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Abstract

A planner tries to produce a policy that leads to a desired goal given the available range of

actions and an initial state. A traditional approach for an algorithm is to use abstraction.

In this thesis we implement the algorithm described in the ASAP-UCT paper: Abstraction

of State-Action Pairs in UCT by Ankit Anand, Aditya Grover, Mausam and Parag Singla

[1].

The algorithm combines state and state-action abstraction with a UCT-algorithm. We

come to the conclusion that the algorithm needs to be improved because the abstraction

of action-state often cannot detect a similarity that a reasonable action abstraction could

find.
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1
Introduction

The idea of robots in everyday life has been a dream for quite some time in our society. Be

it autonomous cars or just the robotic vacuum cleaner. However, not only the hardware

is problematic, but also the intelligence behind these robots. A robot vacuum cleaner, for

example, which only cleans a room that is already clean, is just as effective as one which

permanently switches rooms and never cleans a room completely. Thus it needs to learn

which actions are good in its current state. Furthermore, our environment is dynamic and

the robot has not the power to determine the outcomes without doubt or has not all the

information. For this kind of problem planner exists. A planner tries to produce a policy

that leads to a desired goal given the available range of actions and an initial state.

An example for a planning under uncertainty problem is the academic advising domain. Let

us assume we have a student who wants to graduate. In order to accomplished this, he needs

to pass several courses. These courses can have other courses as a precondition or overlap in

content. Furthermore the student can only take one course at a given time. Therefore, the

student has several policies to reach his goal and the question is now, how to determine an

optimal solution. The problem for our student is to manage the cost respectively the reward

and also the probability to pass the courses. It would be very profitable for the student to

write his state examination in his first semester but his probability to pass would be nearly

zero. Hence the student needs to accumulate first costs, before he can get to the point where

he gets his reward (his graduation).

For a planner this task is difficult to simulate because there is no immediate reward to gain

from taking a course. Therefore it is harder to know if the current policy is promising. The

number of solutions grow nonlinear with the number of courses, thus it is not advisable to

use a brute force algorithm.

A traditional approach for an algorithm is to use abstraction [2]. The theory behind ab-

straction is that we calculate equivalence classes, so that each class in an equivalence class

has the same value and thus reduces the state space.

Another approach are Dynamic Programming algorithms [3], where we break our problem
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in subproblems and save the intermediate results. On one hand, those algorithms have the

advantage of leading to optimal solution. On the other hand, they require a lot of computer

memory.

An alternative approach is to use a Monte-Carlo-Tree Search(MCTS)[4] algorithm where

we have only a part of the tree and try to find promising actions and expand the tree

in these directions. They have the advantage that they can be stopped anytime and can

give a promising action back. A well-known algorithm is for example the UCT algorithm [5].

In this paper, we combine a UCT algorithm with abstraction of states. Furthermore we also

compute the equivalence classes of state-action pairs similar to the work of Anand et al.[1].

First of all we define the theoretical background needed like the Markov decision process

[6], the search tree and UCT. We then implement ASAP-UCT (Abstraction-State-Action-

Pair) within the UCT-based MDP solver PROST [7] as another approach for an algorithm.

Afterwards we compare our result with the UCT algorithm [5] and with the original PROST.

We conclude the paper with a short summary.
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Background

A problem like the academic problem example can be modeled by a Markov decision process

(MDP)[6]. The useful property of a MDP is that a new state s′ is only dependent of its

previous state s and an action a, it is independent of the predecessor of s. In addition we

require that MDPs are dead-end free.

Definition 1. A Markov decision process (MDP) is defined as a 6-tuple 〈S,A, T,R, s0, H〉
where:

• S is a finite set of states,

• A is a finite set of actions,

• T: S × A × S → [0, 1] is a probability distribution that gives the probability T (s, a, s′)

that applying action a in s leads to s’,

• R : S × A → R is the reward function,

• s0 ∈ S is the initial state and

• H ∈ N is the finite horizon.
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Figure 2.1: MDP for an academic problem with two courses. Black labels show the
transition probability and the reward labels are indicated in green; ai is the action to take
course ci.

The constructed graph is a sufficient model to illustrate the problem and to find a solution,

but since most algorithms work better with a tree, we flatten the graph and break cycles if

necessary.

Definition 2. Given an MDP M = 〈S,A, T,R, s0, H〉 a decision node is a 2-tuple 〈s, h〉
where:

• s ∈ S is a state and

• h ∈ [0, H] is the steps-to-go to reach a leaf.

A chance node is a 3-Tuple 〈s, a, h〉 where

• s ∈ S is a state,

• a ∈ A is an action,

• h ∈ [1, H] is the steps-to-go to reach a leaf.

The tree of M is a 7-tuple T (M) = 〈D,C,Ec, Ed, n0, Lc, Ld〉 where:

• D is a finite set of decision nodes,

• C is a finite set of chance nodes,

• Ec ⊆ D × C are the edges which connect a decision node with a chance node,

• Ed ⊆ C ×D are the edges which connect a chance node with decision node,

• n0 ∈ D is the root node,

• Lc ⊆ C ×A is the action of the following chance node and

• Ld ∈ [0, 1] is the probability to get to the following decision node.



Background 5

T (M) = 〈D,C,Ec, Ed, n0, Lc, Ld〉 is recursively defined by the following rules:

• the root node is n0 = 〈s0, H〉 and n0 ∈ D

• For each decision node d = 〈s, h〉 ∈ D and each action a ∈ A, there is a chance node

c ∈ C with c = 〈s, a, h〉, an edge 〈d, c〉 ∈ E and Lc(〈d, c〉) = a

• For each 〈s, a, h〉 ∈ C and s′ ∈ S with T(s,a,s’) > 0 if h > 0 then there is a

d = 〈s′, h− 1〉 ∈ D

The tree also has some invariant properties. The root node n0 ∈ D is a decision node, also

decision nodes and chance nodes alternate. Finally, all leaves of this tree are decision nodes.

Figure 2.2: The corresponding tree to the MDP 2.1, chance nodes have rounded edges, ai
is the action to take course ci. For easier understandability we remove the state notation
in chance nodes and we omit redundant actions.

With these definitions we can now represent our planning problem, but it would be time

consuming and resource intensive to generate and evaluate the whole tree for each problem.

Therefore, we use a Monte-Carlo Tree Search algorithm like UCT, that constructs the tree in

Figure 2.2 iteratively as long as provided resources (time and memory) allow. The algorithm

evaluates actions which are promising and expand the tree in these directions. In order to

do so, we need to update our definition of decision and chance nodes. A decision node is

now a 4-tuple 〈s, V̂ t, N t, h〉 and a chance node a 5-tuple 〈s, a, Q̂t, N t, h〉, where

• V̂ t∈ R is the state-value-estimate after t trials,

• Q̂t ∈ R is the action-value-estimate after t trials and

• N t ∈ N is the number of visit of this node after t trials.

We further add a trial dependency to our tree, resulting in the tree T t = 〈Dt, Ct, Et
c, E

t
d, n0, L

t
c, L

t
d〉,

we also change the property of our tree so that leaves are chance nodes and not decision

nodes anymore. With these changes we can use the UCT algorithm to construct our tree

efficiently.
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Upper Confidence Bounds to Tree (UCT)
The idea behind a UCT algorithm [5] is to iteratively add nodes to a tree. This step-wise

expansion happens in multiple trials . Now the question is how to get in the time step t

from our current tree T t to the next one T t+1. UCT achieves this transit in three phases:

a selection, an expansion and a backup phase.

The selection phase consists of an action and an outcome selection. The action selection is

used when we are at a decision node d, here we select the successor node

c = argmax
〈d,c〉∈Ec

Qt(c) + V t(d)

√
N t(d)

N t(c)
, (2.1)

where we have two main components in the formula. Either the action-value-estimate Q̂t

dominates the function then we exploit the promising candidate, or else we explore a less

well examined candidate.

For a chance node we use the outcome selection. Either its probability or a probability

biased by solved siblings determines in which state we will end.

When the selection phase reaches a decision node d which has not previous been visited and

therefore has no children the expansion phase begins. We now expand all the children c of

the node and then initialize the reward with a heuristic function. We now have Dt ← Dt∪ d
and Ct ← Ct∪c . After the expansion phase, we have two options: we continue the selection

phase or we initialize the backup phase.

In the backup phase the tree gets updated. Beginning in the previous expanded node we

backtrack our path to the root node. On the way up we update the action-value-estimate

Q̂t for chance nodes and the state-value-estimate V̂ t for decision nodes. After we reach the

root node we have T t+1.

With this framework we can introduce ASAP (Abstraction of State-Action Pairs) in a UCT

environment.
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ASAP-UCT

The basic idea of ASAP is to use abstraction within the partially generated search tree of

UCT. In a previous algorithm [8] only state pairs were compared for abstraction, here we

go one step further and also compare state-action pairs. To save the abstraction we use

equivalence classes. In order to do so we introduce two equivalence relations ∼d ⊆ D ×D
and ∼c ⊆ C × C.

Definition 3. For two decision nodes d1 = 〈s1, V̂
t
1 , N

t
1, h1〉 and d2 = 〈s2, V̂

t
2 , N

t
2, h2〉, we

have d1 ∼d d2 if and only if h1 = h2 and for all 〈d1, c1〉 ∈ Et
c there is a 〈d2, c2〉 ∈ Et

c with

c1 ∼c c2 and vice versa.

Definition 4. For two chance nodes c1 = 〈s1, a1, Q̂
t
1, N

t
1, h1〉 and c2 = 〈s2, a1, Q̂

t
1, N

t
1, h2〉

the relation c1 ∼c c2 is true if and only if h1 = h2 and for all 〈c1, d1〉 ∈ Et
c there is a

〈c2, d2〉∈ Et
d with d1 ∼d d2 where the transition probabilities are equal (Ld1 = Ld2) and vice

versa.

We denote X as the set of equivalence classes under the relation ∼d and Y as the set of

equivalence classes under relation ∼c, we name d̄ ∈ X the equivalence class for a decision

node d and c̄ ∈ Y respectively for a chance node c.

We assign each equivalence class a Q-value-mean M , this is for d̄ the mean of all the state-

value-estimates

M(d̄) =
1

|d̄|
Σ
d∈d̄

Q̂(d) (3.1)

and for c̄ the mean of all the action-value-estimates

M(c̄) =
1

|c̄|
Σ
c∈c̄
V̂ (c) (3.2)

In the implementation of Anand et al.[1] two trees are used, one abstract tree and the orig-

inal flat tree. The flat tree is used in the expansion and in the simulation phase. We found

this disadvantageous, since it means that we have an outdated tree. Hence, we use only one

tree in which we use either the equivalence class of the nodes if one exists, or else the node
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itself. Thereby our tree can contain the information of the abstract and the original tree

and we do not need to flatten the abstract tree. We do not overwrite the nodes with the

equivalence class in the tree, because we cannot reuse the equivalence classes in general and

need to recompute all equivalence classes after every interval.

With the previously declared UCT we expand our tree for a given time-interval τ . After τ

we calculate the equivalence classes. We recursively go from the lowest steps-to-go to the

root node.

Figure 3.1: After calculating the equivalence classes, each color denotes a different
equivalence class. Since we are in an incomplete tree, the sum of the probabilities does not
need to be one.

In Algorithm 1 we can see how ASAP-UCT could be implemented. Because of the structure

of the search tree we alternate between abstraction of decision nodes (Algorithm 2) and

abstraction of chance nodes (Algorithm 3).
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Algorithm 1 ASAP-UCT

function GenerateEquivalenceClasses(SearchTree T t )
steps= 0

while steps 6= H do
for all n ∈ D ∪ C where h = steps do

if n ∈ D then
SetEQofDecisionNodes(n)

else
SetEQofChanceNodes(n)

end if
end for
CreateNewEquivalenceClass(d̄1)
steps++

end while
end function

Algorithm 2 Abstraction of decision nodes

function SetEQofDecisionNodes( d1 = 〈s1, V̂
t
1 , N

t
1, h1〉)

for all d = 〈s2, V̂
t
2 , N

t
2, h2〉 ∈ X where h1 = h2 do

if d1 ∼d d then
d̄1 = d̄ return

end if
end for

CreateNewEquivalenceClass(d̄1)
end function

Algorithm 3 Abstraction of chance nodes

function SetEQofChancenNodes( c1 = 〈s1, a1, Q̂
t
1, N

t
1, h1〉)

for all c = 〈s2, a2, V̂
t
2 , N

t
2, h2〉 ∈ Y where h1 = h2 do

if c1 ∼c c then
c̄1 = c̄ return

end if
end for

CreateNewEquivalenceClass(c̄1)
end function

After reaching the root node, each node of the expanded tree has an equivalence class. This

ends the phase of generating the equivalence-classes and the UCT algorithm proceeds again

to the selection phase. If the node is in an equivalence class, the Q-value mean M is used in

the action selection and more importantly in the backup phase.

The only change in the action selection is, that we use the Q-value-mean instead of the

action-value-estimate and the Q-value-mean of the successor equivalence classes instead of

the state-value-estimates for the children in equation 2.1. In the backup phase the Q-value-

mean needs a recalculation as well.

When we are in the backup phase and without an equivalence class, we update only the

value-estimate V̂ t or the action-value-estimate Q̂t of the node. However, if the node is in an
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equivalence class we need to recalculate the Q-value-mean with equation (3.1) or equation

(3.2) respectively, because the reward of the node and thus of the whole equivalence class

has changed.
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Experiment Evaluation

Environment
The ASAP was programmed in C++ and uses as a framework the UCT-based MDP solver

PROST [7] with the improvements introduced in the THTS [9] . Since the 2014 version

makes use of the Partial Bellman Backups [9] as a backup function, it is not trivial to

implement our abstractions with these kind of backups. Therefore we use the DP-UCT

algorithm of the 2011 version of PROST which uses a Monte Carlo backup. To run the

experiment we use the computer cluster of the University Basel, which contains Intel Xeon

E5-2660 CPUs running at 2.2 GHz.

Setting
The setting for the solver includes a short time limit (0.5 seconds) to choose an action.

This is interrupted by the generation of the abstraction every time interval τ . Based on the

expenditure of time we excluded the time for the abstraction. After half a second the server

receives the action, estimates the new state and sends the new state back to the solver. This

exchange happens 40 times and then we receive a reward. For accuracy we do this exchange

30 times and then take the average.

Our testing domains were the benchmarks of the International Planning Competition (IPC)

2011[10] and 2014[11]. They include 12 domains in total, like for example the academic

advising domain.

Configurations
We have run several configurations to see different and possible improvement. As τ we use

an update count which represents how often we interrupt the solver for the abstraction.

For additional configuration we also have the trial length as a parameter. This changes

how many decision nodes are expanded in the expansion phase. Note that these decision

nodes have not the same steps-to-go, they are successors from each other. The trial length

does not change how many children in the expansion phase are generated. Additionally we

deactivate the reasonable action of the PROST planner to see if there are any differences.
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A reasonable action is an abstraction by itself, where actions are excluded if there is an

obviously better solution[7]. In a last step we compare the differences between making the

abstraction within PROST or with the UCT algorithm [5] in the PROST framework.

Parameter
For the representations of the parameter we use the format:

UCTu
t − r(on/off),

where t is the trial length, u is how often we generate equivalence classes and −r represents

whether we have activated the reasonable action.

The difference between DP-UCT and UCT is how they expand the successor in the ex-

pansion phase and how they evaluate the state-value-estimate or the action-value-estimate

respectively.

In the DP-UCT we expand H children in the expansion phase, in contrast to the UCT

where we only expand one child. For the evaluation the UCT uses a random-walk and the

DP-UCT utilizes a heuristic function.

Results
For reading purposes we split the result table shown in the Appendix A.1 and compare

them among each other. The delimited pair is the reference data, where we use the UCT or

DP-UCT without our abstraction.

wildfire triangle recon elevators tamarisk sysadmin academic game traffic crossing skill navigation Total

DP-UCT0
1 -r 1 0.9 0.94 0.98 0.89 0.91 0.9 0.5 0.95 0.98 0.81 0.91 0.31 0.83

UCT0
1 -r 1 0.24 0.52 0.3 0.22 0.34 0.05 0.03 0.27 0.2 0.29 0.52 0.19 0.26

DP-UCT3
1 -r 1 0.85 0.84 0.96 0.65 0.88 0.94 0.39 0.92 0.97 0.74 0.92 0.3 0.78

DP-UCT2
1 -r 1 0.81 0.83 0.98 0.58 0.9 0.87 0.39 0.95 0.98 0.81 0.91 0.34 0.78

DP-UCT1
1 -r 1 0.85 0.85 0.98 0.76 0.89 0.91 0.39 0.96 0.97 0.79 0.93 0.32 0.8

UCT4
1 -r 1 0.28 0.59 0.3 0.27 0.3 0.08 0.02 0.31 0.1 0.29 0.55 0.23 0.28

UCT2
1 -r 1 0.28 0.56 0.3 0.19 0.32 0.05 0.04 0.28 0.07 0.3 0.52 0.23 0.26

UCT1
1 -r 1 0.25 0.57 0.32 0.41 0.32 0.05 0.04 0.27 0.12 0.28 0.52 0.18 0.28

Table 4.1: Results with activated reasonable action and the trial length of one.

We can see that the DP-UCT is significant better than the UCT algorithm in all the do-

mains. In both cases the abstraction of ASAP has no real impact, therefore we increase the

trial length, to try to increase the number of equivalence classes and to increase the impact

of the abstraction.
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wildfire triangle recon elevators tamarisk sysadmin academic game traffic crossing skill navigation Total

DP-UCT0
H -r 1 0.65 0.82 0.96 0.77 0.7 0.53 0.52 0.76 0.7 0.94 0.91 0.88 0.76

UCT0
H -r 1 0.62 0.62 0.31 0.02 0.47 0.49 0.64 0.66 0.82 0.48 0.84 0.18 0.51

DP-UCT3
H -r 1 0.77 0.86 0.94 0.72 0.68 0.57 0.49 0.73 0.74 0.92 0.92 0.88 0.77

DP-UCT2
H -r 1 0.7 0.81 0.95 0.76 0.69 0.56 0.48 0.76 0.7 0.92 0.9 0.77 0.75

DP-UCT1
H -r 1 0.66 0.83 0.96 0.78 0.69 0.57 0.5 0.78 0.71 0.91 0.91 0.8 0.76

UCT4
H -r 1 0.64 0.63 0.32 0.02 0.49 0.47 0.65 0.6 0.81 0.43 0.85 0.17 0.51

UCT2
H -r 1 0.62 0.62 0.31 0.03 0.45 0.49 0.64 0.63 0.8 0.46 0.87 0.15 0.51

UCT1
H -r 1 0.62 0.61 0.32 0.02 0.45 0.46 0.64 0.64 0.81 0.43 0.87 0.18 0.5

Table 4.2: Results with activated reasonable action and the trial length of H.

For the UCT the domain scores increase with the higher trial length drastically. In the DP-

UCT we do not see such an improvement. Once again the abstraction has no real impact

on the outcome.

Hence we deactivate the reasonable actions to see if the additional abstractions have inter-

fered with our abstraction and reset the trial length to one.

wildfire triangle recon elevators tamarisk sysadmin academic game traffic crossing skill navigation Total

DP-UCT0
1 -r 0 0.81 0.53 0.98 0.89 0.91 0.94 0.39 0.95 0.92 0.57 0.8 0.29 0.75

UCT0
1 -r 0 0.13 0.28 0.0 0.17 0.36 0.05 0.07 0.3 0.53 0.2 0.64 0.1 0.23

DP-UCT3
1 -r 0 0.81 0.52 0.94 0.49 0.91 0.91 0.39 0.92 0.9 0.46 0.76 0.18 0.68

DP − UCT 2
1 -r 0 0.81 0.47 0.97 0.72 0.91 0.88 0.39 0.93 0.91 0.6 0.85 0.18 0.72

DP-UCT1
1 -r 0 0.81 0.51 0.97 0.8 0.88 0.9 0.49 0.96 0.91 0.59 0.74 0.26 0.73

UCT4
1 -r 0 0.13 0.32 0.0 0.07 0.36 0.08 0.08 0.29 0.21 0.19 0.63 0.12 0.21

UCT2
1 -r 0 0.08 0.31 0.0 0.09 0.34 0.07 0.08 0.25 0.2 0.19 0.64 0.12 0.2

UCT1
1 -r 0 0.11 0.3 0.0 0.17 0.34 0.05 0.09 0.3 0.45 0.2 0.65 0.09 0.23

Table 4.3: Results with deactivated reasonable action and the trial length of one.

Without the reasonable actions the UCT scores worse, except for the traffic and the skill

domain. Overall we can see that without the reasonable action the DP-UCT decreases its

effectiveness. Our abstraction has here only minor effects and does not appear to be efficient.

Finally our last data without the reasonable action and with a increased trial length:

wildfire triangle recon elevators tamarisk sysadmin academic game traffic crossing skill navigation Total

DP-UCT0
H -r 0 0.62 0.6 0.91 0.75 0.77 0.53 0.58 0.69 0.71 0.86 0.88 0.72 0.72

UCT0
H -r 0 0.59 0.28 0.07 0.02 0.63 0.51 0.38 0.6 0.89 0.39 0.84 0.12 0.44

DP-UCT3
H -r 0 0.7 0.6 0.9 0.58 0.77 0.55 0.5 0.69 0.75 0.89 0.89 0.68 0.71

DP-UCT2
H -r 0 0.64 0.6 0.91 0.61 0.77 0.51 0.47 0.68 0.73 0.89 0.91 0.66 0.7

DP-UCT1
H -r 0 0.59 0.6 0.93 0.67 0.74 0.56 0.38 0.71 0.74 0.92 0.91 0.63 0.7

UCT4
H -r 0 0.59 0.27 0.15 0.02 0.58 0.47 0.38 0.64 0.85 0.39 0.85 0.11 0.44

UCT2
H -r 0 0.65 0.31 0.12 0.01 0.63 0.43 0.39 0.61 0.85 0.37 0.85 0.13 0.44

UCT1
H -r 0 0.61 0.28 0.1 0.02 0.64 0.48 0.42 0.64 0.88 0.41 0.85 0.12 0.45

Table 4.4: Results with deactivated reasonable action and the trial length of H.

As seen before we have an increased output in UCT and a stable output in DP-UCT if we

increase the trial length, thus the deactivation of the reasonable action has only a reduced

impact. The abstraction appears to be as effective as before, but we have a small improve-

ment in the recon domain.

We can see that with reasonable action and an increased trial length the UCT-algorithm is
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most efficient. The DP-UCT is in total constantly successful, but without the reasonable

action the algorithm has a decreased effectiveness.

Overall the abstraction could not improve our results. A major problem in the theory of the

ASAP is the abstraction of action-states. For this we look at the elevator domain, where

we have multiple floors and an elevator. The elevator can be open, closed, moving up or

moving down. On each floor there can be passengers which are waiting for the elevator.

Figure 4.1: The elevator example; We create the special case where close-door is a
redundant action, because in s1 the door is already closed.

At some point we would like to have the chance node noop and the close-door in the

same equivalence class which is only the case when the successors are also all in the same

equivalence classes. If we have a child which has only a relatively small probability to be

expanded like s2, it is unlikely that the same node is expanded in the other state.

So in our example the subtree T1 and T2 are exactly the same, thus the decision nodes with

the orange label are in the same equivalence class as they should because it is the exact

same state. But through one expansion in T1 which we do not perform in T2 the subtrees

become differently. If we then compute the new equivalence classes, we cannot put both

decision nodes in the same equivalence class, since their successor equivalence classes are

differently. This means we overlook two exact decision nodes. This inconsistency stretches

through the tree, it is proportional to the size of the tree and will occur more often in the

lower part of the tree and thus falsify the upper part.

For the first trials it is not a significant problem, since there are not many nodes to select

from. Also if we have a complete tree the abstraction is correct and each same state is in a

equivalence class.

An additional possible problem for the ASAP are the equivalence classes of leaves. Here we

can easily suppress a promising candidate. The opposite can happen as well, meaning that

we boost an unpromising one.
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Conclusion

In this paper we implement the ASAP-UCT, an algorithm which combines abstraction

and a UCT-framework. The ASAP algorithm uses state and state-action abstractions and

combines them with the advantages of the UCT-algorithm, like that they can be stopped

anytime and can give a promising action back.

The process of the algorithm consists of the three-phases of the UCT which are interrupted

every interval to calculate the current equivalence classes. We constructs only one tree where

we use either the equivalence class of the node or the node itself.

In Chapter 4 we evaluate our results, we tested the ASAP within the UCT-based MDP

solver PROST and with the UCT-algorithm. We use different trial lengths and also observe

the difference between the usage of reasonable action or without. Through our results we

found a flaw in the abstraction approach.

In an incomplete tree which we create with the UCT, we have a high diversity in how sub-

trees can appear in the tree. For the abstraction this is a problem, because it leads to a

near zero probability that two large subtrees are exactly the same. Therefore even if the

root nodes of these subtrees represent the same state, they get different equivalence classes

and thus they seem not the same for the algorithm.

The analysis of the various domains of the IPC domains leads to the result that the abstrac-

tion of state-action within a UCT is not a real improvement to a basic UCT.
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A
Appendix

IPPC Scores: Total

wildfire triangle recon elevators tamarisk sysadmin academic game traffic crossing skill navigation Total

DP − UCT 0
1 -r 0 0.81 0.53 0.98 0.89 0.91 0.94 0.39 0.95 0.92 0.57 0.8 0.29 0.75

DP − UCT 0
1 -r 1 0.9 0.94 0.98 0.89 0.91 0.9 0.5 0.95 0.98 0.81 0.91 0.31 0.83

DP − UCT 0
H -r 0 0.62 0.6 0.91 0.75 0.77 0.53 0.58 0.69 0.71 0.86 0.88 0.72 0.72

DP − UCT 0
H -r 1 0.65 0.82 0.96 0.77 0.7 0.53 0.52 0.76 0.7 0.94 0.91 0.88 0.76

UCT 0
1 -r 0 0.13 0.28 0.0 0.17 0.36 0.05 0.07 0.3 0.53 0.2 0.64 0.1 0.23

UCT 0
1 -r 1 0.24 0.52 0.3 0.22 0.34 0.05 0.03 0.27 0.2 0.29 0.52 0.19 0.26

UCT 0
H -r 0 0.59 0.28 0.07 0.02 0.63 0.51 0.38 0.6 0.89 0.39 0.84 0.12 0.44

UCT 0
H -r 1 0.62 0.62 0.31 0.02 0.47 0.49 0.64 0.66 0.82 0.48 0.84 0.18 0.51

min 0.0 0.2 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.04
DP − UCT 3

1 -r 0 0.81 0.52 0.94 0.49 0.91 0.91 0.39 0.92 0.9 0.46 0.76 0.18 0.68
DP − UCT 3

1 -r 1 0.85 0.84 0.96 0.65 0.88 0.94 0.39 0.92 0.97 0.74 0.92 0.3 0.78
DP − UCT 2

1 -r 0 0.81 0.47 0.97 0.72 0.91 0.88 0.39 0.93 0.91 0.6 0.85 0.18 0.72
DP − UCT 2

1 -r 1 0.81 0.83 0.98 0.58 0.9 0.87 0.39 0.95 0.98 0.81 0.91 0.34 0.78
DP − UCT 1

1 -r 0 0.81 0.51 0.97 0.8 0.88 0.9 0.49 0.96 0.91 0.59 0.74 0.26 0.73
DP − UCT 1

1 -r 1 0.85 0.85 0.98 0.76 0.89 0.91 0.39 0.96 0.97 0.79 0.93 0.32 0.8
DP − UCT 3

H -r 1 0.77 0.86 0.94 0.72 0.68 0.57 0.49 0.73 0.74 0.92 0.92 0.88 0.77
DP − UCT 3

H -r 0 0.7 0.6 0.9 0.58 0.77 0.55 0.5 0.69 0.75 0.89 0.89 0.68 0.71
DP − UCT 2

H -r 0 0.64 0.6 0.91 0.61 0.77 0.51 0.47 0.68 0.73 0.89 0.91 0.66 0.7
DP − UCT 2

H -r 1 0.7 0.81 0.95 0.76 0.69 0.56 0.48 0.76 0.7 0.92 0.9 0.77 0.75
DP − UCT 1

H -r 0 0.59 0.6 0.93 0.67 0.74 0.56 0.38 0.71 0.74 0.92 0.91 0.63 0.7
DP − UCT 1

H -r 1 0.66 0.83 0.96 0.78 0.69 0.57 0.5 0.78 0.71 0.91 0.91 0.8 0.76
UCT 4

1 -r 0 0.13 0.32 0.0 0.07 0.36 0.08 0.08 0.29 0.21 0.19 0.63 0.12 0.21
UCT 4

1 -r 1 0.28 0.59 0.3 0.27 0.3 0.08 0.02 0.31 0.1 0.29 0.55 0.23 0.28
UCT 2

1 -r 0 0.08 0.31 0.0 0.09 0.34 0.07 0.08 0.25 0.2 0.19 0.64 0.12 0.2
UCT 2

1 -r 1 0.28 0.56 0.3 0.19 0.32 0.05 0.04 0.28 0.07 0.3 0.52 0.23 0.26
UCT 1

1 -r 0 0.11 0.3 0.0 0.17 0.34 0.05 0.09 0.3 0.45 0.2 0.65 0.09 0.23
UCT 1

1 -r 1 0.25 0.57 0.32 0.41 0.32 0.05 0.04 0.27 0.12 0.28 0.52 0.18 0.28
UCT 4

H -r 0 0.59 0.27 0.15 0.02 0.58 0.47 0.38 0.64 0.85 0.39 0.85 0.11 0.44
UCT 4

H -r 1 0.64 0.63 0.32 0.02 0.49 0.47 0.65 0.6 0.81 0.43 0.85 0.17 0.51
UCT 2

H -r 0 0.65 0.31 0.12 0.01 0.63 0.43 0.39 0.61 0.85 0.37 0.85 0.13 0.44
UCT 2

H -r 1 0.62 0.62 0.31 0.03 0.45 0.49 0.64 0.63 0.8 0.46 0.87 0.15 0.51
UCT 1

H -r 0 0.61 0.28 0.1 0.02 0.64 0.48 0.42 0.64 0.88 0.41 0.85 0.12 0.45
UCT 1

H -r 1 0.62 0.61 0.32 0.02 0.45 0.46 0.64 0.64 0.81 0.43 0.87 0.18 0.5

Table A.1: All the results generated in our experiment. UCTu
t -r 1, where t is the trial

length, u is how often we generate the equivalence classes and -r represents if we have
activated the reasonable action.
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