
Independent Set Reconfiguration
Sequences on Bipartite Permutation

Graphs using Sliding Token.
Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence Research Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Liat Cohen

Patrick Steiner

pa.steiner@stud.unibas.ch

2016-053-605

22.06.2022

Acknowledgments

I wholeheartedly thank Dr. Liat Cohen and Dr. Prof. Malte Helmert of the AI-Research

group of the University of Basel for the great project idea which I was able to conduct

as my bachelors thesis. This has been the most positive working environment I have ever

participated in.

To my university friends, that were by my side and heard all of my inane thought processes

while you worked on your own projects, thanks for listening when you could.

To my loved ones, that gave me the patience and space that I needed to see this through,

from the beginning of my bachelors degree to its culmination in this thesis. Thank you.

Abstract

Bipartite Permutation Graphs have interesting algorithmic properties which make it pos-

sible to solve several PSpace-complete problems (including the sliding token problem) in

polynomial time when restricted to Bipartite Permutation Graphs.

In this thesis we combined the algorithms of two papers to create a python implementation

that checks if a graph is a bipartite permutation graph and if two independent sets for this

graph can be reconfigured into one another using sliding token movement in polynomial

time. We finished the entire process by giving out an actual reconfiguration sequence af-

ter we’ve checked that one exists. An interesting conclusion which developed during the

implementation leads to the discussion if part of the original algorithm could be substi-

tuted to reach linear time complexity for the recognition of the existence of sliding token

reconfiguration sequences.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 2

2.1 Bipartite Permutation Graphs . 2

2.1.1 Bipartite Graphs . 2

2.1.2 Permutation Graphs . 2

2.1.3 Bipartite Permutation Graphs . 3

2.1.4 Illegal structures for BPG . 4

2.2 Independent sets . 4

2.3 Reconfiguration Problems . 5

2.3.1 Independent Set Reconfiguration . 5

2.3.2 Sliding Token . 5

3 Sliding Token Algorithm with Bipartite Permutation Graph recognition 7

3.1 BPG recognition algorithm . 7

3.1.1 Bipartite Recognition Algorithm . 7

3.1.2 Permutation Recognition Algorithm 8

3.2 Unlocked Graphs and Rigid Tokens . 9

3.2.1 Preparation and execution of I+ . 12

3.3 Finding Reconfiguration sequences . 12

4 Python Implementation 13

4.1 UML-Diagram . 13

4.2 Using the Code . 13

4.3 SlidingToken.main() . 14

4.4 BPG Check . 15

4.4.1 Bipartite Check . 15

4.4.2 Permutation Check . 15

4.5 Rigid Tokens . 16

4.5.1 Preparing for I+ . 16

Table of Contents v

4.6 I+ . 17

4.7 Breadth First search for Reconfiguration sequences 17

5 Examples 18

5.1 Rigid tokens with reconfiguration sequence 19

5.2 No rigid tokens with reconfiguration sequence 20

5.3 Rigid tokens without reconfiguration sequence 21

6 Discussion 22

6.1 Results . 22

6.1.1 Possible alternative to I+ . 22

6.2 Related Questions . 23

6.3 Further Work . 23

Bibliography 25

Appendix A Appendix 26

A.0.1 Code . 26

1
Introduction

In this report we present all collected information to implement the algorithms for “Recon-

figuration sequence recognition on bipartite permutation graphs” [3] and “Bipartite permu-

tation graph recognition” [6] together with an output of an actual reconfiguration sequence

into one workflow into python.

To complete the implementation of this workflow, from the recognition of a bipartite graph

over to the recognition of independent sets to the output of a reconfiguration sequence we

studied many papers that dealt with the subject. We have created the groundwork for fur-

ther work in the research of this specific topic of graph theory with optimization possibilities

on the horizon.

Over the course of this project multiple papers were considered, discussed and either ac-

cepted as basis or thrown out. Every accepted paper was studied thoroughly to extract the

important steps for our workflow, which proved challenge again and again.

The rest of the report is organized as follows: In section Background we introduce all

necessary pieces to understand the Main part. Our Main part consists of two sections, we

first introduce every important step in the algorithms used and how they relate to each

other. In the second, we have an in depth discussion of the actual implementation as it can

be found in the code. In the final section we discuss our findings and how this project lays

the basis for further research.

2
Background

In this part, the most important concepts and definitions prior to the main algorithm are

introduced. It is assumed that Graph Theory is known to the reader to a basic extent.

2.1 Bipartite Permutation Graphs
In this section we’re going to introduce Bipartite Permutation graphs (BPG), starting with

the greater graph classes they are an intersection of, Bipartite graphs and Permutation

graphs.

2.1.1 Bipartite Graphs
Bipartite Graphs are a family of graphs that have the characteristic of being able to be

split its vertices into exactly two sets A and B [6]. These vertices inside of each set are not

neighbours to each other, the neighbours of each vertex can be found in the other set. Say

vertex a is in set A, then the neighbours of a are all inside of set B.

Figure 2.1 depicts a simple bipartite graph that can be split into groups of even and uneven

index numbers, and as you can see, none of the even numbers have edges to other even

numbers and vice versa for the uneven numbers.

2.1.2 Permutation Graphs
Permutation Graphs are another family of graphs that are recognized by the following

characteristic. A graph is a permutation graph if there is some pair P,Q of permutations of

the vertices such that there is an edge between vertices x and y iff x precedes y in one of

P,Q while y precedes x in the other.

Such a permutation graph can also be described as a permutation diagram. Given two

columns where the first consists of the vertices in the ordering given by P, the other by

Q. A line connects the vertex of the same value in both columns, then there is an edge

between vertices x and y iff the lines of x and y cross in the diagram. There can be multiple

Background 3

Figure 2.1: A Simple Bipartite Graph

permutation diagrams for the same permutation graph [6].

Figure 2.2 shows a permutation graph and diagram combo. As you can compare the dia-

gram with the graph, it becomes obvious that the graph is a permutation graph.

Figure 2.2: A Permutation Graph with accompanying Permutation Diagram[6]

2.1.3 Bipartite Permutation Graphs
Bipartite Permutation Graphs (BPG) are an interesting subfamilies of perfect graphs

taking their naming and attributes from the two families of graphs they stem from.“Bipartite

Permutation Graphs” shows that BPG have good algorithmic properties and can be recog-

nized in linear time [6]. Sub graphs of BPG are also always BPG.

Most importantly, several NP-complete or of unknown complexity can be solved in polyno-

mial time when restricted to BPG. Among these problems are the Hamilton Circuit problem,

a variant of the Crossing Number problem and the minimum fill in problem [3]. Over the

course of this paper we will discuss the Reconfiguration problem using Sliding token.

Background 4

2.1.4 Illegal structures for BPG
Now that we have seen all the characteristics that come together to form BPG, we can

talk about illegal structures for BGP. These structures were most important to use whilst

testing the validity of the code and come in many examples. For a structure to be illegal

for BPG, it must break the characteristics of either bipartite or permutation graphs.

Figure 2.3: Illegal structures of BPG [1]

In those structures, we can see a few that already poke out. The odd length cycles are a

violation for Bipartite graphs, whilst more subtly, T2 for example can not be a permutation

graph due to its violation of the permutation graph characteristic.

Any graph containing any of the graphs in figure 2.3 as sub graphs are not BPG [1].

2.2 Independent sets
An Independent Set is a subset of the vertices in a graph, of which no two are neighbours

to each other. A vertex in an independent set is called token, the size of an independent

set is corresponding to the amount of tokens in it [3]. There are further definitions for

independent sets, but what we have already established suffices for the rest of the paper.

Figure 2.4 shows a simple graph with an independent set of size 2.

Figure 2.4: Independent set on a graph marked blue

Background 5

2.3 Reconfiguration Problems
A Reconfiguration problem is the issue of finding a step-by-step transformation be-

tween a pair of feasible solutions, where each step in itself is also a valid solution.

2.3.1 Independent Set Reconfiguration
In the context of this paper we want to find reconfiguration sequences between inde-

pendent sets. As mentioned before, there are other problems that can be solved on BPGs.

But the ways that all of these problems can be solved are quite different as well. At the

beginning of this thesis, we had chosen the problem of set reconfigurations, but the method

of movement to use was not. How were our tokens meant to move? A few papers presented

themselves, for which we give a short overview and discuss more deeply the method we finaly

chose.

To introduce a few of the presented methods:

1. Token Jumping: A token may move to any field which is a valid field to jump to, i.e.

it is not an illegal move in the context of independent sets.

2. Token addition/removal: A token may be removed and in a next step added to another

field.

3. Sliding Token: A token may move only over the graphs edges.

Token jumping and token addition/removal are NP-complete whilst sliding token is PSpace-

Complete [5]. In the end, we’ve decided on sliding token movement and the Epstein Paper.

2.3.2 Sliding Token
Sliding Token is a reconfiguration problem in which tokens may only move over the

graphs edges, iff they do not break the rules for independent sets in our context.

Figure 2.5: An independent set with currently blocked vertex 3

In Figure 2.5 we can see that if we want to move 5 over 3 to 4, we would first have to move

2 to 1, since 2 and 5 are both direct neighbours to 3. If we immediately moved 5 to 3 we

would break the adjacency rule for independent sets.

Background 6

Sliding tokens stand apart from the other methods due to its restrictions on movement, which

gives us two more categories in our BPGs: Locked and Unlocked. An unlocked Independent

set can move its tokens freely without any restrictions, whilst a locked Independent set has

tokens, which may not move at all. We call such tokens Rigid [3].

As shown in figure 2.6, the first independent set can never move without breaking the rules

for independent sets using sliding token movement, where the second independent set is

unlocked but could not move legally to a position like the first independent set.

Figure 2.6: The same Graph with a rigid independent set and an unlocked independent set

These restrictions are what make Sliding Tokens so different and interesting to approach.

3
Sliding Token Algorithm with Bipartite

Permutation Graph recognition

The main subject of this paper is the fusion of multiple algorithms, expecting a connected

graph. The workflow of these algorithms start from a check for BPGs using the authors

creation for a recognition algorithm for bipartite graphs and the permutation graph recog-

nition algorithm of the paper “Bipartite Permutation Graphs” [6], over to the recognition

algorithm if a reconfiguration sequence can exist [3] to finish with a proper reconfiguration

sequence of the authors own creation. The input for this workflow are the edges of a graph

G and the independent sets I and J which are going to be reconfigured into each other, if

possible. The overall time complexity for this workflow lies in polynomial time.

3.1 BPG recognition algorithm
The BPG recognition algorithm used in this thesis was created through a combination

of the authors work for a bipartite check and the paper “Bipartite Permutation Graphs”

for the permutation check. The mentioned paper requires the input graph to be bipartite

already. The combined algorithm has linear time complexity [6].

3.1.1 Bipartite Recognition Algorithm
The bipartite algorithm was put up by checking all of the edges in the input graph. By

comparing the vertices at the edge ends with the elements in bipartite sets A and B, one

decides where the edges go or it is not bipartite. The following function describes all possible

steps with ⟨x, y⟩ being an edge and A and B being initially empty Bipartite sets:

Sliding Token Algorithm with Bipartite Permutation Graph recognition 8

F (⟨x, y⟩) =





x ∈ A, y ∈ B if x ̸∈ A and x ̸∈ B and y ̸∈ A and y ̸∈ B

no additions if x ∈ A and y ∈ B or y ∈ A and x ∈ B

x ∈ A if x ̸∈ A and x ̸∈ B and y ̸∈ A and y ∈ B

x ∈ B if x ̸∈ A and x ̸∈ B and y ∈ A and y ̸∈ B

y ∈ B if x ∈ A and x ̸∈ B and y ̸∈ A and y ̸∈ B

y ∈ A if x ̸∈ A and x ∈ B and y ̸∈ A and y ̸∈ B

Graph is not Bipartite else

3.1.2 Permutation Recognition Algorithm
Once we’ve shown that a graph is bipartite, we can proceed to the recognition algorithm in-

troduced in “Bipartite Permutation Graphs” to check for permutation graphs. The general

idea of the algorithm is to maintain a data structure which allows us to represent all possible

permutations of a bipartite set A[...] with the adjacancy and enclosure properties (which

will not be discussed in this paper but can be found in ”Bipartite Permutation Graphs”) in

linear time. Vertices in B are examined one at a time, each one forcing more restrictions on

the (overlaying) permutation [6].

The algorithm starts out by finding a vertex in B which has a minimal amount of neighbours.

Those neighbours (without the initial vertex) form the first block in our Block List BList.

Vertices from A are called new if they are not in any block of BList, else they are old.The

blocks of BList must occur consecutively, and the vertices of N(b) must occur consecutively.

We call the left most Block BL and the right most Block BR.

We now go step wise through the rest of the vertices b ∈ B which are adjacent to at least

one old vertex. We divide the description of the algorithm into four cases, depending on the

composition of the neighbours of b, which we shorten to N(b).

For each vertex b ∈ B, let ADJ(b) be the set of blocks in BLIST which contain at least one

vertex from N(b). Let MIX(b) be the set of blocks which contain at least one vertex from

N(b), and at least one vertex from A-N(b).

1. Case 1: There is a new vertex in N(b).

For these cases, we create a new Block BNew, consisting of all new vertices in N(b)

a) Case 1.1: Some old vertex is not in N(b).

If BList has only one block, we place BNew at either end. Else, we determine

on which end BNew needs to be placed. If BL is not in ADJ(b), or if BL is

in MIX(b) and BR is in ADJ(b), then BNew is placed at the position of BR.

Otherwise, BNew is placed at the position of BL.

After BNew has been placed, we modify the old Blocks of BList so that the

vertices in N(b) are forced to occur consecutively.If there is any block B in MIX(b),

remove the vertices of B which are in N(b) from B, creating a new block C. B

Sliding Token Algorithm with Bipartite Permutation Graph recognition 9

cannot come between C and BNew if the adjacency property is satisfied, so C is

placed on the side of B which is closest to BNew.

b) Case 1.2: All old vertices are in N(b).

In this case, BNew is always placed at the right end of BList. If there is only

one Block, the choice is completely arbitrary. If there is more than one block the

choice is enforced place at the right side to not enclose the initial block in BList.

There can only be one block in ADJ(b) for this.

2. Case 2: All vertices in N(b) are old.

a) Case 2.1: N(b) contains vertices from two distinct blocks of BList.

We need to guarantee that vertices of N(b) occur consecutively. For any block B

which is in MIX(b), remove the vertices of N(b) from B to form a new block C.

Place C between B and the block which is next to B in BLIST which is also in

ADJ(b).

b) Case 2.2: N(b) is completely contained in a single block of BList.

If all vertices in B are in N(b), do nothing. Otherwise, remove the vertices of

N(b) from B, forming a new block C. If B = BR, then put C at the end of BLIST.

If B = BL, place C at the front of BLIST. If B is not BL or BR, then the graph

is not a permutation graph.

If we have found a yes instance for this algorithm as well then we are dealing with a BPG.

For further information and clarification, see the paper“Bipartite Permutation Graphs” [6].

3.2 Unlocked Graphs and Rigid Tokens
After we’ve found out if we’re dealing with a BPG, we check to see if there are rigid tokens

or not. From this section on wards, the algorithms and definitions stem from the paper

“Sliding Token on Bipartite Permutation Graphs” [3] unless stated otherwise. We see this

part of the workflow through with both input independent sets I and J. Unlike the previous

check, their existence does not hinder our ability to continue our workflow, unless if I and

J do not share the same rigid tokens. If there are rigid tokens, we just need to take some

extra steps.

The following section talks about the algorithm introduced in ”Sliding Token on Bipartite

Permutation Graphs” to recognize rigid tokens in a BPG. As mentioned before, rigid tokens

are tokens that can not move according to the combined rules of sliding token and inde-

pendent sets. Rigid tokens are defined as: R(G,I) = {v | v ∈ ∩I′∈[I]GI
′}. Which roughly

reads as: A set of rigid tokens of independent set I under Graph G are said vertices which

appear in the intersection of the independent sets I’ which are part of the equivalence class

of I under G. An independent set with R(G,I) = ∅ is called unlocked.

Naturally, one would think that an algorithm to find any and all rigid tokens would include

finding all of the independent sets in the equivalence class of the original set I under G, but

Sliding Token Algorithm with Bipartite Permutation Graph recognition 10

as described in the paper, an algorithm was found, named ”Wiggle”, which reliably finds all

rigid tokens in linear time without the need to find all independent sets in the equivalence

class of the original independent set I. This algorithm is split into two parts: Algorithm 1,

which calculates the wiggle room around all tokens and algorithm two, which feeds Algo-

rithm 2 twice with its input values in two different orderings of A and B.

The two algorithms function together as a unit. We input the two bipartite sets, the edges

of the graph and an independent set into Wiggle. Wiggle will call SwitchSides with the first

configuration of bipartite sets, as can be seen in algorithm 2 line 1. We start SwitchSides

by building the tables M and C together. In the first loop of algorithm 1, starting at line 3,

we examine each element u of the bipartite set labeled B in algorithm 1. We set C[u] to be

the intersection of the neighbourhood of u and the input independent set. If C[u] has only

one element, then we add u to the set M.

Once we’re done with the initialization of C and M, we go over to the main loop. We remove

an arbitrary element u of M, and within C[u] we remove the vertex v that is unique. We

build the next independent set Ik from the previous independent set by removing u and

adding v. Now we check if M needs any additions, by checking each vertex w in the neigh-

bourhood of v. In C[w], we remove the vertex v, and if C[w] is left with only one element

after that, we add the vertex w to M.

We continue this algorithm until M reaches zero elements. We return the independent sets

that we’ve built to wiggle, which will start the algorithm again but this time with the inputs

of the bipartite sets A and B switched. In the end we will receive two sets of independent

sets that hold possible reconfigurations. It is of note that not all possible reconfigurations in

the equivalence class of the input independent set are found, but simple steps of the tokens

that can move. Those tokens that appear in all output independent sets are rigid.

Figure 3.1 depicts the algorithm as it can be found in the paper “Sliding Token on Bipartite

Permutation Graphs”. After we have determined the existence of our rigid tokens, we

continue on with preparing and finding I+.

Sliding Token Algorithm with Bipartite Permutation Graph recognition 11

Figure 3.1: Algorithm to find rigid tokens.

Sliding Token Algorithm with Bipartite Permutation Graph recognition 12

3.2.1 Preparation and execution of I+
After we’ve shown that I and J share the same rigid tokens, we continue to prepare for the

I+ Algorithm.

If there were rigid tokens, we form a new graph G’, which is the original graph G with

the rigid tokens and their immediate neighbours removed. From there on out, we find the

independent sets I’ and J’, which only have tokens that can be found in G’. In short, we

built an unlocked graph and probably disconnected graph.

After the last step, or if the sets were unlocked to begin with, we continue to finding the

results of the I+ algorithm for both input independent sets I and J. From Epstein Paper: We

find a reconfiguration sequence between I and I+ using dynamic programming over vertex

index with a table T[·]. For notational convenience, we define Ji,k = {vj ∈ J |i ≤ j ≤ k} for

any independent set J. Let Gi be the unique component of G N[vi] containing vertices of

higher index. T[i] will be assigned some J = arg maxJ∈[I]:vi∈J |J0,i|. From this definition

we learn that the tokens between I and J must have the same distribution between con-

nected components, else we can not build this other J correctly. This opens up an argument

for a possible linear time approach for this step in the workflow. As a base case, set T[0] = I.

Define : W (i, j) =





T [j] if vi ∈ T [j]

T [j]0,k ∪ (T [j]j+1,n)
Gj
vi if R(Gj , T [j]j+1,n) = ∅

invalid otherwise

We say that W(i,j) is valid if 0 ≤ i ≤ j. W(i,j) also must be an independent set and not

invalid. Among the valid W(i,j) that maximize |W (i, j)0,i|, set T[i] to be the W(i,j) where j

is minimal. Given T, find the minimal index i where |T [i]0,i| = | I |. This is our I+, found

in polynomial time.

We use this algorithm on both I’ and J’, (or I and J if the sets were initially unlocked). If I+

and J+ have differing components, then we can’t have a reconfiguration sequence between

them. Else, there exists a reconfiguration sequence between I and J.

3.3 Finding Reconfiguration sequences
Lastly, after proving that there is in fact a reconfiguration sequence between I and J, we

want to return one of the possible reconfiguration sequences between I and J. To do so, we

use Breadth First Search to find the shortest possible paths between the tokens of I and

J sharing the same index i respectively. After these paths have been found, we create the

independent set reconfiguration sequence step by step, making sure that every step is in fact

an independent set by ensuring that no slide step is taken that steps into another tokens

neighbourhood.

4
Python Implementation

In this section, we talk about the before mentioned algorithms, implemented in python. We

go over specialities in the code, as well as interconnections and possible changes.We will not

go through every single method in this section, just the broad workflow.

4.1 UML-Diagram
A short overview over the different classes that were created for the programming part. The

classes were set up in a way that makes sense considering the steps in the workflow.

4.2 Using the Code
In this section we will talk about the utilisation of the project code. To begin, you’ll want

to create a Graph and two independent sets and put them all in the same folder a level

above the code, where your structure should be that the Graph comes first, followed by the

independent set files.

The layouts for the text files are specified as follows:

1. Graphs: Each line consists of one edge, which consists of the indexes of the vertices

connected by the edge divided by one space.

2. Independent sets: Each line consists of the index of one token.

By ensuring that the files are formatted accordingly you take the first step in correctly us-

ing the code. Next one can execute the code using the following command line argument:

python SlidingToken.py ”path-to-folder”. If all files are present, the code will start running,

else an error message will appear.

If everything went correctly, we will enter the workflow.

Python Implementation 14

Figure 4.1: UML-Diagram Code-Overview

4.3 SlidingToken.main()
This method is our main director for the entire workflow of our program. As seen in the

UML file above, SlidingToken.py includes the most methods of all written classes, due to

checks needed before entering into the logic of other classes.

To put the workflow broadly together:

1. Read in command line arguments

2. Check validity of said arguments

3. Start BPG Check

4. Start Rigid Token Check and evaluate it

5. Start IPlus and evaluate it

6. Start Reconfiguration Search.

We are interested in the execution of the main steps of the before hand discussed algorithms.

Python Implementation 15

4.4 BPG Check
This code can be found in the class GraphCheck.py. As talked about in the algorithm

section, we divide the BPG check into a check for bipartite recognition and permutation

recognition. These checks are worked through consecutively because, as mentioned in 3.1.1,

the permutation recognition algorithm requires the input graph to already be bipartite.

Both checks need to pass or the algorithm stops, since the rest of the workflow depends on

the input graph to be a BPG.

4.4.1 Bipartite Check
The bipartite check found in GraphCheck.Check Bipartite is a 1:1 python implementation

of the function found in 3.1.1.1. A legacy version of this code without the Boolean value

can be found in Wiggle.py

Figure 4.2: Bipartite Check as found in GraphCheck.py

If this check fails, we leave the workflow with the message seen in fig 3.4:

4.4.2 Permutation Check
The permutation check found in GraphCheck.Check Permutation() is a python interpre-

tation of the algorithm found in 3.1.1.2. This algorithm needed a few helper functions.

Adjacent Blocks() to build ADJ(v), Mix Blocks() to build MIX(v) and finally place C(), a

function that helps put a block C into the right position in the block List.

Python Implementation 16

Figure 4.3: Command line output after bipartite test fails.

We input the edges of the graph and the bipartite sets A and B that we calculated before

in 3.4.2.1. The program then follows the algorithm described in 3.1.1.2 to decide whether

the input is a permutation graph or not. If this check fails, we leave the workflow with the

message seen in figure 3.5:

Figure 4.4: Command line output after permutation test fails.

4.5 Rigid Tokens
The rigid token algorithms have been implemented as interpretations of the pseudo code

described in chapter 3.1.2 and figure 3.1. Algorithm 1 can be found as SwitchSides.py and

algorithm 2 as Wiggle.py. They work according to the interpretation given in 3.1.2, without

creating all possible independent sets in the equivalence classes of I and J. The evaluation

of the rigid token results for both Independent sets need to be exactly the same or else the

algorithm fails.

4.5.1 Preparing for I+
After we found all of the rigid tokens, we need to prepare our data for I+. This is done

with arbitrary list manipulations found in ComponentPreppring.py, where if there were any

rigid tokens, the indices of those rigid tokens and their neighbours, found by using Slid-

ingToken.Vertex Neighbours(), are removed from all edge and vertex lists containing them,

leaving us with unlocked sets to continue our work with.

Python Implementation 17

In the class ComponentPrepping.py, we also include a function to find the connected com-

ponents of the graph used in the further workflow. This will become important later on.

4.6 I+
After our data has been prepared, we can start with finding I+. This is a complicated

process, as can be gleaned from 3.1.3, for which we need a lot of helper functions. In

IPlus.py we start out in the function Find IJPlus(). We immediately follow into Build T,

the dynamic programming table also found in 3.1.3, which further sends us to Build J(),

in which the elements for T are going to be built as proposed in 3.1.3. We used Depth-

First-Search [4] to ensure the tokens of J are in the same equivalence class as the input

independent set by ensuring each connected component of the graph has the same amount

of tokens in J as in the original independent set.

After T has been built, we send it further to the function Build W() that follows the case

differentiation given in 3.1.3 until completion and finally, the table we receive from there is

being processed in Eval W(). After we have done this entire process for both remainders of

the independent sets we compare their results, which must be equal or there can not be a

reconfiguration sequence.

4.7 Breadth First search for Reconfiguration sequences
Onto the final part of our workflow. If we have arrived at this point, we have proven that

there is a reconfiguration sequence possible in polynomial time. So the last step to add is

to give out such a sequence. To do so, we take the tokens pairwise and run them on the

remaining edges over Breadth First Search() [2] to find the shortest possible path between

the tokens of I and J.

After we’ve found these paths, we must ensure that every single step taken is not in conflict

with our definition of Independent sets, i.e. you can not move a token to a point where

another tokens neighbour resides on the graph.

With this step done we have finished the implementation of our workflow completely. Next

we’re going to have a look at some interesting examples used for testing.

5
Examples

In this last section of our main part we’ll show a short overview of the most intriguing cases

for our workflow, with examples and graphs. We assume that the case ”No rigid tokens

without reconfiguration sequence” does not exist, as we have not found examples for this

specific case. This assumption will be discussed further in section 4.1.1.

Examples 19

5.1 Rigid tokens with reconfiguration sequence
Our first example is going to be a graph with independent sets that share the same rigid

tokens and are able to be reconfigured into each other. On figure 3.6 you can see the graph

including the independent sets for test 3, with red tokens belonging to set I and blue tokens

belonging to set J, violet ones belonging to both. On figure 3.7 you’ll find the command

line output which incidentally is our biggest flow of operations possible for our code.

Figure 5.1: Test3 visualized.

Figure 5.2: Command line output for Test 3.

Examples 20

5.2 No rigid tokens with reconfiguration sequence
Our second example is going to be one without rigid tokens, the same colour distribution as

before applies for figure 3.8.

Figure 5.3: Test 4 visualized.

Figure 5.4: Command line output for Test 4.

Examples 21

5.3 Rigid tokens without reconfiguration sequence
The final example we’re going to show here. Same colour rules apply as in the previous ex-

amples, with independent set I = [1,5,6,9] and set J = [5,6,8,10]. This example is interesting

because it passes every check except of course the I+ check due to the independent sets not

being reconfigurable. We can be that the tokens 5 and 6 are rigid, they are blocking their

only possible step for each other in vertex 4. Removing the rigid tokens and their neighbour

leaves us with two connected components, 1-2-3 and 7-8-9-10-11. Now the reason for the

sets not being reconfigurable into each other is that there is no legal step from connected

component 1 to connected component 2, but set I has a token in each component whilst

set J has no tokens in connected component 1 and two tokens in connected component 2,

meaning there’s no legal step to get one of the tokens from connected component 2 into

connected component 1 for J, which renders our sets not reconfigurable into each other.

Figure 5.5: Test 5 visualized.

Figure 5.6: Command line output for ”Test 5”, rigid tokens with no reconfiguration
sequence.

6
Discussion

6.1 Results
The entire workflow was implemented as planned and works as intended in polynomial time.

A possible linear time approach was deduced for the main algorithm that recognizes if two

independent sets could be reconfigured into each other.

6.1.1 Possible alternative to I+
The idea stems from I+ (3.1.3) itself, where one must build independent sets J according to

a set of rules, including that this J must be in the equivalence class of the given independent

set I. To be in the equivalence class of I, J must be able to be reconfigured into I [3]. From

an initially wrong implementation for the creation of J the conclusion was drawn that to be

reconfigurable, the tokens of the independent sets I and J must respectively be present in

the same connected components.

The only part that sets the original algorithm into polynomial time complexity is the I+

part. Said part can hypothetically be replaced by an algorithm that compares if the tokens

of each independent set are located in the same connected components. If that is not the

case, there may not be a reconfiguration sequence between the two sets, since there exists

no legal step between two disconnected components for our algorithm.

This entire hypothesis hangs on the claim that there must always be a reconfiguration se-

quence between unlocked sets in BPG (unproven). If this were the case, then the workflow

from BPG recognition up to reconfiguration recognition could be done in linear time using

the connected component approach as substitute for the I+ algorithm. Only the actual re-

configuration search would remain in polynomial time due to the use of breadth-first-search.

This connected component variant to I+ has also been implemented in the code and can

be called upon by adding ”CC” to the command line argument. Experimentally, the CC-

Variant is definitely always faster than the original variant which can be seen in figure 4.1,

which is the same test as 3.3.2 as CC-Variant. It is important to note that the CC-variant

Discussion 23

outputs the same results as the original I+ algorithm.

Figure 6.1: CC variant of Test 4.

6.2 Related Questions
An important question that came up in our work was why do we use BPG, and if our algo-

rithm could work on graphs that are not BPG. The checks for BPG at the beginning aside,

our initial problem, the reconfiguration problem, is a NP-complete problem. With BPG we

have good algorithmic properties with which we can solve several NP-Complete problems in

polynomial time, including the reconfiguration problem [6].

6.3 Further Work
Despite ever important part of the algorithm being implemented, some software engineering

aspects were not implemented. One example of this is that there is no check for the cor-

rectness of the input data from the command line arguments, as long as all three files are

present the algorithm will attempt to run. This could cause problems down the line for the

algorithm due to data mishaps.

More work could be put into the CC-variant. Experimentally sound, it is missing some proof

Discussion 24

basics. The most important one being the proof that there should always be an independent

set reconfiguration sequence between unlocked sets. Doing so would lay a great foundation

for a recognition algorithm for independent set reconfiguration in linear time.

Finally, more testing could be done, using bigger, more complex graphs. The ones used in

this paper are all designed to test certain characteristics of the entire program.

Bibliography

[1] Lukasz Bozżyk, Novotná Krawczyk, Tomasz, and Karolina Orkasa. Vertex deletion into

bipartite permutation graphs. Algorithmica, 2022.

[2] One Step! Code. Shortest path in python (breadth first search), Mar

2022. URL https://onestepcode.com/graph-shortest-path-python/?utm source=rss&

amp;utm medium=rss&utm campaign=graph-shortest-path-python.

[3] Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara. Sliding token on

bipartite permutation graphs. Springer, 2015.

[4] GeeksforGeeks. Connected components in an undirected graph, Apr 2022. URL https:

//www.geeksforgeeks.org/connected-components-in-an-undirected-graph/.

[5] Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independet set

reconfigurability problems. Theoretical Computer science, 2022.

[6] Jeremy Spinrad, Anreas Brandstaedt, and Lorna Stewart. Bipartite permutation graphs.

Discrete Applied Mathematics 18, 1987.

A
Appendix

A.0.1 Code
The code and all files used for testing can be found under:

https://github.com/PatrickSteiner311/SlidingToken-Implementation

