-hoc optimization constraints may be infeasible when the same type of constraints are

evaluated under a new cost function. We propose that with this method of altering operator

costs in post-hoc optimization constraints, we can obtain a more informed heuristic in some

cases. In this section we provide a formal definition of such cost-altered post-hoc optimization

constraints and we show that they are operator-counting constraints. We then examine the

specific case of cost-altered pattern database constraints more thoroughly and we provide an

example where the operator-counting heuristic derived from cost-altered pattern database

constraints dominates regular pattern database constraints under the original cost function.

Definition 12 (cost-altered post-hoc heuristic constraint). Let Π = 〈V,O, s0, s∗, cost〉 be a

planning task, let s ∈ S(Π) be a state, let h(s, cost) be an admissible heuristic for Π under

cost , and let N be a set of non-contributing operators. Let the cost function cost ′ be the

cost function that we introduce. We define the cost-altered post-hoc optimization heuristic

constraint cPhO
h,N,cost′,s as

cPhO
h,N,cost′,s :

∑
o∈O\N

cost ′(o) · Counto ≥ h(s, cost ′).

We will now show that the cost-altered post-hoc optimization constraint cPhO
h,N,cost′,s is an

operator-counting constraint.

Theorem 1. Let Π = 〈V,O, s0, s∗, cost〉 be a planning task, let s ∈ S(Π) be a state, let

h(s, cost) be a heuristic that is admissible under cost , and let N be a set of non-contributing

operators. Let the cost function cost ′ be the cost function that we introduce. The cost-

altered post-hoc optimization heuristic constraint cPhO
h,N,cost′,s is an operator-counting con-

straint.

Proof. Let π be an s-plan for Π. We are going to show that the variable assignment

Count(o) = occur(o, π) corresponding to the s-plan π represents a feasible solution for
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the constraint cPhO
h,N,cost′,s, i.e.∑

o∈O\N

cost ′(o) · occur(o, π) ≥ h(s, cost ′).

Let cost ′′ be a cost function for Π defined as

cost ′′(o) =

0 if o ∈ N,

cost ′(o) otherwise.

It follows that ∑
o∈O\N

cost ′(o) · occur(o, π)

=
∑

o∈O\N

cost ′′(o) · occur(o, π) (cost ′′(o) = cost ′(o) for all o ∈ O \N)

=
∑
o∈O

cost ′′(o) · occur(o, π) (cost ′′(o) = 0 for all o ∈ N)

= cost ′′(π)

≥ h∗(s, cost ′′) (h is admissible under cost ′′)

≥ h(s, cost ′) (Definition 9: N is a set of non-contributing operators)

Note that it is not always the case that a heuristic h, while admissible under the cost

function cost , is also admissible under every other arbitrary cost function cost ′. Consider

the heuristic

h(s) =

|π∗| if an optimal s-plan π∗ exists,

∞ otherwise,

which is an admissible heuristic for all planning tasks where cost(o) ≥ 1 for all o ∈ O, but

is not admissible in a planning task where cost ′(o) < 1 for all o ∈ O.

3.1 Cost-Altered Pattern Database Constraints
For the remainder of this section, we will focus on the specific case of cost-altered pattern

database constraints. We will show that they are operator-counting constraints under arbi-

trary cost functions and we will provide an example of a planning task where cost-altered

pattern database constraints dominate regular pattern database constraints.

Corollary 1. Let Π be a planning task. The abstraction heuristic hα is admissible under

all cost functions, i.e.

hα(s, cost) ≤ h∗(s, cost) for all cost functions cost .

Proof. Follows directly from the fact that abstractions are transition-preserving and thus

also plan-preserving, and the definition of abstraction heuristics in Definition 6.



Cost-Altered Post-Hoc Optimization Constraints 10

As a consequence of Corollary 1, we can freely choose the altered cost functions we want

to introduce in pattern database constraints. We will call such pattern database constraints

that are evaluated under an altered cost function cost-altered pattern database constraints

and they are defined as follows:

Definition 13 (cost-altered pattern database constraint). Let Π = 〈V,O, s0, s∗, cost〉 be a

planning task, let s ∈ S(Π) be a state, let V ′ ⊆ V be a pattern, let T V ′
be the induced

abstraction of Π under the pattern V ′, and let hV
′

be its abstraction heuristic. Let cost ′ be

the cost function we introduce. Then, the cost-altered pattern database constraint is defined

as

cPDB
V ′,cost′,s :

∑
o∈O,

o affects T V
′

cost ′(o) · Counto ≥ hV
′
(s, cost ′).

Having established that cost-altered post-hoc constraints are operator-counting con-

straints, we are now interested in the behavior of the operator-counting linear program

under such constraints: in Figure 3.1 there is a planning task for which cost-altered pattern

database constraints dominate pattern database constraints under the task’s original cost

function, as will now show in detail.

A1

B1

C1 C2 C3

o1

o2

o3

o3 o4

(a) Transition system T of a
planning task Π.

A

B

C

o2

o1

o3

o3, o4

(b) Transition system of the
projection T {a}.

1 2 3

o1, o2

o3 o4

(c) Transition system of the
projection T {b}.

Figure 3.1: A planning task where cost-altered post-hoc optimization constraints dominate
regular post-hoc optimization constraints.

Let Π = 〈{a, b}, {o1, o2, o3, o4}, s0, s∗, {o1 7→ 7, o2 7→ 10, o3 7→ 7, o4 7→ 6}〉 be the planning

task shown in Figure 3.1a. Let T {a} be its atomic projection under variable a, shown in

Figure 3.1b. The atomic projection T {b} is shown in Figure 3.1c. The variable domains

are dom(a) = {A,B,C}, and dom(b) = {1, 2, 3}, respectively. The corresponding pattern

database constraints ca = cPDB
{a},cost,s0 of projection T {a} and cb = cPDB

{b},cost,s0 of projection

T {b} are

ca : 7 · Counto1 + 10 · Counto2 + 7 · Counto3 + 6 · Counto4 ≥ h{a}(s, cost) = 10, and

cb : 7 · Counto1 + 10 · Counto2 + 7 · Counto3 + 6 · Counto4 ≥ h{b}(s, cost) = 13.

We now change the cost of operator o3 from 7 to 4 and introduce our altered cost function

: cost ′ = {o1 7→ 7, o2 7→ 10, o3 7→ 4, o4 7→ 6}. The cost-altered pattern database constraint
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c′a = cPDB
{a},cost′,s0 of the projection T {a} under cost ′ is then defined as

c′a : 7 · Counto1 + 10 · Counto2 + 4 · Counto3 + 6 · Counto4 ≥ h{a}(s, cost ′) = 10.

Let us now examine the behavior of the operator-counting linear program under these con-

straints. Let s0 be the initial state of planning task Π. The optimal solution Count∗ to the

operator-counting linear program LP{ca,cb}(so) subject to the regular post-hoc optimization

constraints ca and cb for state s0 is

Count∗ = argmin
Count

{∑
o∈O

cost(o) · Counto | {ca, cb}
}

= {o1 7→ 0, o2 7→ 0, o3 7→ 2, o4 7→ 0},

which results in the heuristic estimate hLP
{ca ,cb}(s0, cost) = 14.

Note that the solution Count∗ does not represent an actual plan in the planning task Π,

and that it violates the cost-altered post-hoc optimization constraint c′a. In consequence,

the solution Count∗ will be infeasible in a linear program subject to a constraint set that

contains c′a. When we evaluate the operator-counting linear program LP{c′a,cb}(so) we arrive

at a different minimum solution

Count∗
′

= argmin
Count

{∑
o∈O

cost(o) · Counto | {c′a, cb}
}

= {o1 7→ 1, o2 7→ 0, o3 7→ 1, o4 7→ 1}.

Indeed, the heuristic estimate hLP
{c′

a ,cb}
(s0, cost) = 20 > hLP

{ca ,cb}(s0, cost) = 14 for initial

state s0 has improved under the constraint set that includes the constraint c′a, while the

heuristic estimates are identical between both constraint sets for all other states in the

planning task.



4
Experimental Results

To examine the behavior of cost-altered post-hoc optimization constraints in practice, we

used the existing implementation of the operator-counting framework present in the Fast

Downward planning system (Helmert, 2011) and extended it so that cost-altered post-hoc

optimization constraints are supported. In this section we present the experiment setup as

well as a discussion of benchmark results we obtained.

4.1 Experiment Setup
In our evaluations we used the A∗ search algorithm to find a plan, in conjunction with

the operator-counting heuristic hLP
C , where C is a set of operator-counting constraints. In

our experiments we evaluated the following sets of operator-counting constraints, as well as

all combinations thereof.

SEQ includes all lower-bound net change constraints (Bonet, 2013, Pommerening et al.,

2014),

LMC adds a landmark constraint for each disjunctive action landmark (Pommerening et al.,

2014, Zhu and Givan, 2003),

PhO Norm includes all pattern database constraints for systematically generated patterns

up to a size of 2 variables1 (Pommerening et al., 2014),

PhO One includes all cost-altered pattern database constraints for systematically gener-

ated patterns up to a size of 2 variables with the cost function cost(o) = 1 for all

operators,

PhO Rand includes all cost-altered pattern database constraints for systematically gener-

ated patterns up to a size of 2 variables, where the altered cost function assigns each

operator a random cost between 1 and its original cost.

1 Pommerening et al. (2014) have determined this method of pattern generation to be the most successful
in their experiments. We have not evaluated different pattern generation methods during the course of
our experiments.
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The LP solver used in the experiments is the IBM ILOG CPLEX Optimization Studio

v12.8.0. All experiments were run on Intel Xeon E5-2690 processors with 2.60 GHz cores

under a time limit of 30 minutes and a memory limit of 3584 MB per task.

The set of planning problem domains that we evaluated was chosen from a suite of

planning tasks in several domains2 that have been used in the International Planning Com-

petitions of recent years. A specific subset of tasks were selected from this suite which are

formulated in planning domains that

• are suitable for optimal planning,

• do note consist solely of unit-cost operators,

• do not contain axioms or conditional operators, as these are not supported by the

operator-counting framework in Fast Downward.

4.2 Evaluation of Results
In this section we will evaluate our experiment results on the different constraint sets

mentioned above. We begin by evaluating the constraints sets in isolation first and then in

combination.

We will first focus on the constraint set PhO One. See the left hand side of Table 4.1 for

coverage results of our benchmarks on different types of operator-counting constraints in on

their own. We find an overall reduced coverage of PhO One in comparison to PhO Norm.

The constraint set PhO One never improves over SEQ except where PhO Norm also does.

Still, some specific domains show interesting results: in the scanalyzer domain PhO One

has improved coverage over PhO Norm. On the other hand, coverage is drastically reduced

compared to PhO Norm in the elevators, spider, and woodworking domains. An examination

of the initial heuristic values has also confirmed that in comparison to PhO Norm they have

slightly improved in the scanalyzer and tetris domains only, and worsened otherwise.

PhO Rand has achieved an overall significantly lower coverage than the other evaluated

constraint sets. It seems that this method of handing out operator costs is too simplistic and

removes information rather than cause any heuristic improvement. From our experiments we

conclude that, in order to consistently achieve improved heuristic estimates, a more informed

and sophisticated method for finding desirable cost functions would be necessary. On the

other hand, it seems unclear where the information for generating such a cost function would

come from if not from domain-dependent analysis. Another open question is whether this

cost function could be generated efficiently enough to be practical.

For combinations of cost-altered pattern database constraints together with other types

of operator-counting constraints (see right side of Table 4.1), we have found that we achieved

overall slightly reduced or similar coverage to constraint sets without cost-altered constraints.

This is in line with our observation that, while a cost-altered pattern database heuristic

2 The set was retrieved from https://bitbucket.org/aibasel/downward-benchmarks.

https://bitbucket.org/aibasel/downward-benchmarks
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can be computed efficiently, there is generally no heuristic information gained by the cost-

altering.
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agricola-opt18-strips (20) 0 0 0 0 0 0 0 0 0
barman-opt11-strips (20) 4 4 4 4 4 4 4 4 4
data-network-opt18-strips (20) 9 7 8 12 6 12 12 12 12
elevators-opt08-strips (30) 18 9 10 20 9 19 19 20 19
elevators-opt11-strips (20) 15 7 8 16 7 16 16 16 16
floortile-opt14-strips (20) 0 0 0 5 2 5 5 3 5
ged-opt14-strips (20) 15 13 13 15 13 13 15 15 10
nomystery-opt11-strips (20) 16 16 8 14 10 16 14 16 12
openstacks-agl14-strips (20) 0 0 0 0 0 0 0 0 0
openstacks-opt08-strips (30) 17 15 17 17 16 15 17 17 16
openstacks-opt11-strips (20) 12 10 12 12 11 11 12 12 11
openstacks-opt14-strips (20) 1 1 1 1 1 1 1 1 1
organic-synthesis-split-opt18-strips (20) 7 7 7 15 10 13 15 13 16
parcprinter-08-strips (30) 17 15 12 18 28 18 18 19 29
parcprinter-opt11-strips (20) 13 11 9 13 20 13 13 14 20
parking-opt11-strips (20) 1 1 0 2 3 1 1 1 2
parking-opt14-strips (20) 2 1 0 3 3 0 2 0 3
pegsol-08-strips (30) 27 25 27 27 28 27 27 27 28
pegsol-opt11-strips (20) 17 15 17 17 18 17 17 17 18
petri-net-alignment-opt18-strips (20) 2 1 2 9 8 8 9 9 10
scanalyzer-08-strips (30) 7 14 6 15 14 14 13 13 13
scanalyzer-opt11-strips (20) 4 11 3 12 11 11 10 10 10
sokoban-opt08-strips (30) 28 28 24 28 18 28 28 28 28
sokoban-opt11-strips (20) 20 20 20 20 15 20 20 20 20
spider-opt18-strips (20) 11 6 6 11 13 6 6 9 11
tetris-opt14-strips (17) 3 3 2 5 12 3 3 2 11
transport-opt08-strips (30) 11 11 10 11 10 11 11 11 11
transport-opt11-strips (20) 6 6 5 6 5 6 6 6 6
transport-opt14-strips (20) 4 4 4 6 4 6 6 6 6
woodworking-opt08-strips (30) 15 10 7 16 13 16 16 18 21
woodworking-opt11-strips (20) 10 5 2 11 8 11 11 13 16

Sum (697) 312 276 244 361 320 341 347 352 385

Table 4.1: Coverage results for the different operator-counting constraint sets we evaluated
and of a selection of combinations of them.



5
Conclusion

In this thesis, we have introduced cost-altered post-hoc optimization constraints and we

have shown that they are operator-counting constraints. Furthermore, We have shown

that it is possible that the operator-counting linear heuristic can achieve a higher heuristic

estimate under cost-altered post-hoc optimization constraints in comparison with post-hoc

optimization constraints under the original cost function.

In our experiments we found that we achieved generally lower problem coverage in com-

parison to regular post-hoc optimization constraints. Still, cost-alteration has improved

coverage and initial heuristic values in a small number of problem domains even though

the methods for choosing new cost functions that we evaluated are quite simplistic. More

structured methods for finding alternate cost functions may lead to better results, al-

though finding a cost function with desirable properties is probably also somewhat domain-

dependent and may be computationally expensive. Furthermore, we have only evaluated

cost-alteration on post-hoc optimization constraints for pattern databases. The heuristics of

pattern databases are guaranteed to be admissible under all cost functions and the heuristic

values under the altered cost function can efficiently be retrieved. For other heuristics, both

these handy properties may not be true. Still, cost-altered post-hoc optimization constraints

may be an appropriate heuristic technique when structural properties of the task allow a

desirable cost function to be found.
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