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Abstract

The schematic invariant synthesis algorithm using limited grounding propsed by
Rintanen was implemented and integrated into the classical planning system Fast
Downward by replacing the existing invariant synthesis algorithm by Helmert.
The invariant synthesis identifies find mutex groups which are used for the trans-
lation of the PDDL task into a finite domain representation task.
A comparison between the algorithms was evaluated by running experiments with
the planning system on various propositional STRIPS benchmark tasks. The goal
was to implement the schematic invariant synthesis algorithm that correctly finds
ground invariants and leading the planning task to find a valid plan, where the
efficiency was not of high priority.
The evaluation results show that using the implemented invariant synthesis cor-
rect ground invariants are found and that the search duration of the planner stays
similar compared to the search with the already existing invariant synthesis. In
comparison to the current invariant synthesis, the newly implemented schematic
invariant synthesis algorithm is very inefficient and can therefore not compete
with the current invariant synthesis by Helmert.
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1 Introduction

Most humans are able to systematically plan and execute tasks, as long as these
tasks are simple and do not have a large variety of options to achieve the goals.
However, as soon as the tasks become more complex, where many different objects,
locations or other problem-related attributes come into play, classical planning
systems can be used to find plans to solve the tasks efficiently.
The goal of a classical planning system is to find a sequence of actions, also called a
plan, that will find a path to a goal state from a given initial state. Such systems
can make several preparations to find this sequence of actions more efficiently.
One of these possible preparations is the translation of the input task into a more
compact representation, called the finite domain representation, which helps the
planning system to find the plan more efficiently. Such a translation can simplify
a task, by combining propositions from the input task into a group, that can
be translated into a single finite-domain variable. This is possible when only at
most one proposition in the group is true in any reachable state from the initial
state. In other words, different propositions in a group can never be true at
the same time. Such groups of propositions, that can be represented by a single
finite-domain variable are groups of mutually exclusive propositions called mutex
groups. Invariants are formulas over propositional variables, that are true in every
reachable state and can express such mutex groups [1].
Finding invariants for a planning task can be a challenging process, leading to
the development of many different approaches for invariant synthesis[1]. Such
algorithms can be divided into those that work with schematic formulas and those,
that instantiate/ground the formulas.
Jussi Rintanen proposed in the paper “Schematic Invariants by Reduction to
Ground Invariants”[2] an invariant synthesis algorithm with a novel idea of a
hybrid algorithm, that uses both the grounded and ungrounded formulas, where
the schematic formulas are only grounded with a small number of objects, defined
by a limited grounding function. The number of objects should be as small as
possible, but not too small, for the algorithm to still identify correct invariants.
This invariant synthesis algorithm uses a different approach to other earlier works,
which is the reason why implementing this algorithm in an existing planning
system and comparing its performance is an interesting task.
In this thesis, the implementation of an algorithm for invariant synthesis based
on Rintanen’s algorithm [2] is documented. The algorithm is implemented in the
domain-independent classical planning system “Fast Downward” [3]. This plan-
ning system is suitable for the implementation of Rintanen’s algorithm, because
the planner already uses an invariant synthesis algorithm during the translation
process to identify mutex groups. This means that the algorithm can be embed-
ded into an already efficiently working planner and therefore its performance can
be evaluated.
In addition to the replacement of the existing invariant synthesis by Helmert, a
maximal clique enumeration algorithm proposed by Tomita [4] is implemented
to generate mutex groups from all invariants found by the algorithm. For the
evaluation, the new algorithm is compared to the already existing algorithm by
considering the performance and the quality of the synthesized invariants, specif-
ically through the structure of the generated mutex groups.
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2 Background

In the background section of this thesis all relevant definitions are presented, to
have the theoretical framework for understanding all concepts described in later
chapters. To have a clearer understanding of these often abstract definitions, a
simple transport problem, that is similar to the the transport-opt08-strips prob-
lem contained in the Downward benchmarks[5]. will be used as an illustrative
example throughout all definitions. The used transport problem is about deliv-
ering packages from an initial location to a goal location using vehicles, that can
only move from location A to location B, if these two locations are connected by
a road.

2.1 Planning Definitions

Definition 1 Types and Objects [2]

Let T be a finite set of types and O a set of objects.
A domain function D : T 7→ P(O) \ {} defines for every type t ∈ T the corre-
sponding non-empty set of objects D(t) ⊆ O that are of that type.

Since some types can be subtypes of other types, the sets of objects of different
types do not need to be disjoint, but if D(t) ∩D(t′) ̸= ∅, either D(t) ⊆ D(t′) or
D(t′) ⊆ D(t). In such a case, t is either a subtype of t′ or t′ a subtype of t.

Example:
In the transport problem, we have the following types, objects, and the domain
function:

O = {package-1, package-2, truck-1, truck-2,
location-1, location-2, location-3,

capacity-0, capacity-1, capacity-2}
T = {locatable, vehicle, package, location, capacity-number}

D(package) = {package-1, package-2}
D(vehicle) = {truck-1, truck-2}

D(locatable) = {package-1, package-2, truck-1, truck-2}
D(location) = {location-1, location-2, location-3}

D(capacity-number) = {capacity-0, capacity-1, capacity-2}

As we can see here D(package) ⊆ D(locatable) and D(vehicle) ⊆ D(locatable).
This is because package and vehicle are both subtypes of locatable.
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Definition 2 Schematic Variables[2]

Let T be a set of types and V a set of schematic variables. Each schematic vari-
able v ∈ V has a type defined by tvar(v) ∈ T and is therefore a placeholder for
objects that are in D(tvar(v)) ⊆ O.

Schematic variables can have any name that is not contained in O, for example,
x, y, z with the following types:

tvar(x) = location

tvar(y) = truck

tvar(z) = package

Definition 3 Predicates[2]

Let T be a set of types, P a set of predicate symbols. Each predicate p ∈ P
has an arity ar(p) ∈ N and an associated type, defined by the typing function
τpre(p) ∈ T ar(p).

For the transport problem, we have the following predicates:

P = {at, in, road, capacity, capacity-predecessor}

at : ar(at) = 2, τpre(at) = ⟨locatable, location⟩
in : ar(in) = 2, τpre(in) = ⟨package, vehicle⟩

road : ar(road) = 2, τpre(road) = ⟨location, location⟩
capacity : ar(capacity) = 2,

τpre(capacity) = ⟨vehicle, capacity-number⟩
capacity-predecessor : ar(capacity-predecessor) = 2,

τpre(capacity-predecessor) =

⟨capacity-number, capacity-number⟩

Definition 4 Literals and Atoms[2]

Let T be a set of types, P a set of predicate symbols, O a set of objects, V a
set of schematic variables, and D a domain function. Let p ∈ P be a predicate
of arity ar(p) = n and of type τpre(p) = ⟨t1, t2, .., tn⟩. An atom is of the form:
p(s1, s2, .., sn), where si is either an object oi ∈ D(ti) ⊆ O or a schematic variable
vi ∈ V with tvar(vi) = ti.

Atoms can be divided into schematic atoms and ground atoms. For schematic
atoms, all si are schematic variables vi ∈ V with tvar(vi) = ti and for ground
atoms all si are objects oi ∈ D(ti).
Let a be an atom, then a and ¬a are literals, where a is a positive literal and ¬a
is a negative literal.

The set gnf(P, τpre, D) consists of all possible ground atoms p(o1, o2, .., on) such
that p ∈ P , n = ar(p), τpre(p) = ⟨t1, t2, .., tn⟩ and oi = D(ti).
The set sa(P, τpre, V, tvar) consist of all possible schematic atoms p(v1, v2, .., vn)
such that p ∈ P , n = ar(p), vi ∈ V , tvar(vi) = ti and τpre = ⟨t1, t2, . . . , tn⟩
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Schematic Literal Examples:

• ¬at(x, y)

• road(l1, l2)

• in(p, v)

These schematic literals have schematic variables with the following types:

• tvar(x) = locatable

• tvar(y), tvar(l1), tvar(l2) = location

• tvar(p) = package

• tvar(v) = vehicle

Ground Literal Examples:

• ¬at(truck-1, location-1)

• road(location-1, location-2)

• in(package-2, truck-2)

These ground literals have objects with the following types:

• D(truck-1) = D(truck-2) = vehicle

• D(location-1) = D(location-2) = location

• D(package-1) = D(package-2) = package

Definition 5 State[2]

Let P be a set of predicates p with type τpre(p) for p ∈ P , D a domain function.
A state s is defined by the set of all positive ground literals over O and V , that
are true in state s:
s = {a1, a2, . . . , an}, with ai ∈ gnf(P, τpre, D)

An example of a state s in the transport example, where both packages are in
truck-1 would be:

s = {in(package-1, truck-1),
in(package-2, truck-1),

at(truck-2, location-1),

at(truck-1, location-3),

road(location-1, location-2),

road(location-2, location-3),

capacity(truck-1, capacity-0),

capacity(truck-2, capacity-2),

capacity-predecessor(capacity-0, capacity-1),

capacity-predecessor(capacity-1, capacity-2)}
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Definition 6 Formula over O and V [2]

Let V be a set of schematic variables, O be a set of objects, and P a set of
predicates with arities ar(p) = n for every p ∈ P .
The following are formulas over O and V :

1. Atoms p(s1, s2, . . . , sn) over V and O.

2. ϕ1 ∧ ϕ2, if ϕ1 and ϕ2 are formulas.

3. ϕ1 ∨ ϕ2, if ϕ1 and ϕ2 are formulas.

4. ¬ϕ, if ϕ is a formula.

Note that similarly to atoms, formulas can also be divided into schematic formu-
las and ground formulas. A schematic formula consists only of atoms that are
schematic atoms and a ground formula consists only of atoms that are ground
atoms. The schematic formula is used to describe a set of ground formulas more
compactly since the schematic variables are placeholders for potentially more than
one object.

Definition 7 Effects[2]

Let p(s1, s2, . . . , sn) be an atom, then p(s1, s2, . . . , sn) and ¬p(s1, s2, . . . , sn) are
effects.

Similarly to atoms, effects can also be divided into schematic effects and ground
effects. A schematic effect has only literals that are schematic literals and a ground
effect has only literals that are ground literals.

Definition 8 Action

Let O be a set of objects, T be a finite set of types, V be a set of schematic variables
and A be a finite set of actions. An action a ∈ A over O and V is defined by a
pair ⟨C,E⟩:

• C is a set of atoms over O and V . This set describes a conjunction over all
atoms in C forming a formula, called the precondition.

• E is a set of effects over O and V . This set describes a conjunction over all
effects in E forming a formula.

The effects can be divided into the add effects add(a) and delete effects del(a),
which are defined as follows:

• add(a) = {ei|ei ∈ E and ei is a positive literal}

• del(a) = {ei|ei ∈ E and ei is a negative literal}

The precondition of an action can also be denoted as pre(a) = C.

Similarly to atoms, actions can be divided into schematic and ground actions.
A schematic action is defined by a pair ⟨C,E⟩ where C is a set of schematic atoms
over V and E is a set of schematic effects over V . A ground action is also defined
by a pair ⟨C,E⟩, where C is a set of ground atoms over O and E is a set of ground
effects over O.

In this thesis, an action is often denoted as a(v1, v2, ..., vn), where a is the name
of the action and vi are all schematic variables occurring as schematic variables
in the schematic atoms and schematic effects in C and E, considering that the
conditions C and effects E are previously defined.
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As an illustrative example, we use the drive action, which defines an action, where
a vehicle drives from one location to another location.

Schematic action example:

• Adrive = ⟨{at(v, l1), road(l1, l2)}, {at(v, l2),¬at(v, l1)}⟩

• simple form: drive(v, l1, l2)

• pre(drive) = {at(v, l1), road(l1, l2)}

• add(drive) = {at(v, l2)}

• del(drive) = {at(v, l1)}

Ground action example:

• drive = ⟨{at(truck-1, location-1), road(location-1, location-2)},
{at(truck-1, location-2),¬at(truck-1, location-1)}⟩

• simple form: drive(truck-1, location-1, location-2)

• pre(drive) = {at(truck-1, location-1), road(location-1, location-2)}

• add(drive) = {at(truck-1, location-2)}

• del(drive) = {at(truck-1, location-1)}

Definition 9 Action application

Let a ∈ A be an action and s and s′ be states.
An action a can be applied in a state s if pre(a) ⊆ s holds. When the precondition
of a is met in s, then state s′ is reached after the application of action a. State s′

is then: s′ = (s \ del(a)) ∪ add(a).

The application of a in state s resulting in state s′ can be denoted as s
a−→ s′.

Definition 10 Schematic Planning Problem Instance[2]

A schematic planning problem instance is defined by a 6-tuple
Π = ⟨O, T,D, P, τpre, A, I⟩ with:

• O is a set of objects

• T is a finite set of types

• D : T 7→ P(O) \ {} is a domain function

• P is a set of predicates

• τpre is a typing function

• A is a set of schematic actions over O and V

• I is the initial state described by a set of ground atoms, that are true in the
initial state

For the invariant synthesis, we are not interested in finding any sequence of actions.
Because of this reason, no goal formula is defined here.
A schematic problem instance can be instantiated to a ground problem instance
by instantiating all schematic actions in A to ground actions Note that the terms
instantiating and grounding are used interchangeably to refer to the same concept.
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For this thesis, we are only considering schematic planning problem instances
that are restricted to STRIPS [6]. A schematic planning problem instance that is
restricted to STRIPS adheres to the following constraints:

• The preconditions for all actions a ∈ A are conjunctions of literals.

• The effects for all actions a ∈ A are conjunctions of literals.

2.2 Invariant Synthesis related Definitions

Definition 11 Reachable States

Let I be the initial state, and A be a set of ground actions. Reachable states
are defined as all states sr, if there exists an action sequence ⟨a1, a2, ..., an⟩, with
ai ∈ A, such that I

a1−→ s1
a2−→ ...

an−−→ sr.

Reachable states are all states that can be reached from the initial state through
a sequence of actions.

Definition 12 Invariant[1]

Let Π = ⟨O, T,D, P, τpre, A, I⟩ be a planning problem instance and Sr be the cor-
responding set of all reachable states from the initial state I. An invariant of Π is
a formula ϕ over O and V , that is satisfied by all reachable states sr ∈ Sr: sr |= ϕ.

Invariants can be divided into schematic invariants and ground invariants.
Schematic invariants are formulas only over V and ground invariants are formulas
only over O.

A schematic invariant formula ϕ holds in a state sr ∈ Sr, if sr |= ϕ′ for all
possible instances ϕ′ from ϕ, by replacing all schematic variables vi by objects
oi ∈ D(ti), tvar(vi) = ti.

Definition 13 Invariant Candidates[2]

Let χ be a (possibly empty) conjunction of inequalities x ̸= x′, where x and x′

are schematic variables and li are negative schematic literals. The following two
expressions can express schematic invariant candidates:

χ =⇒ (l1 ∨ l2),

χ =⇒ l1

These implications are equivalent to the following two expressions:

¬χ ∨ (l1 ∨ l2),

¬χ ∨ l1

For this work, we are only interested in invariants that consist of a single negative
atom or a disjunction of 2 negative atoms.
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When such a schematic invariant candidate is instantiated the schematic variables
are replaced by specific objects that satisfy the constraints given by the conjunc-
tion of inequalities χ, which means that the conjunction of inequalities χ is not
needed anymore, because no more variables exist. Given this, ground invariant
candidates are of the form:

(l1 ∨ l2),

l1

where li are negative ground literals.

As an example of the transport problem, the schematic invariant that states that
a package is never contained in two different vehicles, where p, v1, v2 are schematic
variables with tvar(p) = package, tvar(v1) = tvar(v2) = vehicle:

(v1 ̸= v2) =⇒ (¬in(p, v1) ∨ ¬in(p, v2))

Instantiating this schematic invariant results in these two ground invariants:

¬in(package-1, truck-1) ∨ ¬in(package-1, truck-2),
¬in(package-2, truck-1) ∨ ¬in(package-2, truck-2)

Definition 14 Substitutions[2]

Let V be a set of schematic variables and O be a set of objects. A function
σ : V 7→ V ∪O is a substitution.

Definition 15 Application of Substitutions[2]

Substitutions can be applied to a formula ϕ and an action a. A substitution defined
by ϕσ and aσ is obtained from ϕ and a by replacing every occurrence of v ∈ V by
σ(v).

Definition 15 Regression[7]

Let ϕ be a ground formula, representing a conjunction of ground literals and A be
a set of actions. The regression of a ground formula ϕ with respect to an action
a ∈ A is defined by the following equation, where ϕi is a ground literal of ϕ and
ei ∈ add(a):

regra(ϕ) = pre(a) ∧
∧
({ϕ1, ϕ2, ...ϕn} \ {e1, e2, ..., ek}),

Definition 16 Limited Instantiation[2]

Let Π = ⟨O, T,D, P, τpre, A, I⟩ be a planning problem instance, prmst(a) be the
number of schematic variables of type t ∈ T in action a ∈ A, prmst(p) be the
number of schematic variables of type t ∈ T in a schematic formula with predicate
p ∈ P , For this invariant synthesis, a limited instantiation is used. This means that
only a limited amount of objects is used when instantiating schematic formulas
and schematic actions. To still find correct schematic invariants, the lower bound
of objects that can replace schematic variables is defined by the following number:

LN
t (A,P ) = max(maxa∈Aprmst(a),maxp∈P prmst(p))

+ (N − 1) ∗ (maxp∈P prmst(p))

where N is the maximal number of literals in a disjunction for an invariant, which
is 2 in our case, as mentioned in Definition 12.
Using that lower bound number, a new domain function can be generated, that
defines how limited instantiation can be used.
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Definition 17 Limited Grounding Function[2]

Let Π = ⟨O, T,D, P, τpre, A, I⟩ be a planning problem instance and LN
t (A,P ) be

the lower bound number.
A limited grounding function D′ is a domain function, that needs to satisfy the
following constraints for every t ∈ T :
Either D′(t) = D(t) or

1. D′(t) ⊂ D(t),

2. |D′(t)| ≥ LN
t (A,P ),

3. D′(t0) ⊂ D′(t1) iff D(t0) ⊂ D(t1),
for all {{t0, t1}| t0, t1 ∈ T}

Let C be a set of schematic formulas, CD the ground instances of C using the
domain function D and CD′ the ground instances of C using the limited ground-
ing function D′ with the characteristics described above. Let ϕ be a schematic
formula, that is a disjunction with at most N literals.
We assume, that CD ∪ {regraσ(ϕσ)} is satisfiable, where a ∈ A, aσ is a ground
action and ϕσ is a ground instance of ϕ, with respect to D and some substitution
σ : V 7→ O and aσ is relevant for ϕσ, meaning that aσ shares some literals in the
precondition or in the effects with ϕσ. Note that CD ∪ {regraσ(ϕσ)} is a set of
literals forming a conjunction.
Then CD′ ∪ {regraσ′(ϕσ′)} is satisfiable for some σ′ with range of σ′ included in
D′.

Definition 18 Mutex Invariant[1]

A mutual exclusion (mutex) invariant is a special kind of invariant. A mutex
invariant states that certain literals can never be true at the same time.
Π = ⟨O, T,D, P, τpre, A, I⟩ be a planning problem instance and
p1(x1, y1), p2(x2, y2) be literals where p1, p2 ∈ P , x1, x2, y1, y2 ∈ V and let χ is a
(possibly empty) conjunction of inequalities x ̸= x′, where x and x′ are schematic
variables.
For this work, only mutex invariants are relevant, that have one of the following
forms:

χ =⇒ ¬p1(x1, y1)

χ =⇒ ¬p1(x1, y1) ∨ ¬p2(x2, y2)

When this example mutex invariant is an invariant of a planning task, then
p1(x1, y1) and p2(x2, y2) can never be true at the same time if the two literals
satisfy the inequality constraint. The above example is in schematic form, but
in this work, both the schematic and ground mutex invariants are important.
As described in Definition 13, for ground invariants the inequality constraint
falls away. Ground mutex invariants therefore are of the following forms, with
o1, o2, o3, o4 ∈ O.:

¬p1(o1, o2)
¬p1(o1, o2) ∨ ¬p2(o3, o4)

Definition 19 Mutex Group[1]

A mutex group is a set of literals, where at most one literal can be true in all
reachable states from the initial state.
For this work only mutex groups with positive atoms are relevant. Mutex groups
can be generated from a set of mutex invariants as stated in Definition 18. These
mutex invariants can form a group when each mutex invariant shares at least one
literal with every other mutex invariant of the group.
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Example:

We have the following two ground mutex invariants:

¬in(package-1, truck-1) ∨ ¬in(package-1, truck-2),
¬in(package-1, truck-1) ∨ ¬at(package-1, location-1)

Note that if in(package-1, truck-1) and at(vehicle-1, location-1) holds, then at(package-1, location-1)
does not hold. Both mutex invariants share the literal ¬in(package-1, truck-1),
which means that these two mutex invariants can form a mutex group:

mutex group = [in(package-1, truck-1),

in(package-1, truck-2),

at(package-1, location-1)]

This mutex group states that the object ”package-1” can only be in truck-1, truck-
2 or at location-1 or in none of these locations, but never in two of these places
simultaneously.

2.3 PDDL

The Planning Domain Definition Language (PDDL)[8] is a formal knowledge rep-
resentation language designed to express planning models. This language has
become a de-facto standard input language of many planning systems, including
the planning system Fast Downward. A planning problem defined with PDDL is
divided into two parts: the domain and the problem .
The domain part of a planning problem defines all relevant aspects of the ”world”
in which we are planning, that are the same for all problem instances of that
planning problem, like the types, predicates and actions.
The problem part of a planning problem is a single instance of that planning prob-
lem, that defines the initial state, goal conditions and the objects. For one domain,
there can be different problem instances, that take place in the same ”world”, but
differ in various aspects like the size of the problem or the complexity[9].

The domain and problem definitions are usually placed in two separate PDDL
files (.pddl). As an example of such a PDDL definition, some parts of a domain
and a problem file for the transport problem used in the definitions are provided.

Domain Example [5]:

The following example is a part of the domain file including all types, predicates
and one action. There are more actions to the original problem, but since all
actions have the same structure, only one action is showcased.

(define (domain transport)

(:requirements :typing :action-costs)

(:types

location target locatable - object

vehicle package - locatable

capacity-number - object

)

(:predicates

(road ?l1 ?l2 - location)

(at ?x - locatable ?v - location)

(in ?x - package ?v - vehicle)

10



(capacity ?v - vehicle ?s1 - capacity-number)

(capacity-predecessor ?s1 ?s2 - capacity-number)

)

(:action drive

:parameters (?v - vehicle ?l1 ?l2 - location)

:precondition (and

(at ?v ?l1)

(road ?l1 ?l2)

)

:effect (and

(not (at ?v ?l1))

(at ?v ?l2)

(increase (total-cost) (road-length ?l1 ?l2))

)

)

Problem Example:

The following example is a part of the problem file including the objects, the
initial state, and the goal conditions.

(define (problem transport)

(:domain transport)

(:objects

city-loc-1 - location

city-loc-2 - location

city-loc-3 - location

truck-1 - vehicle

truck-2 - vehicle

package-1 - package

package-2 - package

capacity-0 - capacity-number

capacity-1 - capacity-number

capacity-2 - capacity-number

)

(:init

(= (total-cost) 0)

(capacity-predecessor capacity-0 capacity-1)

(capacity-predecessor capacity-1 capacity-2)

(at package-1 city-loc-3)

(at package-2 city-loc-3)

(at truck-1 city-loc-3)

(capacity truck-1 capacity-4)

(at truck-2 city-loc-1)

(capacity truck-2 capacity-3)

)

(:goal (and

(at package-1 city-loc-2)

(at package-2 city-loc-2)

))

)
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3 Schematic Invariant Synthesis

This chapter is dedicated to the invariant synthesis algorithm that was proposed
by Jussi Rintanen in the paper ”Schematic Invariants by Reduction to Ground
Invariants” [2]. Many explanation rely on the paper of Rintanen [2]. More specifi-
cally we are looking at the schematic invariant synthesis algorithm, which grounds
the initial schematic invariants candidates with the limited grounding function and
in the end extracts the schematic invariants from the found ground invariants. Us-
ing the definitions described in the background chapter, the goal is to outline and
explain the different components of the algorithm and why the algorithm finds
correct invariants.

3.1 Motivation

Earlier invariant synthesis algorithms often use the ground representation of ac-
tions and formulas and do not work with the ungrounded, schematic represen-
tation. But when the grounded actions are induced by a small set of schematic
actions, invariants can be represented in a compact form as a small number of
schematic invariants. This led to the research of schematic invariant synthesis
algorithms, that directly work with the schematic representation of actions and
formulas, which find invariants in schematic form. The problem is that such
algorithms are often complex and have a significantly worse performance than
algorithms that use the ground representation, especially for problems, where the
number of schematic actions is high and the number of ground instances is low.
Jussi Rintanen therefore devised a hybrid algorithm that makes use of the benefits
of both approaches[2].

3.2 Idea

The Idea of this algorithm is to use both, the schematic and ground representa-
tion of actions and formulas, in order to find schematic invariants. Starting with
a set of initial schematic invariant candidates, that hold in the initial state, these
candidates are not grounded with all objects, but only with a small number of
objects using a limited grounding function as described in Definition 16 and Def-
inition 17, to later perform the basic invariance tests with the grounded invariant
candidates. This approach makes use of the structural symmetry of the state
space generated by schematic actions, to correctly find invariants, even without
considering all possible instantiated formulas.
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3.3 Algorithm

This section provides a detailed explanation of the pseudo-code for the invariant
synthesis algorithm proposed by Rintanen [2] outlined in Algorithm Algorithm 1.

Pseudo-Code[2]

Algorithm 1 Schematic Invariant Synthesis Algorithm

1: Cs := schematic formulas true in the initial state
2: As := schematic actions
3: C := all ground instances of Cs

by instantiating all schematic formulas in Cs using limited grounding
4: A := all grounded actions

by instantiating all schematic actions in As using limited grounding
5: repeat
6: C0 := C
7: for each a ∈ A and c ∈ C do
8: if C0 ∪ {regra(¬c)} ∈ SAT for some c then
9: C := (C \ {c}) ∪ weaken(c)

10: end if
11: end for
12: until C = C0

13: Is := all schematic invariants
extracted from the found ground invariants in C

14: return Is

The algorithm assumes, that in the beginning, the following two sets are given:

1. The first given set is the set of schematic formulas Cs, that hold in the initial
state. These formulas are the initial schematic invariant candidates of the
problem. Each candidate cs ∈ Cs is a disjunction of at most N literals,
where in our case N = 2.

2. The second given set is the set of all schematic actions As of the problem.

The first step of the algorithm (lines 3 and 4) is to instantiate these two sets,
to have C, a set of all possible ground instances of Cs and a set of all grounded
actions A. It is important to note that limited grounding is used here.

Limited Grounding of Schematic Invariant Candidates and Actions

The initial schematic invariant candidates and schematic actions are all instan-
tiated using a limited grounding function D′(t), t ∈ T , where T is the set of all
types. The limited grounding function satisfies the constraints defined in Defini-
tion 17.
This means that a schematic candidate cs ∈ Cs and a schematic action as ∈ As

are instantiated, by replacing every occurrence of a schematic variable x with
t = tvar(x) ∈ T by an object o ∈ D′(t). Note that one schematic invariant can-
didate cs can generate multiple ground invariant candidates when instantiated
because the schematic variables of a candidate are replaced by all combinations
of objects. However only those combinations are selected, that match the type-
object mapping defined by D′(t) and that do not violate the inequality constraints
χ of cs as described in Definition 13. Similarly, schematic actions can also generate
multiple ground actions, but without having a restriction on inequalities.
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Outer Loop

Now having the set of the initial ground invariant candidates C and the instan-
tiated actions A, the loop, where the candidates are checked using an invariance
test begins. At every outer iteration on line 6, the set of ground invariant candi-
dates C is copied to C0. This copy is later used, to be able to compare it with the
possible modified candidate set C at the end of each outer iteration on line 12.

Inner Loop

Inside the outer loop, we have an inner loop, where we iterate over each combi-
nation of a ∈ A and c ∈ C. For each of these combinations, we check on line 8
whether the following formula C0 ∪ {regra(¬c)} is satisfiable, denoted as ∈ SAT .
When for some c ∈ C this formula is satisfiable, the candidate is not an invariant,
leading to line 9, the modification of the candidate set: C := (C \ c)∪weaken(c).
The candidate set is modified by removing the candidate c because it is not an
invariant and by adding weaker forms of c, defined by the function weaken(c).

SAT-Check

The verification, of whether the formula C0 ∪ {regra(¬c)} can be satisfied is the
heart of the algorithm, determining if a candidate is an invariant or not. In this
subsection, on the one hand, the composition of the formula is discussed, and on
the other hand, why the satisfiability of that formula leads to the verification of
invariants is explained.

The formula is a set of formulas, forming a conjunction. The conjunction is built
from a union of two sets. The first set is the ground invariant candidate set C0,
which was copied at the beginning of the outer loop. This formula C0 forms a
conjunction of all candidates inside C0. The second set of the union is {regra(¬c)},
the regression of the negated candidate c with respect to the ground action a. As
stated in Definition 15 this results in the following conjunction:

regra(¬c) = pre(a) ∧
∧
({¬c1,¬c2, ...¬cn} \ {e1, e2, ..., ek})

where pre(a) is the precondition of a, which is a conjunction of ground literals, ci
is a ground literal in the ground candidate c and ei ∈ add(a) is a ground literal
from the add effects of a. Note that the ground candidate c is a disjunction of
ground literals, meaning that the negation of c is a conjunction of the negated
ground literals of c, because of the rule that: ¬(l1∨l2∨...∨ln) = ¬l1∧¬l2∧...∧¬ln.
To understand the SAT check, it is important to understand the meaning of that
regression. The regression {regra(¬c)} is a conjunction, that describes the condi-
tion that must hold, for a to be applicable and the application of a would lead to
a formula where the disjunction of ground literals c is false. In other words, the
regression describes what condition is needed for the application of a to make the
ground candidate c false.
Given this information, the SAT-Check in line 8 checks, whether the conjunction
of all ground candidates in that iteration and the condition for a to make the
candidate c false is satisfiable.

This SAT check can have two outcomes, either the formula is satisfiable or not.
But what does each outcome mean for the ground invariant candidate c?
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When the SAT check returns true, it means an interpretation exists, so the for-
mula is satisfied. As described earlier, the candidate set C0 is a set of potential
invariants, nevertheless, the candidates together as a conjunction describe formu-
las that hold in some states of the problem. When such a formula, combined with
a condition for a to be applicable leading to a state where the candidate c does
not hold (regression), is satisfiable, we can conclude that the ground invariant
candidate c cannot be an invariant.

Conversely, when the SAT check returns false, we know that the regression can-
not be satisfied at least for the states of the problem in which the conjunction of
invariant candidates holds. If it is the case that the SAT check returns false for
all actions a ∈ A, we can conclude that the candidate c remains a candidate, even
though it is possible that the candidate c being an invariant can be proven wrong
in later iterations.

Weakening

In the previous subsection, the SAT check was described. As mentioned there,
when the SAT check returns true for a candidate c and an action a, the candidate
cannot be an invariant. This leads to the removal of the candidate from the can-
didate set C0 in line 9, but weaker forms of the candidate c are added to the set,
where the weaker forms are defined in the function weaken(c). The strength of
an invariant can be defined by the implications of the invariant formulas. When
we have two invariant formulas ϕ1 and ϕ2 and it holds that ϕ1 =⇒ ϕ2, ϕ2 is
considered as a weaker invariant formula. This implication suggests that ϕ1 is
more restrictive since ϕ1 is satisfied under fewer circumstances compared to ϕ2.

Because in the loops only ground invariant candidates are used, weaken(c) adds
a literal to the candidate c forming a disjunction, but only when the candidate
consists of one literal, since we only consider invariants of at most N = 2 literals.
For candidates with two literals, the weaken function is defined as weaken(c) = ∅.

It is important to note that with weakening the candidate c, the regression of the
weaker candidate becomes a stronger condition, meaning that fewer states of the
problem satisfy the regression. On the other hand, removing the candidate from
the candidates set C0 and adding weaker candidates to it, results in a formula
that is satisfied by more states of the problem than before. Due to this fact, it
is possible that candidates that were not removed from the candidates set in an
earlier iteration can be removed in later iterations.

End the Loops

The algorithm continues to iterate over the candidates and actions until for all
candidates and all actions the SAT check returns false. This is equivalent to the
fact that the candidates set C0 remained unchanged after all iterations leading to
the equality of the set before the iterations as stated in line 12. The algorithm
then successfully found the ground invariants contained in C.

Schematic Invariant Extraction

After the algorithm found a set of ground invariants, the schematic invariants
need to be extracted. Since the ground invariants are generated using limited
grounding, the following lemma can be applied when extracting the schematic
invariants in line 13:
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Lemma 1 Invariance Modulo Renaming[2]

For all rounds of the described algorithm, if for one substitution σ, cσ ∈ C, then
cσ′ ∈ C for all other substitutions σ′, if for all x and y , σ(x) = σ(y)iffσ′(x) =
σ′(y).

Example:
Assume there are 3 objects a, b and c which are of the same type and 3 schematic
variables x, y and z.

• If p(a, a, a) is a ground invariant, then p(x, x, x) is a schematic invariant

• If p(a, b, c) is a ground invariant, then (x ̸= y) ∧ (x ̸= z) ∧ (y ̸= z) =⇒
p(x, y, z) is a schematic invariant.

After the extraction of the schematic invariants leads to a set of all found schematic
invariants Is, which is the result of the algorithm.
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4 Implementation

For this thesis, the invariant synthesis algorithm described in the previous chapter
is implemented in the Fast Downward planning system by replacing the current
invariant synthesis in the translation process. This chapter describes the details of
how the algorithm was implemented and the difficulties involved in this process.
Some additional implementations were necessary, for the algorithm to work in the
planning system.

4.1 Fast Downward

Fast Downward is a domain-independent classical planning system based on heuris-
tic forward search and hierarchical problem decomposition [3]. The planner can
find plans for problems in the full range of PDDL2.2 [8], where STRIPS [6] is
included. For this thesis, we only consider propositional STRIPS [6] tasks.

The Planner can be divided into 3 phases, where the first phase is the translation,
the second phase is the knowledge compilation and the last phase is the search.
The invariant synthesis is made during the translation process, which is imple-
mented in Python.

The translation process converts a PDDL task into a task in finite domain repre-
sentation. The translation process itself can again be divided into sub-steps:

1. Normalization

2. Invariant Synthesis

3. Grounding

4. Finite Domain Representation Task Generation

For this thesis, the Invariant Synthesis Algorithm proposed by Rintanen is im-
plemented in Fast Downward, where the current Invariant Synthesis (step 2) is
replaced.

4.2 Overview

This section provides an overview of the processes that are involved in the imple-
mentation of the algorithm. The translation of a PDDL [8] task into a task in
finite domain representation can be divided into the following steps:

1. Normalization of the task.

2. Invariant Synthesis.

3. Generation of mutex groups.

4. Translation of Task into Finite Domain Representation.
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Normalization is used to simplify the task, to have a task that has the following
characteristics [1]:

• The goal formula is a conjunction of literals.

• All action preconditions are a conjunction of literals.

• All states are a conjunction of positive literals.

The normalization is already implemented in Fast Downward and is the starting
point for the implementation. Since the structure of the found invariants is dif-
ferent than in the current implementation, building the mutex groups has also
been implemented using a maximal clique enumeration algorithm. These found
mutex groups can then be passed to the already implemented translation process.
The relevant implementation for this thesis includes the invariant synthesis and
generation of mutex groups.

4.3 Relevant Classes

For the implementation of the algorithm, several existing classes were used and
new necessary classes were implemented. In this section, these classes are listed
and explained. Since some parts of the classes are not relevant to the implemen-
tation of this thesis, only the necessary parts are listed and explained.

Class Type

class TypedObject :
name : str
basetype name : str

The class Type represents a type as described in Definition 1. Each type is
defined by the name of the type and by the name of the direct supertype. By
direct supertype is meant, that the supertype can also have a supertype. For
types that do not have any supertypes, the base type name is None. Given the
base type name for each type of a task, the hierarchy of types of a task can be
concluded.

Class TypedObject

class TypedObject :
name : str
type name : str

The class TypedObject represents an object of a task as described in Definition
1. Each object is defined by the name of the object and the type of the object.

Class Predicate

class Pred i ca te :
name : str
arguments : L i s t [ TypedObject ]

The class Predicate represents a predicate as described in Definition 3. A predicate
is defined by the name of the predicate and a list of typed objects that represent
the arguments of the predicate.

Class Literal

class L i t e r a l :
p r ed i c a t e : str
args : L i s t [ str ]
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The class Literal represents a literal as described in Definition 4. A literal is
defined by the name of the predicate, that matches with the name of an object
of class Predicate and a list of strings that represent either a schematic variable
or the name of an object. Note that schematic variables do not have their own
class. Schematic variables can have any string that is not the name of any object
of class TypedObject.

Class Atom and Class NegatedAtom

To distinguish between positive and negative literals, there are the classes Atom
and NegatedAtom that inherit from the class Literal. These classes have an
additional boolean field that defines if the literal is negated or not. These two
classes also have a function to negate an object of its class.

class Atom( L i t e r a l ) :
negated = False
def negate ( s e l f ) :

return s e l f . NegatedAtom( s e l f . p red i ca te , s e l f . a rgs )

class NegatedAtom( L i t e r a l ) :
negated = True
def negate ( s e l f ) :

return s e l f .Atom( s e l f . p red i ca te , s e l f . a rgs )

Class InstantiatedAction

class In s tan t i a t edAct i on :
name : str
ob j e c t s : L i s t [ str ]
p r e cond i t i on : L i s t [ L i t e r a l ]
e f f e c t s : L i s t [ L i t e r a l ]

The InstantiatedAction class represents a grounded action as described in Defini-
tion 8. An object of that class has a name, a list of object names, where each of
these object names matches with the name of a TypedObject class object, a list
of literals that represents the precondition conjunction, and another list of literals
that represents the effects.

Class Task

class Task :
name : str
ob j e c t s : L i s t [ TypedObject ]
types : L i s t [ Type ]
p r ed i c a t e s : L i s t [ Pred i cate ]
a c t i on s : L i s t [ Action ]
i n i t : L i s t [Atom ]

The class Task holds all relevant objects of the PDDL task. Note that the actions
are a list of Action class objects. The class Action has a similar structure to
the InstantiatedAction class. Because we only need the instantiated actions for
this implementation, the action class explained in this section. All actions are
instantiated during the algorithm leading to a list of InstantiatedAction class
objects.
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Class SchematicInvariant

class Schemat ic Invar iant :
l i t e r a l s : L i s t [ L i t e r a l ]
i n e q u a l i t i e s : L i s t [ set [ str ] ]
var mapping : dict [ str , str ]

The SchematicInvariant class represents a schematic invariant as described in
Definition 13 and holds all necessary information for a schematic invariant formula.
The field literals define the literals that form the disjunction of the formula. The
inequalities is a list of sets, where each set represents one inequality of the two
variable names it contains. The var mapping field is a dictionary that defines a
mapping from variable name to type name for all variables that are contained as
arguments in all literals.

Class GroundInvariant

class GroundInvariant :
l i t e r a l s = set [ NegatedAtom ]

The class GroundInvariant represents a ground invariant as described in Definition
13 by a set of NegatedAtom class objects. The ground invariant formula is the
disjunction of the negative literals contained in the literals set.

4.4 Invariant Synthesis

The goal of the invariant synthesis is to find ground invariants that are of the
form ¬p(a, b) or ¬p(a, b) ∨ ¬q(c, d) because these invariants can then be used in
the next step to build the mutex groups as described in Definition 19. The im-
plementation of the invariant synthesis as described in chapter 3 can be divided
into the following processes:

1. Creating the initial schematic invariant candidate set.

2. Generating the limited grounding function.

3. Grounding of the initial schematic invariant candidates using limited ground-
ing.

4. Grounding of the schematic actions using limited grounding.

5. Finding ground invariants as described in chapter 3.

6. Extracting schematic invariants from the ground invariants.

7. Grounding the found schematic invariants using normal grounding resulting
in a set of ground invariants.

Initial Schematic Invariant Candidate Set

The first step in the implementation is to generate an initial schematic invari-
ant candidate set, that is later grounded using the limited grounding function.
A schematic invariant is an initial candidate if all grounded candidates of that
schematic invariant are true in the initial state. It is important that this candi-
date set consists of strong invariant candidates. because as described in algorithm
explanation, the candidate set describes later in the SAT-Check a conjunction that
holds in some states of the problem. By having an initial candidate set that con-
tains strong candidates, the conjunction of all candidates describes a conjunction
that holds in many states of the problem. Another point that is important for
this initial candidate set is to have a high amount of different candidates.

20



The reason for this is that even if the candidates are later proven to not be an
invariant, they are weakened generating other candidates that possibly are in-
variants. In other words, some invariants could potentially not be found if the
initial candidate set is not strong enough and does not contain enough candidates.

The first step is to extract all schematic invariant candidates of the simplest form
¬p(x, y), without any inequalities. schematic invariants candidates of this form
are in the strongest possible form.
Finding these initial candidates can be achieved by iterating over all predicates of
the task and checking whether all grounded negative literals having that predicate
are true in the initial state Note that in this step the limited grounding function
is not yet used. All candidates that are true in the initial state are added to the
initial candidate set.

The next step is to create weaker invariant candidates that hold in the initial
state using the predicates that are not part of any initial candidate contained in
the initial candidate set after the first step. There are three different ways how
schematic candidates can be made weaker:

1. Adding another literal to the candidate forming a disjunction

2. Setting two schematic variables equal

3. Adding an inequality of two schematic variables

First, for all these literals that are not true in the initial state and are in the
simplest form, a literal is added to form a candidate with two literals that describe
a disjunction. Only literals that share at least one variable of the same type are
added together. These simple candidates and candidates describing a disjunction
are added to a set ”candidates to weaken” that needs to be further weakened.

21



The further expansion of the initial schematic invariant candidate set is outlined
in the following pseudo code:

Algorithm 2 Expansion of initial schematic invariant candidate set

1: initial candidates := all initial schematic invariant candidates
2: while size(candidates to weaken) not zero do
3: candidate = candidates to weaken.pop()
4: eq candidates, non eq candidates = set variables equal(candidates)
5: ineq candidates, non ineq candidates = set variables unequal(candidates)
6: candidates to weaken.update(non eq candidates)
7: candidates to weaken.update(non neq candidates)
8: new schematic candidates = eq candidates + ineq candidates
9: initial candidates.add(new schematic candidates)

10: remove unnecessary weak forms(candidates to weaken)
11: end while

In each iteration a schematic invariant candidate is processed, by setting the
schematic variables equal and adding inequalities.
For both of those functions, all possible pairs of schematic variables are considered,
that share the type or supertype, resulting in a set of new schematic candidates
that are again checked if they are true in the initial set. Candidates that are
true and those that are not true are seperated and returned by the corresponding
function. The functions return empty sets if no further weakening is possible,
which is the case when all schematic variables are either equal to other schematic
variables or are part of an inequality. At the end of an iteration, candidates that
describe a disjunction are removed, if they contain a literal, that itself is in the
initial schematic candidate set with the same equalities and inequalities.

The implementation of the generation of the initial schematic invariant candidate
set was one of the most challenging parts of the whole implementation. One of the
difficulties was the weakening of schematic invariant candidates because several
conditions for a pair of schematic variables had to be met for them to be set equal,
to add an inequality, or to add another literal to the candidate. Especially in later
iterations when several weakening forms are already combined in a candidate,
making sure that correct weaker candidates are created was challenging.

Generation of the Limited Grounding Function

The limited grounding function is a mapping from a type to a set of objects.
The first step for the generation of the limited grounding function as described
in Definition 17 is the calculation of all lower bound numbers for each type, by
using the formula in Definition 16. This lower bound number for type t defines
how many objects need to be at least contained in the set of objects for type t.

As defined in point three in Definition 17, that D′(t0) ⊂ D′(t1) iff D(t0) ⊂ D(t1),
for all {{t0, t1}| t0, t1 ∈ T}, means that all objects of type t0 need to be contained
in the set of objects for type t1, if t0 is a subtype of t1. Because of this rule, in the
implementation, we start at the bottom of the type hierarchy with choosing which
objects of these types are contained in the corresponding set of objects for the
limited grounding function. For the types at the bottom of the hierarchy, meaning
all types that are not a supertype of any other type have exactly as many objects
as defined by the lower bound number. For each higher level in the hierarchy,
the types need to include all objects of their subtypes. After adding all subtype
objects to the set of objects, other objects that were not yet included in any other
object set need to be added, if the size of the object set is smaller than the lower
bound. With this procedure, we made sure that the number of objects is as small
as possible.
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Grounding of the Initial Schematic Invariant Candidates and Schematic
Actions using Limited Grounding

For this step of the invariant synthesis, the initial schematic invariant candidate
set is instantiated using the limited grounding function described in the last sub-
section resulting in an initial ground invariant candidate set. The instantiation
is processed by iterating over the set and instantiating every schematic candi-
date with limited grounding. Note that some schematic candidates can generate
ground invariants that are also generated by other candidates, which is why a set
is used, ensuring that no duplicates are contained in the set. The instantiation
function generates all possible variable-to-object mappings enforcing the inequal-
ity constraints of the candidate and generates one object of the GroundInvariant
class for each mapping. Each schematic variable with type t can only be replaced
by objects defined by the limited grounding function.

Similarly to the grounding of the initial schematic invariant candidate set, the
schematic actions are instantiated using the limited grounding function. The
result is a set of objects of the InstantiatedAction class.

Finding Ground Invariants

The invariant synthesis algorithm proposed by Jussi Rintanen described in chap-
ter 3 was implemented that finds the ground invariants given the initial ground
invariant set and the ground actions set.

Algorithm 3 Implemented schematic invariant synthesis algorithm

1: C := set of all initial ground invariant candidates
2: A := set of all ground actions
3: while True do
4: Cweaken := empty set for storing candidates that need to be weakened
5: for c in C do
6: for a in A do r = generate regression(a, c)
7: if sat check(C0, r) is True then
8: Cweaken.add(c)
9: break

10: end if
11: end for
12: end for
13: if Cweaken empty then
14: break
15: else
16: C = update candidate set(C, Cweaken)
17: end if
18: end while

The ground invariants are found by iterating over all candidates in the ground
invariant candidate set. For each candidate, an iteration over all ground actions
is made. For each candidate c and action a, the regression is calculated and a
satisfiability check (SAT-Check) with the candidate set C and the regression as
described in chapter 3 is performed. When the SAT-check is true, the candidate
needs to be weakened and is therefore added to Cweaken. Different than in the
explanation in chapter 3, the candidates are removed from the candidate set C
and the new weakened candidates are added to the candidate set C after the
iteration over all candidates and not directly during the iteration. The iteration
over the actions is stopped as soon as the SAT-check returns true for one of the
actions. This process is repeated as long as at least one candidate is proven to not
be an invariant, which can be checked, with the emptiness of Cweaken, because all
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candidates that need to be weakened are stored in that set. When at the end of
all iterations over C and A, Cweaken is empty, all candidates contained in C are
ground invariants.

SAT-Check

The SAT-check was implemented by my supervisor Tanja Schindler.

The SAT check is used to check whether the conjunction of the union of all
candidates in C and the regression of one candidate c ∈ C with respect to an
action a is satisfiable or not. This function takes the candidate set C and the
regression of one candidate c ∈ C with respect to an action a as an input and
returns True, when the conjunction is satisfiable and false if the conjunction is
not satisfiable. The function makes the following assumptions:

1. each candidate is a disjunction of at most two literals

2. the set of candidates is satisfiable

3. the set of candidates is closed under resolution

The first point holds, since we are only considering invariant candidates with at
most two literals, that together form a disjunction, as mentioned in Definition 18.
The second point also holds since we are considering only invariants with negative
literals, meaning that the truth assignment where all literals are false and thus
all negative literals are true will always result in the conjunction of all candidates
being true. The third and last point assumes that the set of candidates is closed
under resolution. A candidate set is closed under resolution when the resolution
of any pair of candidates is contained in the set. A resolution of two disjunctions
in general leads to a new combined formula, which is applicable when the two
disjunctions share complementary literals, meaning that one disjunction contains
the positive literal l and the other disjunction contains the negative literal ¬l.
Then the combined disjunction without l and ¬l is also contained in the set [9].
Because we only have negative literals in the ground candidate set, no pair of
candidates can be combined with resolution, which means that the candidate set
is closed under resolution.

Given these preconditions of the candidate set, the conjunction of the union of
all candidates in C and the regression of one candidate c ∈ C with respect to
an action a can only be unsatisfiable when the literals of the regression falsify
a candidate. The literals of the regression falsify a candidate when the negated
literals of a candidate are contained in the regression.

The SAT-check therefore iterates over all candidates in C and checks whether the
negated literals of the candidate are contained in the regression set. For candidates
with one literal, the SAT-check returns false if that negated literal is found in the
regression set and for candidates with two literals, the SAT-check returns false if
both negated literals are found in the regression set. The SAT-check returns true
only if for all candidates the negated literals are not contained in the regression
set.

Candidate Set Update

When the iteration over all candidates is completed, the candidate set C is up-
dated by removing all candidates in Cweaken and by adding all weakened forms
of all candidates in Cweaken. A candidate c can only be weakened if it contains
exactly one negated literal. The candidate c is weakened by creating ground in-
variant candidates with two negated literals with all negated literals that are not
contained as single literal invariants in C and are not equal to c.
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Schematic Invariant Extraction

After the ground invariants are synthesized, the schematic invariants need to be
extracted from them. This can be achieved by applying the concept described in
Lemma 1. The lemma describes how schematic invariants can be extracted from
ground invariants that were instantiated using limited grounding.
The extraction is made by iterating over all ground candidates. For each ground
invariant, a schematic invariant can be extracted. Such a schematic invariant
has one schematic variable for each different object, by ensuring that the same
objects are replaced by the same schematic variables and different objects are not
replaced by the same schematic variables. For each pair of objects in the ground
candidate, consisting of distinct objects, an inequality is added to the schematic
invariant. This procedure is made by creating a list of all objects in the ground
invariant and assigning each object to a schematic variable. For each pair of
distinct schematic variables, an inequality set consisting of these two variables
is created. After the iteration all extracted schematic invariants are added to
the schematic invariant set, which is then instantiated again, by considering all
objects, without the limited grounding function. These ground invariants are the
result of the invariant synthesis algorithm.

4.5 Building Mutex Groups

The purpose of synthesizing ground invariants is to generate mutex groups that
are later used for the translation. As described in Definition 19, invariants can
form a mutex group when each invariant shares at least one literal with every
other invariant of the group, resulting in a group of all literals contained in the
disjunctions of the ground candidates.
In the implementation of this work, mutex groups are built by creating a graph
from all ground invariants. Each vertex of the graph represents one literal. For
each pair of positive literals that are contained together as a disjunction in neg-
ative form for a ground candidate in the ground invariant set, an edge exists in
the graph between the two vertices representing the two literals. In such a graph,
a mutex group of positive literals can be identified by a group of literals that are
connected with every other literal of the group by an edge, meaning for every two
distinct literals of the group a ground invariant with these two literals in negated
form exists. Such a subset of vertices, with these properties, is called a clique. A
clique in a graph is a subset of vertices, such that every vertex is connected to
every other vertex in the subset by an edge.

For identifying such cliques in a graph, a maximal clique enumeration algorithm
by Tomita [4] was implemented. It is important to note, that the algorithm is
already implemented as a part of the Fast Downward planning system written
in C++. For the implementation of this thesis, the algorithm from the planning
system was translated from C++ to Python keeping the structure and logic as
closely as possible of the already implemented algorithm, such that it is appli-
cable in the context of the invariant synthesis, which is implemented in Python.
Because of this reason, a detailed explanation of the algorithm is not provided,
since this algorithm was not implemented as a part of this thesis.
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Maximal Clique Enumeration Algorithm

The algorithm by Tomita [4] is a depth first search algorithm that identifies all
maximal cliques in an undirected graph. The algorithm starts with one vertex of
the graph and recursively expands the connected vertices and searches for larger
subgraphs that are connected (cliques). For a more detailed explanation of the
algorithm, we refer to the original Paper [4]. The algorithm takes a graph as
an input and outputs all maximal cliques as a list of lists, where each inner list
represents the vertices that form a clique. For building the mutex groups from
the found ground invariants, a graph as described before is generated and given
to the algorithm as an input and the algorithm returns a list of maximal cliques
as an output.

Translation

The found mutex groups are the result of this thesis’ implementation. Since dis-
tinct positive literals can be contained in multiple mutex groups, which is not
allowed for finite domain translation, existing functions of the Fast Downward
planner are used to prepare the found mutex groups for translation. These func-
tions make sure that only literals where the truth value can change over time are
contained in the mutex group and no literal is contained in more than one mu-
tex group. In the translation, each of these mutex groups can be translated into
one finite domain representation variable, where the finite domain representation
variable has one possible value for every literal in the mutex group, plus an addi-
tional value for the case that all literals of that mutex group are false. All literals
that are not contained in any mutex group and its truth value can change, are
translated as one finite domain variable with two possible values, one indicating
that the literal is true and the other values that the literal is false.
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5 Evaluation

For the evaluation of the invariant synthesis algorithm implemented in the Fast
Downward planning system, the algorithm is compared to the already existing in-
variant synthesis by Helmert. For the comparison of the algorithms the efficiency
and the effectiveness are analyzed.

5.1 Data Sources and Experimental Methodology

For the evaluation the Fast Downward planning system a Fast Downward bench-
mark collection was used. This benchmark collection is an unofficial collection of
international planning competition (IPC) benchmark instances [5]. The bench-
mark contains numerous different task domains defined in PDDL [8], where for
each domain several problem instances exist. This collection also contains tasks
that are not suitable for the invariant synthesis algorithm of this thesis, which
is why only a subset of the tasks were used. Only tasks that have the following
characteristics have been chosen for the evaluation:

1. Tasks that are restricted to the STRIPS format

2. Tasks, where the types and the type hierarchy are defined

3. Tasks that do not have actions with conditional effects

All computational experiments were performed on the sciCORE cluster of the
University of Basel [10]. This environment ensures that all runs of the planning
system are executed under consistent conditions. Each problem instance of all
domains was solved once by Fast Downward with the already existing invariant
synthesis by Helmert and once by Fast Downward with the newly implemented
schematic invariant synthesis algorithm.

For the search, both algorithms used the same algorithms. As the search algo-
rithm, the ”A* search” algorithm with the ”Landmark-Cut (LM-Cut) heuristic
was chosen. This combination used with the Fast Downward planner finds optimal
plans for STRIPS tasks and is very efficient [11]. For each run of the planner on
the sciCORE cluster, an overall time limit of 10 minutes and an overall memory
limit of 3584 MB are set. One run represents the planner to solve one specific
problem instance.

The data from every run was analyzed using Python and the results are docu-
mented in this chapter.

5.2 Time and Memory Errors

In the first section, the number of occurrences of errors for each algorithm per
domain is analyzed. There are three different errors that occurred for all runs.
The first error is the ”search out of time” error (s-o-t). This error occurs when the
overall time limit is reached while the planner is searching for a plan. This means
that the translation was completed successfully. When the time limit is reached
during the translation step, then the ”translation out of time” (t-o-t)error occurs.
The third error that occurred is the ”translation out of memory” error (t-o-m),
which means that the overall memory limit was reached. In the following table,
the number of errors per domain and per algorithm are displayed.
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Existing Inv. Syn. New Schematic Inv. Syn.
domain t-o-m t-o-t s-o-t total t-o-m t-o-t s-o-t total
barman-mco14 0 0 20 20 0 0 20 20
barman-opt11 0 0 16 16 0 0 16 16
barman-opt14 0 0 14 14 0 0 14 14
barman-sat11 0 0 20 20 0 0 20 20
barman-sat14 0 0 20 20 0 0 20 20
childsnack-opt14 0 0 20 20 0 0 20 20
childsnack-sat14 0 0 20 20 0 0 20 20
elevators-opt08 0 0 11 11 0 0 11 11
elevators-opt11 0 0 4 4 0 0 4 4
elevators-sat08 0 0 28 28 0 0 28 28
elevators-sat11 0 0 20 20 0 0 20 20
floortile-opt11 0 0 14 14 0 0 14 14
floortile-opt14 0 0 15 15 0 0 15 15
floortile-sat11 0 0 15 15 0 0 15 15
floortile-sat14 0 0 18 18 0 0 18 18
hiking-agl14 0 0 20 20 0 0 20 20
hiking-opt14 0 0 12 12 0 0 12 12
hiking-sat14 0 0 18 18 0 0 18 18
nomystery-opt11 0 0 6 6 0 0 6 6
nomystery-sat11 0 0 12 12 0 0 12 12
parking-opt11 0 0 19 19 0 8 11 19
parking-opt14 0 0 18 18 0 6 13 19
parking-sat11 0 0 20 20 0 20 0 20
parking-sat14 0 0 20 20 0 20 0 20
pegsol-08 0 0 3 3 0 0 3 3
pegsol-opt11 0 0 3 3 0 0 3 3
pegsol-sat11 0 0 3 3 0 0 3 3
scanalyzer-08 0 0 17 17 27 0 0 27
scanalyzer-opt11 0 0 10 10 19 0 0 19
scanalyzer-sat11 0 0 16 16 20 0 0 20
sokoban-opt08 0 0 2 2 0 0 2 2
sokoban-opt11 0 0 0 0 0 0 0 0
sokoban-sat08 0 0 7 7 0 0 7 7
sokoban-sat11 0 0 6 6 0 0 6 6
thoughtful-mco14 0 0 20 20 0 20 0 20
thoughtful-sat14 0 0 15 15 0 20 0 20
tidybot-opt11 0 0 7 7 0 20 0 20
tidybot-opt14 0 0 13 13 0 20 0 20
transport-opt08 0 0 19 19 0 0 19 19
transport-opt11 0 0 14 14 0 0 14 14
transport-opt14 0 0 14 14 0 0 14 14
visitall-opt11 0 0 10 10 0 0 10 10
visitall-opt14 0 0 15 15 0 0 15 15
woodworking-opt08 0 0 14 14 0 26 0 26
woodworking-opt11 0 0 9 9 0 20 0 20
woodworking-sat08 0 0 23 23 0 27 0 27
woodworking-sat11 0 0 19 19 0 19 0 19

Table 5.1: number of errors for each algorithm per domain
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Note that for all domain names, the ”-strips” ending is not included because of
space reasons.

As we can see, the existing algorithm does not contain any ”translation out of
time” errors nor any ”translation out of memory” errors, meaning that the in-
variant synthesis was successfully completed for all problem instances. For the
schematic invariant synthesis algorithm, on the other hand, several problems
caused these errors during the translation process. The ”translation out of time”
errors occurred in the parking, thoughtful, tidybot, and woodworking problems.
For the parking domain, all problem instances have a very high number of objects
compared to other problem instances from other domains. It could be the case
that this high amount of objects causes the invariants synthesis to take too long
to generate all initial schematic invariant candidates since every schematic invari-
ant candidate needs to be tested if it is true in the initial state. For this step,
the schematic invariant candidate is instantiated using all objects of the problem,
meaning that one schematic candidate generates a large set of ground candidates
that are checked.
For the other three domains, the number of objects is not higher compared to other
domains, but the number of actions and predicates is very relatively high. From
this, we can assume that similarly to the parking domain, the initial schematic
invariant candidate set generation takes a long time, but other than in the parking
domain, the invariants synthesis can possibly be the cause of the long duration,
since for every candidate we need to iterate over a high amount of grounded ac-
tions.

The ”translation out of memory” error was only caused by the scanalyzer problem
instances. The structure of the domain does not indicate any reasons why this
error occurs for the schematic invariant synthesis.

It is interesting to see, that in all cases where the planner using the schematic
invariant synthesis had a translation error, a similar amount of ”search out of
time” errors occurred for the planner using the existing invariant synthesis. This
means that even if the translation would be completed in time, the search would
probably also take too long. For the following domains, the planner had more
total errors using the schematic invariant synthesis algorithm:

• parking-opt14-strips

• scanalyzer-08-strips

• scanalyzer-opt11

• scanalyzer-sat11

• thoughtful-sat14

• tidybot-opt11

• tidybot-opt14

• woodworking-opt08

• woodworking-opt11

• woodworking-sat08
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5.3 Time Performance for Finding Invariants

In this section of the evaluation, the efficiency of the invariant synthesis algorithms
is analyzed and compared. Planning systems should work correctly and efficiently,
and the time needed for the invariant synthesis is important for practical appli-
cability. The time each algorithm needs to complete the invariant synthesis is
considered, without taking the the time for the search into account. In both algo-
rithms, the time was evaluated from the point where the function that finds the
invariants is called right until the set of invariants is returned by the function.

The data is visualized by a scatter plot. The time needed for each problem instance
within one domain is summed up, resulting in a scatterplot that visualizes the time
needed for each algorithm per domain. For this evaluation, only problem instances
were taken into account, if both algorithms successfully terminated the invariant
synthesis. As we saw in the last section, translation out of time errors only
occurred for the schematic invariant synthesis, meaning that the durations that
exceeded the time limit by the schematic invariant synthesis were not displayed
in the scatter plot, which would have led to higher total durations.

Figure 5.1: Relationship of the total time needed by each algorithm for finding
invariants for all problem instances per domain

The scatterplot clearly displays the large time difference for the algorithms to
find the invariants. While the times for the existing algorithm range from about
0 to 2.5 seconds, the newly implemented schematic invariant synthesis algorithm
needs up to 6000 seconds to find invariants for all problems per domain. Since the
time for some domains is very large, the points are not clearly visible. Therefore
another scatterplot was created that displays the clustered points more clearly.
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Figure 5.2: Relationship of the total time needed by each algorithm for finding
invariants for all problem instances per domain (Zoomed in version

From this plot, we can conclude that the invariant synthesis by Helmert outper-
forms the implemented schematic algorithm by far. The reason for this large time
difference is the inefficiency of the schematic invariant synthesis algorithm. The
primary goal of the thesis was to implement a correctly working invariant synthe-
sis, without the priority for efficiency. Optimized data structures and redundancy
elimination would definitely lead to better performance.
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5.4 Search Time Performance

After we analyzed the time for the translator, we now want to compare the time
differences between the search times. From this comparison, we can conclude
whether the invariant synthesis algorithm has an impact on how fast the planner
can search for plans. For this comparison, a bar plot was created that shows the
total search time for all problem instances grouped by the domains. For each
domain, two bars are displayed, one for each algorithm.

Figure 5.3: Search Time Comparison

We can see that the search times are very similar for all domains. There are
no cases where one algorithm resulted in a very different search time compared
to the other algorithm. From this, we can assume that both invariant synthesis
algorithms find invariants and therefore build mutex groups that result in a similar
finite domain representation task. Only by looking at that chart, we can not
conclude whether the same amount of mutex groups or the same sizes of mutex
groups are built.
Since some search times are relatively higher than others a second bar chart was
created using log scales, so all times are visible.
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Figure 5.4: Search Time Comparison (log scale)

Even now, when domains that had relatively shorter search times are displayed,
no drastic time differences can be found. In general, from these charts, we can
not conclude which invariant synthesis is better for the search of the planner.
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5.5 Plan Validity

When the search of the Fast Downward planning system successfully terminates,
the output is a plan, describing a sequence of actions from the initial state to
a state where the goal conditions are met. Such a plan can be validated using
the plan validator from the downward lab [12]. The validator verifies whether
the found plan is a valid plan, that describes a sequence of actions that correctly
finds a path from the initial state to a state where the goal condition is met.
The number of valid plans per domain and algorithm is displayed in the following
scatterplot:

Figure 5.5: Number of valid plans per domain and algorithm

We can see that for most of the domain, the amount of found valid plans is
equal for both algorithms. The domains where the planner using the schematic
invariant synthesis did find less valid plans are exactly these domains, where more
total errors occurred for the schematic invariant synthesis algorithm as analyzed
in Time and Memory Errors section. From this, we can conclude that in all cases
where the search found a valid plan with the existing invariant synthesis, the
search also found a valid plan, when the search successfully terminated. Meaning
that the planner does not find invalid plans using the schematic invariant synthesis
algorithm.

5.6 Finite Domain Variable Structure

The last analysis that was made, is the structure of the finite domain representa-
tion variables. As described in Chapter 4, one mutex group is translated into one
finite domain variable, that has one possible value for every literal in the mutex
group, plus an additional value for the case that all literals of that mutex group
are false. This means that when no mutex groups are used for the translation,
one variable for every literal that can change in different states with two possible
values would exist. This means that when mutex groups are found, the number of
variables is reduced and the number of possible values is increased. In this section,
we want to compare the structure of the finite domain variables by comparing the
average number of possible values per variable and the number of variables.
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Number of Variables

A table was created to display for both algorithms the number of variables per
domain. By analyzing this table, we can assume which algorithm generates more
mutex groups, which is indicated by fewer variables. Nevertheless, more mutex
groups do not directly mean that the algorithm is better. It is possible that fewer
mutex groups but with more literals per group can lead to a more efficient search.

domain Existing Inv. Syn. Schematic Inv. Syn.
barman-mco14-strips 7254 1731
barman-opt11-strips 2164 860
barman-opt14-strips 1781 664
barman-sat11-strips 5720 1500
barman-sat14-strips 7397 1756
childsnack-opt14-strips 1248 1410
childsnack-sat14-strips 1878 2082
elevators-opt08-strips 380 580
elevators-opt11-strips 245 363
elevators-sat08-strips 770 1535
elevators-sat11-strips 1006 2928
floortile-opt11-strips 624 624
floortile-opt14-strips 575 575
floortile-sat11-strips 728 728
floortile-sat14-strips 686 686
hiking-agl14-strips 494 494
hiking-opt14-strips 229 229
hiking-sat14-strips 293 293
nomystery-opt11-strips 190 190
nomystery-sat11-strips 250 250
parking-opt11-strips 656 724
parking-opt14-strips 735 810
pegsol-08-strips 994 1956
pegsol-opt11-strips 680 1340
pegsol-sat11-strips 680 1340
scanalyzer-08-strips 24 60
scanalyzer-opt11-strips 8 20
sokoban-opt08-strips 1518 1518
sokoban-opt11-strips 1066 1066
sokoban-sat08-strips 1652 1652
sokoban-sat11-strips 1244 1244
transport-opt08-strips 345 345
transport-opt11-strips 217 217
transport-opt14-strips 206 206
visitall-opt11-strips 773 773
visitall-opt14-strips 2258 2258
woodworking-opt08-strips 91 28
woodworking-sat08-strips 74 74
woodworking-sat11-strips 15 15
Total 47148 35124

Table 5.2: number of finite domain variables for each algorithm per domain

Similarly to the evaluation of the time for finding invariants, only problem in-
stances are considered, where both algorithms successfully completed the trans-
lation. Problem instances where the schematic invariant synthesis algorithm had
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a translation error were removed from this evaluation.
We can see that in this table in general, the number of variables is the same or
lower for the existing invariant synthesis algorithm. Only for the barman domains
and the woodworking-opt08-strips and domain, the schematic invariant synthesis
algorithm has fewer variables. Especially the difference in the barman domains
stands out, as the translation with the schematic invariant synthesis uses much
fewer variables for the finite domain representation. This suggests, that for these
barman domains, the schematic invariant synthesis generates mutex groups that
are very different from the existing invariant synthesis. Nevertheless, as we saw
in the last section, the search time for the barman domain, the planner is slightly
faster using the existing invariant synthesis. It is also interesting to see that there
are many cases where the exact same amount of variables are generated. This
suggests that the found mutex groups are either the same or the number of found
mutex groups is very similar.

Average Number of possible Values per Variable

Contrary to the last analysis where the number of variables was analyzed, which
can be interpreted as the number of found mutex groups, in this part we analyze
the average number of possible values per variable and the standard deviation of
it. These values can be interpreted as the sizes of the mutex groups. For this
comparison, a table is created that displays the mean of the number of possible
values per variable and the standard deviation of that number per domain for
both of the algorithms.

The mean was calculated for every individual problem instance run with one
algorithm. These means are then averaged over the domain and algorithm using
the weighted mean, by giving more weight to the means that were calculated over
more variables. This is important since simply averaging over the means would
not take into account how many variables this mean stands for. The standard
deviation is also calculated for each individual problem instance run with one
algorithm. The standard deviation over one domain is then calculated by the
pooled standard deviation from each problem instance standard deviation, which
similarly takes into account the number of variables for each standard deviation.
Also for this table, only problem instances are considered, where both algorithms
successfully completed the translation.
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Existing Inv. Syn. New Schematic Inv. Syn.
Domain Mean Std Mean Std
barman-mco14-strips 2.08 1.1 5.38 5.37
barman-opt11-strips 2.13 0.9 3.71 2.73
barman-opt14-strips 2.12 0.93 3.88 3.01
barman-sat11-strips 2.09 1.06 5.01 4.83
barman-sat14-strips 2.08 1.11 5.41 5.4
childsnack-opt14-strips 2.94 1.6 2.76 1.53
childsnack-sat14-strips 3.09 1.89 2.92 1.83
elevators-opt08-strips 8.84 5.54 6.4 5.09
elevators-opt11-strips 8.56 5.4 6.36 4.95
elevators-sat08-strips 17.95 8.32 9.84 9.69
elevators-sat11-strips 29.1 13.16 10.91 13.43
floortile-opt11-strips 5.73 7.19 5.73 7.19
floortile-opt14-strips 5.3 5.61 5.3 5.61
floortile-sat11-strips 5.84 8.2 5.84 8.2
floortile-sat14-strips 5.6 6.77 5.6 6.77
hiking-agl14-strips 5.2 1.56 5.2 1.56
hiking-opt14-strips 4.82 1.32 4.82 1.32
hiking-sat14-strips 5.94 1.74 5.94 1.74
nomystery-opt11-strips 23.34 43.8 23.34 43.8
nomystery-sat11-strips 25.09 47.58 25.09 47.58
parking-opt11-strips 8.29 10.16 7.86 8.92
parking-opt14-strips 8.05 9.81 7.65 8.64
pegsol-08-strips 2.94 5.35 2.0 0.0
pegsol-opt11-strips 2.94 5.41 2.0 0.0
pegsol-sat11-strips 2.94 5.41 2.0 0.0
scanalyzer-08-strips 3.0 1.0 2.0 0.0
scanalyzer-opt11-strips 3.0 1.0 2.0 0.0
sokoban-opt08-strips 5.61 11.45 5.61 11.45
sokoban-opt11-strips 4.98 10.9 4.98 10.9
sokoban-sat08-strips 5.99 12.33 5.99 12.33
sokoban-sat11-strips 6.09 12.98 6.09 12.98
transport-opt08-strips 19.71 8.43 19.71 8.43
transport-opt11-strips 13.3 4.47 13.3 4.47
transport-opt14-strips 26.91 14.88 26.91 14.88
visitall-opt11-strips 3.25 9.87 3.25 9.87
visitall-opt14-strips 3.06 14.05 3.06 14.05
woodworking-opt08-strips 2.59 0.97 2.46 0.9
woodworking-sat08-strips 2.45 0.87 2.45 0.87
woodworking-sat11-strips 2.4 0.8 2.4 0.8

Table 5.3: mean and standard deviation for possible values per variable for each
domain and algorithm

Note that the values are rounded to two decimal places.
Looking at this table, the new schematic invariant synthesis algorithm tends to
have a higher average of possible values per variable. Significant differences can be
seen for the barman-mco14-strips domain, where the schematic invariant synthesis
has a higher mean but also a higher variability.
Nevertheless, for elevators-sat08-strips and elevators-sat11-strips domain we have
significantly higher means for the existing invariant synthesis. It is interesting
to see that for both algorithms when the mean is high, the variablity seems also
to be high. From this observation, only a small number of variables may have a
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high number of possible values while the other variables still have a small number
of possible values per variable. This would indicate that the algorithms both
find some mutex groups with a large size while the other mutex groups have
significantly fewer literals per group or no other mutex groups are found, leading
to more variables with two possible values per variable. Even though we see that
there are some differences in the structure of the finite domain representation
of the tasks, the search times do not differ significantly for different algorithms,
meaning that the quality of the found invariants and the corresponding mutex
groups is similar for both algorithms.
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6 Conclusion

The schematic invariant synthesis algorithm using limited grounding proposed by
Rintanen [2] was implemented for this thesis as part of the Fast Downward plan-
ning system by replacing the already existing invariant synthesis by Helmert.

The implementation of the invariant synthesis algorithm and the integration of
the algorithm into the planning system was a very challenging task and was the
most time-consuming part of the entire project. The goal was to implement the
proposed algorithm and ensuring that correct invariants are found that can be
used for the generation of mutex groups, where the efficiency was not of high
priority.

The implementation was evaluated by comparing the newly implemented invari-
ant synthesis with the already existing invariant synthesis by Helmert. For the
evaluation, the efficiency of the invariant synthesis, the structure of the translated
task, and the impact of the found mutex groups on the search of the planning
system were analyzed. The results of the evaluation showed that the implemented
invariant synthesis correctly finds ground invariants and has a similar impact on
the search of the planning system, compared to the existing invariant synthesis.
Nevertheless, the inefficiency of the implemented algorithm, which can be ob-
served in the evaluation, should not be ignored. Such a large difference in the
time performance of the algorithms, the current implementation of the schematic
invariant synthesis is cannot compete with the the invariant synthesis by Helmert.

In a future work, where the current implementation of this thesis focuses on the
optimization of the algorithm by removing redundant computations and by using
suitable data structures, could improve the downside of this algorithm drastically.
Evaluating the result of such future work would be very interesting and could
answer the question of whether the algorithm can compete with the existing in-
variant synthesis.

Starting this project with some knowledge of classical planning and no knowledge
about invariant synthesis algorithms, the achievement of successfully implement-
ing and integrating an algorithm described in a paper into a system that is com-
pletely new for me is a significant personal milestone. Through this project, my
understanding of classical planning, invariant synthesis, propositional logic, and
various other fields were improved.

All in all, I am very happy with the results of this thesis and hope that this
contribution to classical planning has an impact on the research leading to future
work in the field or in the optimization of the implemented algorithm.
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