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a.thuering@stud.unibas.ch

2009-724-162

31.07.2015



Abstract

The objective of classical planning is to find a sequence of actions which begins in a given

initial state and ends in a state that satisfies a given goal condition. A popular approach

to solve classical planning problems is based on heuristic forward search algorithms. In

contrast, regression search algorithms apply actions “backwards” in order to find a plan

from a goal state to the initial state. Currently, regression search algorithms are somewhat

unpopular, as the generation of partial states in a basic regression search often leads to a

significant growth of the explored search space. To tackle this problem, state subsumption

is a pruning technique that additionally discards newly generated partial states for which a

more general partial state has already been explored.

In this thesis, we discuss and evaluate techniques of regression and state subsumption. In

order to evaluate their performance, we have implemented a regression search algorithm for

the planning system Fast Downward, supporting both a simple subsumption technique as

well as a refined subsumption technique using a trie data structure. The experiments have

shown that a basic regression search algorithm generally increases the number of explored

states compared to uniform-cost forward search. Regression with pruning based on state

subsumption with a trie data structure significantly reduces the number of explored states

compared to basic regression.
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1
Introduction

Classical planning is a sub-field of artificial intelligence that is concerned with finding a

sequence of actions for an acting agent whose behavior is governed by rules specified by

a problem definition. In order to achieve this, the problem is transformed into a rigid

mathematical setting, for example using the Planning Domain Definition Language PDDL,

which models a problem by specifying state variables and operators[11].

A planning system takes such a problem definition and tries to find a plan, that is a sequence

of actions carried out by the agent, which starts in the defined initial state and ends in

a desired goal state. A common approach to find a plan is to use a progression search

algorithm, i.e. an algorithm which starts at the initial state and iteratively applies operators

which are deemed applicable, creating new intermediate states until a plan is found. In

contrast, a regression search algorithm applies operators in a backwards fashion in order to

find a plan from a partial goal state to the specified initial state.

As the search space of planning problems can grow quickly, the investigation of differ-

ent search algorithms and optimizations remains an important research topic. A popular

approach to classical planning in the recent years is the utilization of progression search

algorithms with heuristics[3, 8–10]. In contrast, as stated by Eyerich and Helmert [5],

the effectiveness of these algorithms have rendered research in regression search algorithms

somewhat unpopular momentarily.

Yet, for regression, there is the work of Alcázar et al. [1] who have used regression in con-

junction with reachability-based heuristics. Furthermore, Alcázar et al. [2] have examined

bidirectional planners, that is the combination of progression and regression search as well

as the impact of state subsumption on such algorithms. Eyerich and Helmert [5] have uti-

lized bidirectional planners as well, using perimeter search and pattern database heuristics.

Haslum et al. [6] have examined hm and pattern database heuristics for regression search

algorithms.

Search algorithms may employ pruning strategies in order to reduce the search space ex-

plored during a planning task. Due to the creation of partial states in regression, a pruning

technique based on state subsumption seems promising in regression search. However, the

computational cost of finding suitable states for subsumption quickly outruns any perfor-

mance gained by pruning. Instead of using typical closed list implementations of planning



Introduction 2

systems in the form of hash tables, employing an additional data structure for performing

a subsumption check might prove to be worth the additional memory requirements if it

sufficiently speeds up subsumption.

In this thesis, we discuss the techniques of regression and state subsumption and in order

to evaluate their performance we have implemented a regression search algorithm for the

planning system Fast Downward developed by Helmert [7], supporting pruning with a simple

subsumption technique as well as a refined subsumption technique using a trie data structure.

The implemented techniques were evaluated using a benchmark procedure. Results showed

that while regression search in general performs worse than uniform cost search with which

it was compared, it has great potential in some domains, where regression search algorithms

which used pruning via subsumption expanded the fewest states in order to find a solution

of all evaluated algorithms. These advantages are somewhat offset by the fact that a simple

subsumption implementation is so computationally demanding that problem coverage is

greatly reduced, while pruning using a trie data structure for subsumption has shown to

reach performance comparable to a regression search algorithm without any subsumption.
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Planning in SAS+

This chapter generally follows the definitions provided by Alcázar et al. [1] with some slight

modifications for convenience.

Definition 1 (SAS+ Planning Task). An SAS+ planning task is a 4-tuple P = 〈V, s0, sE , O〉,
where

• V is a finite set of state variables, where each variable v ∈ V has a finite domain Dv.

• A partial state s is a variable assignment for each variable v ∈ V from Dv∪{u}, where

u /∈ Dv represents an undefined variable assignment.

• The value or variable assignment of a specific variable v ∈ V in a given partial state

s is defined as s[v] ∈ Dv ∪ {u}.

• Let s be a partial state. We define the set of defined variables in s as vars(s) := {v ∈
V | s[v] 6= u}.

• A state s is a partial state for which vars(s) = V .

• O is a finite set of operators, where each operator o ∈ O is a tuple o = 〈cond(o), eff (o)〉.
The partial states cond(o) and eff (o) represent the preconditions and effects of o.

• Operators have an action cost defined as cost(o) ∈ R+
0 .

• s0 is the initial state.

• sE is the partial state that defines the goals.

Definition 2 (Applicability of operators). Let P = 〈V, s0, sE , O〉 be an SAS+ planning

task.

• An operator o ∈ O is applicable in a state s if for all v ∈ vars(cond(o)) : cond(o)[v] =

s[v].

• The state s′ := app(o, s), called the successor of s, results from the application of

o in s and is identical to s except for all v ∈ vars(eff (o)) which get a new variable

assignment s′[v] = eff (o)[v].
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• A path between two states s and s′ is a sequence of operators 〈o0, . . . , on〉 created by

the successive application of these operators in s such that

s′ = app(on, . . . app(o1, app(o0, s)) . . .).

The state s′ is said to be reachable by s.

• A plan is a path between the initial state s0 and the state

s′ = app(on, . . . app(o1, app(o0, s0)) . . .),

where state s′ complies with the partial goal state sE , i.e. s′[v] = sE [v] for all v ∈
vars(sE).

2.1 Progression Search Algorithms
The following section on progression search algorithms is mainly based on the textbook by

Russell and Norvig [11].

Definition 3 (Progression Search algorithm). Let P = 〈V, s0, sE , O〉 be an SAS+ planning

task.

• Progression search is the process of looking for a sequence of operators that reach a

goal state sE , beginning with the initial state s0.

• The search space is the graph which is generated by the subsequent application of

all applicable operators on all intermediate states beginning from the initial state s0.

Vertices in the graph correspond to states and edges represent the applied operators.

• A search node is a vertex in the search space and is defined as a 4-tuple n = 〈s, p, o, c〉
where s is the state corresponding to the node n, p is the parent node in the search

space which created this node, o ∈ O is the operator which generated the node and c

is the cost associated with the path from the node representing the initial state to the

node n.

• The cost of a path 〈o0, . . . , ok〉 is defined as
∑k

i=0 cost(oi). It is sometimes associated

with the specific last search node nk of said path and defined as g(nk).

The goal of optimal planning is to find a plan which is optimal, i.e. a plan that has minimal

cost among all plans, while satisficing planning tries to find any not necessarily optimal

plan[11].

2.1.1 Procedure of a Progression Search Algorithm
The basic principles of a progression search algorithm are presented in this section, influenced

by the textbook on artificial intelligence by Russell and Norvig [11].

• Given a search node n, the process of expansion determines all applicable operators

o ∈ O for the state s that belongs to this node and applies them, thus generating a
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new set of search nodes n′, each containing a state s′ = app(o, s) created by applying

o in s. Every generated search node n′ is a child node of the parent node n in the

search space. Before the node n is expanded, the goal test is executed on the node to

determine whether a plan has already been found.

• Each of the nodes generated by the expansion of n is a leaf node, that is a node without

children. The open list or frontier Lo is defined as the set of leaf nodes available for

expansion. Often, a priority queue is used as data structure for implementing the open

list.

• A search algorithm uses a search strategy for choosing a candidate for further expansion

from the open list. For the purpose of this explanation, Lo is some data structure

which allows the insertion of search nodes, as well as an operation denoted pop()

which retrieves the search node to be expanded, according to the search strategy used.

• The process of expansion can generate nodes describing states which have already been

created by previous expansions. In order to avoid exploring these redundant paths,

search algorithms employ a closed list Lc which contains every previously expanded

node. If the closed list contains a search node corresponding to a state s′ which is

identical in all variable assignments to the state s belonging to a search node n that

was newly generated during expansion, search node n can be discarded for further

expansion without affecting completeness of the algorithm. The closed list is often

implemented as a hash table, allowing fast retrieval of duplicates.

The procedure of a progression search algorithm is illustrated as pseudo code in Algorithm

1.

2.1.2 Search Strategies
An important characteristic of a search algorithm is its search strategy, i.e. the mechanism by

which it governs the next candidate for expansion from the open list. Since we only employ

blind search algorithms in this work, heuristic search strategies are only touched briefly.

For a more thorough introduction about different search strategies and their properties see

Russell and Norvig [11] from which these definitions were taken.

• Blind search algorithms only use the information provided by the problem definition

in order to find a plan. An important blind search algorithm is uniform cost search,

which always expands the node n with minimal path cost g(n) first. Uniform cost

search guarantees optimality of the found plan, if such a plan exists.

• Informed search algorithms employ a heuristic function in order to determine the most

promising node in the open list for expansion.
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Algorithm 1 Procedure of a progression search algorithm

1: procedure Search(SAS+ instance P = 〈V, s0, sE , O〉, initial node n0)
2: Lc ← ∅ . Initialize closed list
3: Lo.insert(n0)
4: loop
5: if L0 is empty then
6: return false
7: end if
8: n← Lo.pop() . choose new node from open list according to search strategy
9: if n.state[v] = sE [v] for all v ∈ vars(sE) then . Goal test

10: return solution
11: end if
12: Lc ← Lc ∪ {n}
13: . Expansion
14: for o ∈ O do
15: if applicable(n.state, o) then
16: nnew ← 〈app(o, n.state), n, o, g(n) + cost(o)〉 . Generate a new search

node nnew

17: if no node nc ∈ Lc exists with nc.state = nnew.state then
18: Lo.insert(nnew)
19: end if
20: end if
21: end for
22: end loop
23: end procedure



3
Regression Search

Let P = 〈V, s0, sE , O〉 be an SAS+ planning task. The objective of regression search is to

employ a search algorithm which finds a path from the partial goal state sE to the initial

state s0. Regression search generally uses the same principles as progression search strategies

elaborated in section 2.1, bare some key differences noted in this chapter.

Definition 4 (Regressability of operators). Let P = 〈V, s0, sE , O〉 be an SAS+ planning

task.

• Let o ∈ O be an operator. The set of variables that occur only in a condition but not

in an effect is defined as cond only(o) := {v ∈ V | vars(cond(o)) \ vars(eff (o))}.

• We define as regressability the “reverse applicability” of an operator o ∈ O. An

operator o is regressable in partial state s if

(i) there exists a v ∈ vars(eff (o)) for which s[v] = eff (o)[v],

(ii) there exists no v ∈ vars(eff (o)) ∩ vars(s) for which s[v] 6= eff (o)[v],

(iii) s[v] = cond(o)[v] for all v ∈ vars(cond only(o)) ∩ vars(s)

• The resulting state s′ = regr(o, s) from the regression application of o in s is called

the predecessor of s and is identical to s except

(i) s′[v] = u for all v ∈ vars(eff (o)) \ vars(cond(o)).

(ii) s′[v] = cond(o)[v] for all v ∈ vars(cond(o)).

• A regression path between two partial states s and s′ is a sequence of operators

〈o0, . . . , on〉 created by the successive application of these operators such that

s′ = regr(on, . . . regr(o1, regr(o0, s)) . . .).

• A regression plan is a path s′ = regr(on, . . . regr(o1, regr(o0, sE)) . . .), i.e. a path that

transitions from the partial goal state sE to a state s′ which complies with the initial

state s0. A regression plan is always identical to a inverted plan in which the same

operators are applied in a forward fashion.
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3.1 Subsumption
Subsumption, as presented by Alcázar et al. [2], is a pruning strategy deployed during state

expansion in a regression search algorithm.

Definition 5 (Subsumption of states). Let P = 〈V, s0, sE , O〉 be an SAS+ planning task

and let s and s′ be two partial states. Partial state s subsumes s′ (s v s′) if s[v] = s′[v] or

s[v] = u for all v ∈ V .

If s′ is subsumed by s, then the set of regressable operators of partial state s′ is a subset of

the set of regressable operators of s.

3.1.1 Using Subsumption in a Regression Search Algorithm
Consider a regression search algorithm that creates search node n during state expansion.

Let the partial state s which corresponds to the search node n be subsumed by the partial

state s′ belonging to a search node n′ contained in the closed list. If the optimality of the

search algorithm shall be maintained, node n may only be pruned if additionally g(n) ≥
g(n′). In satisficing planning, search node n may already be pruned if only the subsumption

condition is fulfilled.

Algorithm 2 Procedure of a regression search algorithm with subsumption

1: procedure Search(SAS+ instance P = 〈V, s0, sE , O〉)
2: Lo.insert(nE) . Initialize open list
3: Lc ← ∅ . Initialize closed list
4: loop
5: if L0 is empty then
6: return false
7: end if
8: n← Lo.pop() . choose n ∈ Lo according to search strategy
9: if n.state[v] = s0[v] for all v ∈ vars(n.state) then . initial state test

10: return solution
11: end if
12: Lc ← Lc ∪ {n}
13: . Expansion
14: for o ∈ O do
15: if regressable(n.state, o) then
16: nnew ← 〈regr(o, n.state), n, o, g(n) + cost(o)〉
17: for nc ∈ Lc do
18: if nc.state 6v nnew.state ∨ g(nnew) < g(nc) then
19: Lo.insert(nnew) . Add newly created state to open list
20: end if
21: end for
22: end if
23: end for
24: end loop
25: end procedure
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Implementation

In order to assess the performance of regression search, we have implemented regression

search functionality into the planning software Fast Downward, utilizing the already pro-

vided uniform cost search module. While implementation of operator applicability determi-

nation and state successor generation are straight forward, state subsumption causes special

challenges.

4.1 Naive Implementation of Subsumption
Following the definitions in section 3.1, in order to determine whether the closed list contains

a search node which corresponds to a partial state that subsumes a given newly created state,

a basic subsumption check algorithm in the worst case has to access at least one variable

of the partial state of every search node contained in the closed list, in the case that there

is no subsuming partial state to be found. Considering that in many planning domains

search spaces grow large quickly, the performance implications render using a basic state

subsumption algorithm prohibitive in most settings.

4.2 Implementation of State Subsumption Utilizing a Trie Data Structure
In order to speed up the subsumption check, we implemented a trie data structure that

performs said subsumption check into the planning system Fast Downward. A trie is an

implementation of the closed list using a tree based on a specific layout which promises a

more efficient retrieval of subsuming states from the closed list in comparison to a simple

implementation. The trie implementation described here is adapted for state subsumption

from Edelkamp and Schrödl [4] who present tries in the domain of subset dictionaries. To

avoid confusion, in the following section trie nodes are always referenced by the letter n,

while search nodes belonging to the search algorithm that employs the trie data structure

are signified by the letter w.

Definition 6 (Subsumption trie). Let P = 〈V, s0, sE , O〉 be an SAS+ planning task. A

subsumption trie T = 〈N,E〉 is a tree, where N is a finite set of nodes of T and E ⊆
N ×

⋃
Dv ∪ {u} ×N is a set of edges.
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• Each edge e ∈ E is a 3-tuple 〈n, a, n′〉, where n ∈ N describes the parent node,

a ∈
⋃
Dv ∪ {u} is the edge label corresponding to a variable assignment of a partial

state and n′ ∈ N is the child node.

• Inner nodes store no further information about entries.

• Leaf nodes are nodes at the lowest level of the trie T. They have no child nodes and

in contrast to inner nodes they hold a reference to a search node w.

• A path p = 〈e1, . . . , en〉 from the root node of T to a leaf node corresponds to a partial

state s that belongs to a search node w which has been previously inserted into the

trie. Each edge ei = 〈n, ai, n′〉 of p on trie level l corresponds to the i-th variable

assignment s[vi] = ai of s. The leaf node in which the path ends associates the partial

state s defined by the sequence of edge labels with a specific search node w.

Given the definitions above, entries of a subsumption trie are search nodes. Each inserted

search node w is uniquely identified by a sequence of edges connected by trie nodes reaching

from the root node to a leaf node which describes the variable assignments of partial state

s corresponding to w, while the leaf node of said path associates s with its search node w.

A lookup in the subsumption trie T, given a search node w which corresponds to the partial

state s is defined as a procedure which retrieves a search node w′ describing partial state s′

where s′ subsumes s and g(w) ≥ g(w′), if such an entry has been inserted in T previously.

If a lookup is able to retrieve such a search node w′, search node w can be pruned.

4.2.1 Insertion
In order to use a subsumption trie in a regression search algorithm, all states that are added

to the closed list during search must be inserted into the subsumption trie. Insertion is done

recursively as follows. It is assumed that the i-th child ci of a trie node n can be accessed

in array-like fashion n[ci].

Algorithm 3 Insertion, recursion entry point

1: procedure Insert(search node w, trie root r)
2: Insert(w,w.state, r, 0)
3: end procedure

The process of insertion is illustrated additionally in figure 4.1.
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Algorithm 4 Insertion

1: procedure Insert(search node w,partial state s, trie node n, index i)
2: c← s[i]
3: if n[c] = ⊥ then . Child node does not exist
4: n[c]← node . Create new inner node
5: end if
6: if i = |s| − 1 then . Search node n is a leaf node
7: n.w ← w . Insert reference to w in leaf node
8: return
9: else

10: Insert(w, s, n[c], i + 1)
11: end if
12: end procedure

[0, 0, 1]

0

0

1

(a) Trie layout after insertion of state [0, 0, 1]

[0, 0, 1] [1, u, 1]

0

0

1

1

u

1

(b) Trie layout after insertion of state [1, u, 1]

[0, 0, 1] [1, u, 1] [1, 0, 1]

0

0

1

1

u

1

0

1

(c) Trie layout after insertion of state [1, 0, 1]

[0, 0, 1] [1, u, 1] [1, 0, 1] [1, 1, 0]

0

0

1

1

u

1

0

1

1

0

(d) Trie layout after insertion of state [1, 1, 0]

Figure 4.1: Demonstration of Trie layout after insertion of four different states over three
variables, each variable v having the same variable domain Dv = {0, 1} ∪ {u}. Each path
from the root node to a leaf represents a specific inserted partial state. In this figure, the
stored partial state s is included in the leaf node for demonstration purposes. In an actual
implementation of a subsumption trie a leaf node would contain a reference to the respective
search node corresponding to the partial state described by the path in the trie that ends
in said leaf node.

4.2.2 Lookup
The lookup procedure is likewise influenced by the algorithm provided by Edelkamp and

Schrödl [4] and was slightly adopted. Given a search node w which corresponds to partial

state s, the lookup algorithm starts by visiting the root of the trie and on every trie level l

follows each edge which corresponds to the specific variable assignment s[vl]. Additionally,

any existing outgoing edges labeled u of a visited trie node will be followed as well. Thus,

the lookup procedure will reach the leaf nodes of all previously inserted search nodes w′ of

which their respective partial states s′ are identical to s, or which differ to s only in having
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one or more undefined variable assignments where s is defined, i.e. all partial states s′ which

subsumes s, as defined in section 3.1. Additionally, by retrieving the search node w′ via the

leaf node, path costs of w and w′ are compared in order to determine whether the search

node w can be pruned.

Algorithm 5 Lookup, recursion entry point

1: procedure Lookup(search node w, trie root r)
2: return Lookup(w.state, r, 0)
3: end procedure

Algorithm 6 Lookup

1: procedure Lookup(search node w, trie node n, index i)
2: s← w.state
3: if n[”u”] 6= ⊥ then . undefined child node exists
4: if i < |s| − 1 then . trie node n is an inner node
5: if Lookup(w, n[”u”], i + 1) then
6: return true
7: end if
8: else . trie node n is a leaf node
9: w′ ← n.w . retrieve search node w′ from leaf node

10: if g(w) ≥ g(w′) then
11: return true
12: end if
13: end if
14: end if
15: c← s[i]
16: if c 6= ”u” ∧ n[c] 6= ⊥ then . Specific child node s[i] exists
17: if i < |s| − 1 then . trie node n is an inner node
18: if Lookup(w, n[c], i + 1) then
19: return true
20: end if
21: else . trie node n is a leaf node
22: w′ ← n.w . retrieve search node w′ from leaf node n
23: if g(w) ≥ g(w′) then
24: return true
25: end if
26: end if
27: end if
28: return false
29: end procedure
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[0, 0, 1] [1, u, 1] [1, 0, 1] [1, 1, 0]

0

0

1

1

u

1

0

1

1

0

Figure 4.2: Lookup of state [1, 1, 1] in the trie created by figure 4.1. The state [1, u, 1] is
returned as a possible candidate for subsumption.

4.2.3 Using a Subsumption Trie in the Context of a Search Algorithm
The following algorithm shows how a subsumption check for pruning can be integrated into

a regression search algorithm as presented in Algorithm 2.

Algorithm 7 Procedure of a regression search algorithm with subsumption

1: procedure Search(SAS+ instance P = 〈V, s0, sE , O〉, subsumption trie T )
2: Lo.insert(nE) . Initialize open list
3: loop
4: if L0 is empty then
5: return false
6: end if
7: n← Lo.pop()
8: if is initial state(n.state) then . initial state test
9: return solution

10: end if
11: T.insert(n)
12: . Expansion
13: for o ∈ O do
14: if regressable(n.state, o) then
15: nnew ← 〈regr(o, n.state), n, o, g(n) + cost(o)〉
16: if T.lookup(nnew.state) = ⊥ then
17: Lo.insert(nnew)
18: end if
19: end if
20: end for
21: end loop
22: end procedure



5
Evaluation

In the following section we will present some findings about the performance implications of a

progression search algorithm using subsumption, first using some theoretical considerations,

and then evaluating the performance of the module we implemented in the planning system

Fast Downward.

5.1 Subsumption Using a Priority Queue Implementation for the Closed
List

Given a regression search algorithm with n search nodes contained in its closed list, each

node representing a state with m variables having a domain of at most size l, and suggest

an implementation of a subsumption technique using the usually provided closed list im-

plementation of a planning system, which is in the form of a priority queue. Using such a

data structure for subsumption, a search algorithm will in the worst case need to access nml

memory locations and in any case at least one value of every node in the closed list needs

to be examined if no partial state can be found which subsumes the given partial state. As

n grows fast, the cost of pruning states based on simple subsumption quickly outruns the

advantages gained from pruning.

5.2 Subsumption Using a Trie Implementation
A subsumption trie requires additional memory for the storage of its nodes, which might

be prohibitive in some cases. The run time performance of a trie remains somewhat more

elusive: it is strongly dependent on the branching factor of the trie, as during a lookup, each

encountered edge with label u will cause the traversal of an additional sub-path. Edelkamp

and Schrödl [4] estimate the complexity of a lookup in a trie as O(nlog(2− s
m )), considering

each entry has length m with s ≤ m variables undefined in a trie with n entries.
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5.3 Experimentation
In this section we describe the results we obtained by implementing the proposed techniques

for the planning system Fast Downward. Experiments were run on a cluster consisting of

2.66 GHz nodes and each experiment was run with a time limit of 30 minutes and a memory

limit of 2048 MB. The performance of our implementation was compared to the uniform cost

search algorithm already provided by the planning system, on which our implementations

were based on. In this section, the uniform cost search module provided by Fast Downward

is referenced by UCF, the basic regression algorithm without subsumption pruning is called

regr, while the regression search algorithm with simple subsumption pruning is referenced

by regrs and the regression search algorithm with trie subsumption is named regrT . As

the number of evaluated problem domains was rather large, only a selection of results is

presented here. In this chapter we will focus on the problem domains contained in the ipc11

competition as well as some domains where regression algorithms perform strongly. The full

evaluation tables can be found in the appendix.

summary UCF regr regrs regrT

Coverage1 521 296 195 297
Expansions2 1216.81 14242.41 4418.32 4418.32
Memory1 3165260 4849984 1354048 1928504
Search time2 0.02 0.38 3.46 0.30

Table 5.1: Summary of evaluation results across all evaluated domains.

As shown in table 5.1, experiments revealed that regression search has been able to cover

fewer problems than the UCF algorithm expect in the domains of floortile, miconic and

rovers. Regression search without subsumption normally causes a great increase of the

explored search space as compared to progression search: as seen in the same table, the

geometric mean of expanded states in the evaluated domains is increased about tenfold

in regr compared to UCF. This difference in expanded states is though highly problem

dependent. The domains in which regr performs stronger than UCF are the domains where

a regression algorithm generated less search nodes than a progression search algorithm. In

some domains like sokoban, regression will create a great number of redundant search paths.

1 Sum across all domains
2 geometric mean across all domains
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Coverage UCF regr regrs regrT

barman-opt11-strips (20) 4 0 0 0
elevators-opt11-strips (20) 9 2 0 2
floortile-opt11-strips (20) 2 10 2 9
logistics00 (29) 11 11 8 11
logistics98 (35) 2 2 2 2
miconic (150) 50 60 40 60
nomystery-opt11-strips (20) 8 7 4 7
openstacks-opt11-strips (20) 15 0 0 0
parcprinter-opt11-strips (20) 6 4 3 4
parking-opt11-strips (20) 0 0 0 0
pegsol-opt11-strips (20) 17 1 1 1
rovers (40) 5 6 4 5
satellite (36) 5 5 4 5
scanalyzer-opt11-strips (20) 9 5 3 5
sokoban-opt11-strips (20) 18 2 1 2
tidybot-opt11-strips (20) 12 0 0 0
transport-opt11-strips (20) 6 3 0 3
visitall-opt11-strips (20) 9 9 7 8
woodworking-opt11-strips (20) 2 0 0 0

Table 5.2: Coverage of the tested search algorithms in selected domains.

Using subsumption techniques, the number of expansions required by regression search algo-

rithms in the evaluated domains is reduced to four times as many as are needed by UCF in

the geometric mean which corresponds to about a third of the states expanded by regr, thus

somewhat mitigating the complexity introduced by using regression. Yet, the computational

demands of a simple subsumption method massively increase search time in all evaluated

domains, rendering regrs the least efficient algorithm evaluated in this thesis.

Evaluation of the trie data structure shows that it can greatly mitigate the complexity

introduced by using a subsumption check: Search times were reduced to a level comparable

to regr, leading to a slightly better coverage. Still, even using a trie data structure for

subsumption did not lead to a significant increase in performance compared to regression

without any pruning based in subsumption. Yet, as seen in table 5.3, regression search

algorithms with subsumption pruning will expand the fewest search nodes of all evaluated

search algorithms in a handful of domains. In these domains regrT attained a coverage

similar to and in some cases even slightly better than regr, suggesting that utilizing efficient

data structures to perform pruning based on state subsumption can mitigate the inefficiency

introduced by a simple subsumption pruning technique and prove to be a desirable approach.
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Expansions UCF regr regrs regrT

floortile-opt11-strips (2) 13272508.87 100029.48 59578.68 59578.68
logistics00 (8) 4621.56 10942.18 8082.26 8082.26
logistics98 (2) 201674.32 787588.84 101541.25 101541.25
miconic (40) 2350.11 1001.97 1001.97 1001.97
nomystery-opt11-strips (4) 6349.29 33284.82 32791.80 32791.80
parcprinter-opt11-strips (3) 2955.64 44968.20 21954.74 21954.74
pegsol-opt11-strips (1) 252.00 19105.00 19105.00 19105.00
rovers (4) 1054.59 588.69 341.24 341.24
satellite (4) 5021.00 6933.10 3433.16 3433.16
scanalyzer-opt11-strips (3) 4831.79 5002.88 5002.88 5002.88
sokoban-opt11-strips (1) 649.00 5840751.00 1182.00 1182.00
transport-opt08-strips (5) 466.25 13898.89 7183.64 7183.64
visitall-opt11-strips (7) 336.27 832.33 750.22 750.22
woodworking-opt08-strips (3) 2211.69 117744.53 41206.91 41206.91

Table 5.3: Expansions needed to find a plan in selected domains. Each table entry gives the
geometric mean of expansions for that domain

The values of used memory given in table 5.4 suggest that in most cases regression algorithm

can profit from using subsumption memory-wise, as fewer states are expanded. As expected,

using a trie for subsumption increases used memory, yet in the mean only by about a factor

of 1.5 compared to regrs(see table 5.1), as some space is saved by the efficient structure of

a trie for some domains.

Memory UCF regr regrs regrT

floortile-opt11-strips (2) 1851552 21036 18176 39484
gripper (4) 23388 37428 26140 36680
logistics00 (8) 49264 60496 58860 73596
logistics98 (2) 36856 119580 30720 45904
miconic (40) 448684 230892 230896 291088
nomystery-opt11-strips (4) 23216 33328 33180 44804
parcprinter-08-strips (7) 35992 61752 46636 96640
parcprinter-opt11-strips (3) 16136 35176 24520 67032
pegsol-opt11-strips (1) 5128 21188 21188 29780
rovers (4) 19996 19720 19588 19980
satellite (4) 41404 54692 30416 39316
scanalyzer-opt11-strips (3) 19304 19356 19348 25168
sokoban-opt11-strips (1) 5524 589844 5660 9948
visitall-opt11-strips (7) 41992 49440 47008 66944
woodworking-opt08-strips (3) 16164 59152 35108 58680

Table 5.4: Memory usage of different search algorithms in selected domains. Each table
entry gives the geometric mean of memory usage for that domain

In conclusion, while regression search algorithms in general perform worse than UCF, they

remain a viable approach in specific domains. Pruning via subsumption is deeply dependent

on the method used: a naive implementation introduces a complexity far too great to be
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useful, while a trie data structure achieves a performance comparable to regression search

without subsumption. As the performance gain of pruning by state subsumption is highly

dependent on the efficiency of the procedure that finds pruning candidates, further research

in subsumption techniques may lead to more efficient methods that increase performance

of regression search algorithms using pruning via subsumption compared to regression al-

gorithms with no subsumption pruning, especially in domains that are already efficiently

tackled by regression search algorithms.



6
Conclusion

We discussed the conceptual aspects of regression search algorithms in classical planning with

special regard to pruning techniques based on s subsumption of partial states. To evaluate

the performance of said techniques, a regression search algorithm was implemented into the

planning system Fast Downward, supporting no subsumption pruning, subsumption pruning

with a simple implementation as well as a refined technique using a trie data structure for

subsumption detection.

The implementation was benchmarked in various problem domains. Results have shown that

while regression search in general performs worse than uniform cost search, it is preferable

in some domains which suit the regression paradigm well, expanding fewer nodes during

the search process. Although pruning strategies based on subsumption generally greatly

decrease the explored search space of a regression search, their performance is dependent

on the underlying data structure used for performing the subsumption check. A simple

subsumption strategy based on a hash table is so inefficient that problem coverage is reduced

significantly compared to using no subsumption at all. Yet, evaluation of a subsumption

technique relying on a trie data structure has shown to lead to performance comparable to

a regression search algorithm with no subsumption pruning.

6.1 Future Work
Further research in efficient data structure for subsumption pruning may lead to additional

performance gains, particularly as in our evaluation the search algorithms based on re-

gression with subsumption pruning expanded the fewest search nodes overall. Integrating

efficient subsumption pruning into heuristic regression search algorithms may also increase

their performance.
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Appendix

A.1 Detailed Evaluation Results
coverage

Coverage UCF regr regrs regrT

airport (50) 21 16 11 11

barman-opt11-strips (20) 4 0 0 0

blocks (35) 18 9 6 9

depot (22) 4 1 1 1

driverlog (20) 7 6 3 6

elevators-opt08-strips (30) 11 4 0 4

elevators-opt11-strips (20) 9 2 0 2

floortile-opt11-strips (20) 2 10 2 9

freecell (80) 15 1 0 1

grid (5) 1 0 0 0

gripper (20) 7 6 4 7

logistics00 (29) 11 11 8 11

logistics98 (35) 2 2 2 2

miconic (150) 50 60 40 60

mprime (35) 19 5 1 8

mystery (30) 15 7 3 10

nomystery-opt11-strips (20) 8 7 4 7

openstacks-opt08-strips (30) 20 5 2 5

openstacks-opt11-strips (20) 15 0 0 0

openstacks-strips (30) 7 5 5 5

parcprinter-08-strips (30) 10 8 7 8

parcprinter-opt11-strips (20) 6 4 3 4

parking-opt11-strips (20) 0 0 0 0

pathways-noneg (30) 4 4 3 4

pegsol-08-strips (30) 27 8 3 6



Appendix 23

pegsol-opt11-strips (20) 17 1 1 1

pipesworld-notankage (50) 14 1 1 1

pipesworld-tankage (50) 11 2 2 2

psr-small (50) 49 41 35 43

rovers (40) 5 6 4 5

satellite (36) 5 5 4 5

scanalyzer-08-strips (30) 12 8 6 8

scanalyzer-opt11-strips (20) 9 5 3 5

sokoban-opt08-strips (30) 21 5 4 5

sokoban-opt11-strips (20) 18 2 1 2

tidybot-opt11-strips (20) 12 0 0 0

tpp (30) 6 5 5 5

transport-opt08-strips (30) 11 8 5 8

transport-opt11-strips (20) 6 3 0 3

trucks-strips (30) 6 3 2 4

visitall-opt11-strips (20) 9 9 7 8

woodworking-opt08-strips (30) 7 4 3 5

woodworking-opt11-strips (20) 2 0 0 0

zenotravel (20) 8 7 4 7

Sum (1397) 521 296 195 297

The last row reports the sum across all domains.



Appendix 24

expansions

Expansions UCF regr regrs regrT

airport (11) 94.48 201.66 189.16 189.16

blocks (6) 187.76 14894.56 6739.16 6739.16

depot (1) 400.00 13632.00 2306.00 2306.00

driverlog (3) 5250.16 42181.02 22811.79 22811.79

floortile-opt11-strips (2) 13272508.87 100029.48 59578.68 59578.68

gripper (4) 4327.33 19505.51 7007.63 7007.63

logistics00 (8) 4621.56 10942.18 8082.26 8082.26

logistics98 (2) 201674.32 787588.84 101541.25 101541.25

miconic (40) 2350.11 1001.97 1001.97 1001.97

mprime (1) 197.00 30489.00 2402.00 2402.00

mystery (5) 15.71 305.24 95.12 95.12

nomystery-opt11-strips (4) 6349.29 33284.82 32791.80 32791.80

openstacks-opt08-strips (2) 400.90 26194.85 26194.85 26194.85

openstacks-strips (5) 4910.69 21442.04 21442.04 21442.04

parcprinter-08-strips (7) 413.33 5370.47 2883.37 2883.37

parcprinter-opt11-strips (3) 2955.64 44968.20 21954.74 21954.74

pathways-noneg (3) 3681.45 2199.77 1158.60 1158.60

pegsol-08-strips (3) 87.69 1591.78 1591.78 1591.78

pegsol-opt11-strips (1) 252.00 19105.00 19105.00 19105.00

pipesworld-notankage (1) 133.00 1029125.00 30067.00 30067.00

pipesworld-tankage (2) 367.11 80160.16 8776.16 8776.16

psr-small (35) 186.34 13098.82 2566.72 2566.72

rovers (4) 1054.59 588.69 341.24 341.24

satellite (4) 5021.00 6933.10 3433.16 3433.16

scanalyzer-08-strips (6) 1561.37 1644.41 1644.41 1644.41

scanalyzer-opt11-strips (3) 4831.79 5002.88 5002.88 5002.88

sokoban-opt08-strips (4) 1157.62 1896665.09 4983.11 4983.11

sokoban-opt11-strips (1) 649.00 5840751.00 1182.00 1182.00

tpp (5) 194.73 323.75 287.02 287.02

transport-opt08-strips (5) 466.25 13898.89 7183.64 7183.64

trucks-strips (2) 11763.80 97303.25 16128.81 16128.81

visitall-opt11-strips (7) 336.27 832.33 750.22 750.22

woodworking-opt08-strips (3) 2211.69 117744.53 41206.91 41206.91

zenotravel (4) 202.05 1181.41 1016.72 1016.72

Geometric mean (197) 1216.81 14242.41 4418.32 4418.32

Only instances where all configurations have a value for ”expansions” are considered. Each

table entry gives the geometric mean of ”expansions” for that domain. The last row reports

the geometric mean across all domains.
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memory

Memory UCF regr regrs regrT

airport (11) 57468 57864 57600 78176

blocks (6) 29584 42896 38740 45984

depot (1) 4996 6004 5260 5516

driverlog (3) 19040 28672 24756 30972

floortile-opt11-strips (2) 1851552 21036 18176 39484

gripper (4) 23388 37428 26140 36680

logistics00 (8) 49264 60496 58860 73596

logistics98 (2) 36856 119580 30720 45904

miconic (40) 448684 230892 230896 291088

mprime (1) 5128 19252 6840 7252

mystery (3) 16048 54816 20816 23176

nomystery-opt11-strips (4) 23216 33328 33180 44804

openstacks-opt08-strips (2) 9860 13528 13528 20888

openstacks-strips (5) 25744 29816 29816 38512

parcprinter-08-strips (7) 35992 61752 46636 96640

parcprinter-opt11-strips (3) 16136 35176 24520 67032

pathways-noneg (3) 18920 19980 18516 36036

pegsol-08-strips (3) 15120 23444 23444 31632

pegsol-opt11-strips (1) 5128 21188 21188 29780

pipesworld-notankage (1) 5128 560552 36944 51612

pipesworld-tankage (2) 10256 33364 14384 29020

psr-small (35) 172240 1412524 236300 335236

rovers (4) 19996 19720 19588 19980

satellite (4) 41404 54692 30416 39316

scanalyzer-08-strips (6) 36772 36832 36824 45600

scanalyzer-opt11-strips (3) 19304 19356 19348 25168

sokoban-opt08-strips (4) 20784 958584 23096 36144

sokoban-opt11-strips (1) 5524 589844 5660 9948

tpp (5) 25672 38688 34244 59224

transport-opt08-strips (5) 26012 45784 40932 50880

trucks-strips (2) 11360 22532 13576 19892

visitall-opt11-strips (7) 41992 49440 47008 66944

woodworking-opt08-strips (3) 16164 59152 35108 58680

zenotravel (4) 20528 31772 30988 37708

Sum (195) 3165260 4849984 1354048 1928504

Only instances where all configurations have a value for ”memory” are considered. Each

table entry gives the sum of ”memory” for that domain. The last row reports the sum across

all domains.
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search time
Search time UCF regr regrs regrT

airport (11) 0.01 0.02 0.09 0.13

blocks (6) 0.01 0.12 2.39 0.15

depot (1) 0.01 0.16 0.40 0.10

driverlog (3) 0.04 0.44 25.13 0.34

floortile-opt11-strips (2) 65.13 1.55 147.89 2.00

gripper (4) 0.02 0.16 1.64 0.10

logistics00 (8) 0.03 0.15 8.83 0.18

logistics98 (2) 0.85 11.31 886.55 2.89

miconic (40) 0.04 0.05 0.22 0.05

mprime (1) 0.01 1.98 5.40 0.27

mystery (5) 0.01 0.12 0.29 0.05

nomystery-opt11-strips (4) 0.02 1.18 21.72 1.23

openstacks-opt08-strips (2) 0.01 0.21 17.33 0.49

openstacks-strips (5) 0.01 0.26 10.90 0.44

parcprinter-08-strips (7) 0.01 0.09 1.09 0.20

parcprinter-opt11-strips (3) 0.03 0.40 28.21 1.97

pathways-noneg (3) 0.03 0.07 0.34 0.09

pegsol-08-strips (3) 0.01 0.06 1.09 0.08

pegsol-opt11-strips (1) 0.01 0.74 743.96 1.38

pipesworld-notankage (1) 0.01 71.02 1347.22 24.47

pipesworld-tankage (2) 0.01 1.17 10.23 0.91

psr-small (35) 0.01 0.13 0.49 0.08

rovers (4) 0.01 0.01 0.01 0.01

satellite (4) 0.06 0.14 0.83 0.09

scanalyzer-08-strips (6) 0.04 0.15 0.61 0.15

scanalyzer-opt11-strips (3) 0.07 0.31 2.42 0.31

sokoban-opt08-strips (4) 0.01 25.01 4.73 2.06

sokoban-opt11-strips (1) 0.01 222.91 1.29 4.99

tpp (5) 0.01 0.03 0.09 0.03

transport-opt08-strips (5) 0.01 0.23 2.68 0.17

trucks-strips (2) 0.02 2.41 10.68 0.56

visitall-opt11-strips (7) 0.02 0.04 0.26 0.04

woodworking-opt08-strips (3) 0.02 3.89 97.65 2.45

zenotravel (4) 0.01 0.14 1.21 0.13

Geometric mean (197) 0.02 0.38 3.46 0.30

Only instances where all configurations have a value for ”search time” are considered. Each

table entry gives the geometric mean of ”search time” for that domain. The last row reports

the geometric mean across all domains.
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