duction	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments	Conclusion	Re
	000000	000000000000	0000	000	

Evaluation Of Post-Hoc Optimization Constraints Under Altered Cost Functions Presentation of Master's Thesis

Andreas Thüring

Examiner: Dr. Gabriele Röger Supervisor: Dr. Florian Pommerening

February 11, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Andreas Thüring

Introduction	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References

Setting

- Classical Planning / Heuristic Search
- Heuristics based on linear programming
 - optimal cost-partitioning (Katz and Domshlak, 2010),
 - state-equation heuristic (Bonet, 2013),
 - landmark constraints (Zhu and Givan, 2003),
 - post-hoc optimization constraints (Pommerening et al., 2013)
- Operator-counting (Pommerening et al., 2014): a framework for heuristics based on linear programming

イロン イボン イヨン イヨン 三日

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

・ロト ・回ト ・ヨト ・ヨト … ヨ

References

Operator-Counting (Pommerening et al., 2014)

Objective Function

minimize
$$\sum_{o \in O} cost(o) \cdot Count_o$$
 subject to C

- Count_o is an operator-counting variable for every operator,
- C is a set of operator-counting constraints,
- Operator-counting heuristic is defined by the objective value of the linear program under constraint set *C*.

Andreas Thüring

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

イロン イボン イヨン イヨン 三日

References

Operator-Counting Constraints

Operator-Counting Variables

 $Count_o$ for each variable $o \in O$

Operator-Counting Constraint

A linear inequality over operator-counting variables.

Single condition: Every plan must represent a feasible solution for operator-counting constraint *c*!

Andreas Thüring

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

References

Post-Hoc Optimization Constraints (Pommerening et al., 2013)

Post-Hoc Optimization Constraint

$$\sum_{v \in O \setminus N} cost(o) \cdot Count_o \ge h(s)$$

- h: admissible heuristic
- N: set of non-contributing operators

Post-hoc optimization constraints are operator-counting constraints (Pommerening et al., 2014).

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

イロン イボン イヨン イヨン 三日

References

Non-Contributing Operators

Non-Contributing Operator

 $N \subseteq O$ is a set of *non-contributing operators* if h(s, cost) is an admissible estimate in the planning task with a cost function cost' where cost'(o) = 0 for all $o \in N$, or formally

 $h(s, cost) \leq h^*(s, cost').$

Andreas Thüring

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

References

Non-Contributing Operators: Example

 $h = |\pi^*|$ for both tasks

$$h(s_0, cost) = 1$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

estimate still admissible!

Andreas Thüring

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

References

Cost-Altered Post-Hoc Optimization Constraints

Cost-Altered Post-Hoc Optimization Constraint

introduce alternative cost function *cost'*:

0

$$\sum_{o \in O \setminus N} cost'(o) \cdot Count_o \ge h(s, cost')$$

- h: admissible heuristic under cost function cost',
- N: set of non-contributing operators

Andreas Thüring

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

イロン イボン イヨン イヨン 三日

References

Cost-Altered Post-Hoc Optimization Constraints

Proposition

Cost-altered post-hoc optimization constraints are operator-counting constraints.

Andreas Thüring

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References
-					

Let

- π : plan for Π ,
- π_R : same plan with non-contributing operators are removed

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

• π and π_R have the same plan cost under *cost*".

Introduction O	n Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References
-					

Post-Hoc Optimization constraint under *cost'*:

$$\sum_{o \in O \setminus N} cost'(o) \cdot Count_o \stackrel{?}{\geq} h(s, cost')$$

Let π be a plan. We plug in the variable assignment represented by the plan π , e.g.

 $Count_o = occur(o, \pi).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References

We introduce a cost function

$$cost''(o) = egin{cases} 0 & ext{if } o \in N, \ cost'(o) & ext{otherwise}. \end{cases}$$

transform left-hand side to cost'': corresponds to reduced "plan" π_R under cost''.

$$\sum_{o \in O \setminus N} cost'(o) \cdot occur(o, \pi) \stackrel{?}{\geq} h(s, cost')$$

$$\lim_{\substack{\square \\ \sum_{o \in O \setminus N} cost''(o) \cdot occur(o, \pi)}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Andreas Thüring

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References

2 reintroduce non-contributing operators again. Corresponds to plan π under *cost*^{''}.

 $cost''(o) = \begin{cases} 0 & \text{if } o \in N, \\ cost'(o) & \text{otherwise.} \end{cases}$

$$\sum_{o \in O \setminus N} cost'(o) \cdot occur(o, \pi) \stackrel{?}{\geq} h(s, cost')$$

$$\prod_{\substack{i \in O \setminus N \\ i \in O \setminus N}} cost''(o) \cdot occur(o, \pi)$$

$$\prod_{\substack{i \in O \\ o \in O}} cost''(o) \cdot occur(o, \pi)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Andreas Thüring

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References

2 reintroduce non-contributing operators again. Corresponds to plan π under *cost*".

$$\sum_{o \in O \setminus N} cost'(o) \cdot occur(o, \pi) \stackrel{!}{\geq} h(s, cost')$$

$$\sum_{o \in O \setminus N} cost''(o) \cdot occur(o, \pi)$$

$$\prod_{u}$$

$$\sum_{o \in O} cost''(o) \cdot occur(o, \pi) \geq h^{*}(s, cost'')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Andreas Thüring

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References

under the assumption that

i *h* is admissible under *cost'* and *cost''*, and i *N* is a set of non-contributing operators $\sum_{o \in O \setminus N} cost'(o) \cdot occur(o, \pi) \geq h(s, cost')$

$$\begin{array}{ccc} \sum_{o \in O \setminus N} cost''(o) \cdot occur(o, \pi) & & \\ & \\ & \\ & \\ \sum_{o \in O} cost''(o) \cdot occur(o, \pi) & \geq & h^*(s, cost'') \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Andreas Thüring

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

・ロト ・回ト ・ヨト ・ヨト … ヨ

References

Cost-Altered Post-Hoc Optimization Constraints

Caveats

- Heuristic h must be admissible under cost' (and cost'')
- better, but not guaranteed for all heuristics: admissible under all cost functions!

e.g. Pattern Database Heuristics (Edelkamp, 2001)

- Possibility of improved heuristic estimate only when
 - optimal solution under original cost is not a plan,
 - at least one operator has a smaller cost under the altered cost function
- cost(o) = 0 : operator o has no influence anymore, loss of heuristic information.

Andreas Thüring

Int	hro	du	oti	00
	uυ	uu		011
\sim				

Cost-Altered Post-Hoc Optimization Constraints

Experiments

Conclusion

References

Toy Example

Figure: Transition system \mathcal{T} of planning task Π with variables *a* and *b*. $dom(a) = \{A, B, C\},$ $dom(b) = \{1, 2, 3\}$ We will use *atomic* projections: abstraction onto single variable. h: Cost of an optimal plan in the atomic projection \Rightarrow Pattern Database Heuristic (Edelkamp, 2001)

イロト イヨト イヨト イヨト

Andreas Thüring

Introduction	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments	Conclusion	References
0	000000	000000000000000	0000	000	

Figure: transition system T of planning task Π with variables aand b. $dom(a) = \{A, B, C\},$ $dom(b) = \{1, 2, 3\}$ Figure: atomic projection $\mathcal{T}^{\{a\}}$.

Figure: atomic projection $\mathcal{T}^{\{b\}}$.

・ロン ・回 と ・ ヨン・

크

Andreas Thüring

Introduction	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments	Conclusion	References
0	000000	000000000000000000000000000000000000000	0000	000	

Figure: transition system \mathcal{T} of planning task Π with variables aand b. $dom(a) = \{A, B, C\},$ $dom(b) = \{1, 2, 3\}$ Figure: atomic projection $\mathcal{T}^{\{a\}}$.

 $h^{\{a\}}(s_0) = 10$

Figure: atomic projection $\mathcal{T}^{\{b\}}$.

・ロン ・回 と ・ ヨン・

 $h^{\{b\}}(s_0) = 13$

3

Andreas Thüring

Introduction	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments	Conclusion	References
0	000000	0000000000000	0000	000	

minimize $\sum_{o \in O} cost(o) \cdot Count_0$ subject to

$$\begin{array}{ll} 7 \cdot \textit{Count}_{o_1} + 10 \cdot \textit{Count}_{o_2} & +7 \cdot \textit{Count}_{o_3} & \geq 10 \\ & 7 \cdot \textit{Count}_{o_3} + 6 \cdot \textit{Count}_{o_4} & \geq 13 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

$$\Rightarrow$$
 $h^{\text{LP}}(s_0) = 14$ with solution $Count_{o_3} = 2$.

Andreas Thüring

Introduction	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments	Conclusion	References
0	000000	00000000000	0000	000	

minimize $\sum_{o \in O} cost(o) \cdot Count_0$ subject to

 $\begin{array}{ll} 7 \cdot \textit{Count}_{o_1} + 10 \cdot \textit{Count}_{o_2} & + 4 \cdot \textit{Count}_{o_3} & \geq 10 \\ & 4 \cdot \textit{Count}_{o_3} + 6 \cdot \textit{Count}_{o_4} & \geq 10 \end{array}$

 \Rightarrow $h^{LP}(s_0) = 20$ with solution $Count_{o_1} = 1$, $Count_{o_3} = 1$, $Count_{o_4} = 1$. Improved heuristic estimate compared to regular post-hoc optimization constraints!

Andreas Thüring

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments •000	Conclusion 000	References

Experiment Setup

- Implemented cost-altering for post-hoc optimization constraints in Fast Downward (Helmert, 2011).
- appropriate subset of planning task from benchmark selection

◆□ → ◆□ → ◆三 → ◆三 → ○ ◆ ○ ◆ ○ ◆

Tested implementation on sciCORE grid.

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion	References

Experiment Setup

Constraint sets tested:

- SEQ lower-bound net change constraints
- LMC landmark constraints
- PhO_Norm regular pattern database constraints
 - PhO_One cost-altered pattern database constraints with the cost function cost(o) = 1 for all operators
- PhO_Rand cost-altered pattern database constraints where the altered cost function assigns each operator a random cost between 1 and its original cost

plus combinations thereof

Introduction	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments	Conclusion	References
0	000000	000000000000	0000	000	

Experiment Results

Cost-altering reduced coverage:

Andreas Thüring

Cost-Altered Post-Hoc Optimization Constraints

Experiments 0000 Conclusion

References

Experiment Results: Interpretation

- Only in domains scanalyzer and tetris was improved initial h-value achieved.
 - domains characterized by loops with near-similar cost
- Otherwise, slight loss of coverage or significant loss in case of PhO_Rand.
- No significant positive or negative interactions on combinations

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion •OO	References

Conclusion

- Cost-altered post-hoc optimization constraints are operator-counting constraints, but: chance of reaching an improved solution in practice is low
- ⇒ need more informed method for generating alternative cost functions
 - Problem: what is a "good" cost function? Need some kind of objective criterion.
 - ⇒ find cost function that maximises heuristic value while staying admissible, similar to optimal cost partitioning.
 - infeasible in practice?
 - $\blacksquare \Rightarrow$ something similar to saturated cost partitioning (Seipp and Helmert, 2014)
 - What is criterion for handing out costs?

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion ○○●	References
-					

Conclusion

- Cost-altered post-hoc optimization constraints are operator-counting constraints, but: chance of reaching an improved solution in practice is low
- ⇒ need more informed method for generating alternative cost functions
 - Problem: what is a "good" cost function? Need some kind of objective criterion.
 - ⇒ find cost function that maximises heuristic value while staying admissible, similar to optimal cost partitioning.
 - infeasible in practice?
 - $\blacksquare \Rightarrow$ something similar to saturated cost partitioning (Seipp and Helmert, 2014)
 - What is criterion for handing out costs?

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion 000	References
Biblio	graphy I				

- Blai Bonet. An admissible heuristic for SAS⁺ planning obtained from the state equation. In *Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence*, pages 2268–2274, 2013.
- Stefan Edelkamp. Planning with pattern databases. In *Proceedings of the Sixth European Conference on Planning*, pages 84–90, 2001.
- Malte Helmert. The Fast Downward planning system. *Journal of Artificial Intelligence Research*, 26:191–246, 2011.
- Michael Katz and Carmel Domshlak. Optimal admissible composition of abstraction heuristics. *Artificial Intelligence*, 174(12-13): 767–798, 2010.
- Florian Pommerening, Gabriele Röger, and Malte Helmert. Getting the most out of pattern databases for classical planning. In *Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence*, pages 2357–2364, 2013.

イロン イヨン イヨン ・

э

Introduction O	Operator-Counting	Cost-Altered Post-Hoc Optimization Constraints	Experiments 0000	Conclusion 000	References
Biblio	ography II				

- Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet. LP-based heuristics for cost-optimal planning. In Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling, pages 226–234, 2014.
 - Jendrik Seipp and Malte Helmert. Diverse and additive cartesian abstraction heuristics. In *Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling*, pages 289–297, 2014.
 - Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In *Printed Notes of International Conference on Automated Planning and Scheduling 2003 Doctoral Consortium*, 2003.