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Abstract

In classical planning the objective is to find a sequence of applicable actions that lead from

the initial state to a goal state. In many cases the given problem can be of enormous

size. To deal with these cases, a prominent method is to use heuristic search, which uses a

heuristic function to evaluate states and can focus on the most promising ones. In addition

to applying heuristics, the search algorithm can apply additional pruning techniques that

exclude applicable actions in a state because applying them at a later point in the path would

result in a path consisting of the same actions but in a different order. The question remains

as to how these actions can be selected without generating too much additional work to still

be useful for the overall search. In this thesis we implement and evaluate the partition-based

path pruning method, proposed by Nissim et al. [1], which tries to decompose the set of

all actions into partitions. Based on this decomposition, actions can be pruned with very

little additional information. The partition-based pruning method guarantees with some

alterations to the A* search algorithm to preserve it’s optimality. The evaluation confirms

that in several standard planning domains, the pruning method can reduce the size of the

explored state space.
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1
Introduction

In classical planning the task at hand is to find an algorithm that can find a plan for a given

problem. A plan is a sequence of actions leading, when applied, from the initial state to a

goal state of the problem. These actions are each connected to a cost and if a plan with the

lowest possible sum of action costs is required, we talk about optimal planning, and it’s result

would be an optimal plan. In many cases only optimal paths are acceptable as a solution. In

these cases the used algorithm has to guarantee to only return a solution if it’s optimal. One

of the biggest problems in planning is the size of the state space that a complex problem can

induce. To counter this problem multiple approaches are being researched. One of them is

pruning. Pruning introduces a method to analyze a given state and excludes based on this

information a part of the applicable actions in that state. Pruning has the effect that fewer

states are explored and this directly results in a smaller size of the problem.

In this thesis we discuss a pruning method introduced by Nissim et al. [1], called partition

based pruning. This method decomposes the set of all actions in partitions and prunes the

actions applicable in a state based on what action has led into that state. Partition based

pruning is optimality preserving, meaning when used with an alteration of the commonly

used A* algorithm, it produces an optimal plan. The altered A* algorithm is called Path-

Pruning-A* and it is described in section 3.3. The most important step for this pruning

method is the decomposition of the set of actions, because the quality of the partitioning

has a great impact on the usefulness of the pruning in the search process. For this step we

implemented a local search algorithm using the symmetry score introduced by Nissim et al.

to produce high value partitions at little computational expense.

Finally the thesis contains an evaluation of partition based pruning and it’s influence in

various search scenarios. The results show that the pruning method has a highly varying

influence on the efficiency of the search. For some problems the experiments show a strong

improvement in the number of states generated when using partition based pruning, while

in others the pruning method has no influence at all on the size of the explored space.

Additionally the usefulness of the symmetry score for evaluation of partitions and the local

search algorithm for partitioning are discussed.



2
Preliminaries

In this chapter we introduce the preliminaries needed for this thesis.

2.1 Planning

Planning in artificial intelligence is referred to as the research of algorithms to find a sequence

of applicable actions leading from the initial state to a goal state. In this thesis we consider

the SAS+ formalism [5] which describes a planning problem as a 5-tuple:

Π = 〈V, s0, s∗, A, cost〉 (2.1)

• V = {v1, v2, . . . , vn} is a set of variables which can be assigned to a value from the

finite domain Dv

• An complete assignment of the variables in V to a value of its domain is called a state

s. The set of all possible assignments is the set of all states S.

• s0 defines the assignment of each variable in V which describes the initial state of the

problem.

• s∗ is a partial assignment of the variables V which defines the goal conditions.

• A is a set of actions, each defined as a = 〈pre(a), eff (a)〉 where pre(a) and eff (a) are

partial assignments of V declaring the preconditions and effects of the action a. An

action a is applicable in a state s if the partial assignment of pre(a) complies with the

assignment that defines the state s. When an action a is applied the assignment of

all variables of the state s set in eff (a) are remapped to their value in eff (a). The

resulting state is called the successor state s’ of s when applying a and a is called a

creating action of s’.

• cost is a function that assigns every action to a non-negative value describing the cost

of applying the action.

The search-space induced by a planning problem is a directed graph generated by creating

a vertex for every state in S and adding a directed edge between two vertices if there exists
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an action a ∈ A that is applicable in the first state resulting in the second state.

A sequence of actions is referred to as a path. If this sequence can be applied starting

at the initial state and ends in a goal state, it is called a plan. The length of a plan is

the number of actions it contains, it’s cost is the sum of costs of all it’s actions. If a plan

has the lowest possible cost in a problem it’s classified as an optimal plan. In planning

we distinguish between satisficing and optimal planning. Optimal planning only accepts a

cheapest possible plan as the solution to a planning problem, where in satisficing planning

any plan is valid as a solution.

For the this thesis we use the notation for the set of all variables that are assigned in a partial

assignment p vars(p) := {v ∈ V |p assigns a value ∈ dom(v) to v}. For a partial assignment

p and variable v ∈ vars(p), we denote the value of v in p with p[v]. We say that an action

ai destroys a precondition of an action aj if there exists v ∈ vars(eff (ai)) ∩ vars(pre(aj ))

such that eff (ai)[v] 6= pre(aj )[v]. Additionally an action ai achieves a precondition of an

action aj if there exists v ∈ vars(eff (ai)) ∩ vars(pre(aj )) such that eff (ai)[v] = pre(aj )[v].

We also say that an action a affects a variable v if v ∈ vars(eff (a)).

2.2 Informed Search

Informed search tries to distinguish between good and bad states and prefers good ones in

the search process. For this purpose a heuristic function is defined.

h : S → R≥0 ∪ {∞} (2.2)

This function calculates based on information about the state s ∈ S an estimation of the

remaining path cost from this state to a nearest goal state. Intuitively the closer this

estimation is to the actual cost, the better the heuristic. But good heuristics are often

expensive to calculate what causes them to be less useful because of the computational

overhead. Because of this a good middle ground has to be found between cheap calculation

and accurate estimation.

2.2.1 A*-algorithm

A* is a form of best-first-search which is used very often in modern applications because

of it’s, efficiency and simplicity. In search algorithms the exploration of the search space is

often represented as search nodes. A node n represents a state plus additional information,

e.g. the path cost g(n) from the initial state to the state of the node and a pointer to it’s

predecessor node. When a node is expanded all applicable actions in it state s are used and

for each successor state a new node is created with the expanded node as predecessor node.

Best-first-search expands in each iteration, starting at the initial state, the search node with

the lowest value of an evaluation function f(n). In the case of A* this evaluation function is

calculated from the combination of the path-cost from the initial node to the current node

g(n) and the heuristic value of the current state h(n.state). In some cases, to find solutions

with low cost, or even to guarantee an optimal solution to be found, states that already

have been reached and expanded prior in the search are reopened, when they are reached

again with a lower path-cost. If the heuristic function is admissible and consistent [6], A*
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can guarantee to find optimal solutions even without reopening any states.

Figure 2.1: pseudo-code for A* with reopening

1 open list:={}
2 closed list:={}
3 open list.insert(new node(none, none, initial state))

4 while not open list.is empty():

5 n := open list.pop lowest();

6 if not closed list.contains(n.state) or get closed g(n.state) > get g(n):

7 closed list.insert(n.state)

8 if is goal(n.state):

9 return get path(n)

10 for each <action, succ state> in expand(n.state)

11 if heuristic(succ state) < infinity

12 if not closed list.contains(succ state)

13 open list.insert(new node(n, action, succ state)

14 else if get closed g(succ state) > get g(n)+action.cost

15 reopen(get closed node(succ state), action)

16 return no solution

The A*-algorithm (figure 2.1) works with two data-structures, the closed list and the open

list. The open list contains the search nodes which have yet to be expanded and it initially

contains the root node with the initial state of the search problem. The closed list contains

states that have been expanded and it is initially empty. For each iteration a node with the

lowest f-value is extracted from the open list and checked if it’s state already is contained

within the closed list and if so if the node connected to this state has a lower or equal g

value than the current node. If this is not the case, the node’s state is tested against the

goal conditions, if they are met the path to the node is returned and the search finishes. For

non-goal states the node is expanded, meaning all applicable actions in the state and their

successor states are generated. If the successor state is not already present in the closed

list or the new path to the state is less expensive a new node is generated and inserted in

the open list. Inserting a previously closed node again in the open list is called reopening.

When the open list is empty and no goal has been reached, the search concludes without a

solution.

2.3 Action Pruning

Action pruning is a technique to reduce the number of actions applied in a given state to

reduce the number of states that have to be explored. The idea behind this is that we

exclude actions that are not promising to lead to good states or create redundant work. In

the A* algorithm the pruning would be an extra step when expanding a state (pseudo-code

line 10). Instead of using all applicable actions, only the actions that are not pruned by

the pruning rule are used in the expansion process. The pruning rule can operate based on

different information to prune actions, for example on the current state or on the creating

actions of the current node.
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Partition Based Path Pruning

Two actions are commutative if they neither achieve nor destroy a precondition of the other

and they don’t affect the same variable in different ways when applied. Such two actions

ai and aj when applied consecutively in a plan 〈...ai, aj, ...〉 can be switched in the sequence

to create a plan 〈...aj, ai, ...〉 with the same cost that is also valid. When searching without

further guidance or pruning both of these paths are explored, generating redundant work.

Intuitively with the partition based path pruning method actions applied in a given node

are pruned based on the action that has led to the node. This way many of these paths

aren’t explored, resulting in a smaller search space. The idea behind this method is that

when the work on a subgoal of the problem is begun, it should be finished before using any

actions that do not contribute to this goal and can still be applied later in the process.

For this pruning method the actions of an SAS+ problem have to be divided into partitions

resulting in a slightly altered definition of the problem.

Π = 〈V, s0, s∗, {Ai}
k
i=1, cost〉 with Ai ∩Aj = ø for i 6= j and

k
⋃

i=1

Ai = A (3.1)

Now the actions have been divided into k partitions and they can be classified as pri-

vate or public. An action ai ∈ Aj is public if there exists an action an ∈ Am with

j 6= m and ai and an are not commutative. Additionally an action a is also public if it

achieves a goal condition of the problem, meaning there exists a variable v ∈ vars(eff (a))∩

vars(s∗) such that eff (a)[v] = s∗[v].

3.1 Pruning Rule

NIssim et al. [1] proposed the following pruning rule for the partition-based pruning method:

In a state with a private creating action a ∈ Ai, all actions outside of it’s partition Ai are

pruned.

The idea of this rule is that any path containing multiple private actions of the same partition

that do not have a public action of their partition in the sequence between them are moved

directly in front of the next public action maintaining their order. This is allowed because
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of the commutativity property of private actions with actions of other partitions. As shown

by Nissim et al. [1] this retains the completeness and optimality of A* because for each

path that is not explored with pruning, there exists a path that is explored and contains the

same actions as the pruned path but with the before mentioned sequencing rule in place.

3.2 Partitioning

Before using the pruning rule in the search, the actions have to be divided into their par-

titions. This can for example be done by generating an action graph containing a node

for each action in the action set A of the problem. Two action nodes are connected by an

undirected edge in the graph if their actions are not commutative, meaning they do not have

conflicting effects or destroy or achieve a precondition of the other. Now this graph can be

partitioned and result directly in the needed partitioned problem.

Since there are exponential many ways to choose the partitioning, a measurement for how

useful a given partitioning would potentially be in the search process is needed. For this

purpose Nissim et al. [1] introduce a symmetry score, offering an easily calculated estimation

of the value of given partitions. The calculation for the symmetry score Γ for a given

partitioning is as follows:

Γ({Ai}
k
i=1) :=

k
∑

i=1

(

|{a|a ∈ Ai and a is private}|

|Ai|
∗
|A\Ai|

|A|

)

(3.2)

The idea of this symmetry score is as follows: We calculate the probability of the appearance

of a private action followed by an action belonging to another partition, because only these

actions can be pruned. This calculation is not always accurate, since it regards any action to

have the same probability to be applied at any point in the search. However it estimates the

usefulness of the decomposition in an intuitive way and has accurate values in the extreme

cases where all actions are mapped to one partition or every action is the only action of it’s

partition. In both of these cases the symmetry score will result in 0, since one of the two

factors in the formula remains 0.

For the graph partitioning process the graph partitioning tool METIS [4] was used, which is

capable to partition bidirectional graphs very efficiently. The same tool was used by Nissim

et al. METIS takes an adjacency list of the graph as input which can easily be generated

without much computational effort. The adjacency list can also be used to distinguish

between public and private actions after the decomposition process is complete. METIS

can be used to generate a user specified number of partitions with the objective that the

partitions are connected with as few edges as possible. This objective is called edge-cut.

In addition to Nissim et al. we introduce a local search algorithm (figure 3.1) to choose

the number of partitions to be used, which operates based on the symmetry score. The

local search starts with 2 partitions, generates the partitioning with METIS, calculates the

symmetry score, adjusts the number of partitions by adding a step size and generates the

new partitions. The step size starts at 2 and doubles as long as the symmetry score improves.

After the symmetry score stops improving while increasing the number of partitions, the

area around the number of partitions with the most promising symmetry score is searched
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and the most promising partitioning is used for the search. We decided to stop the search

after 5 iterations without any improvement to remove the risk of using too much time on

partitioning but in the experiments this limit was never reached because the number of

partitions used by the algorithm stayed low.

Figure 3.1: pseudo-code for local search

1 number of partitions = 2

2 step size = 2

3 iterations wo improvement = 0

4 max iterations wo improvement = 5

5 best partition = none

6 best symmetry score = 0

7 max step reached = false

8 switched = false

9

10 while step size > 0 and iterations wo imrovement < max iterations wo improvement

11 partitioning = METIS.part graph kway(action graph, number of partitions)

12 symmetry score = get symmetryscore(partitioning)

13 if( best symmetry score <= symmetry score)

14 best partitionining = partitioning

15 best symmetry score = symmetry score

16 if(max step reached)

17 step size = step size / 2

18 else

19 step size = step size ∗ 2

20 iterations wo improvement = 0

21 else

22 max step reached = true

23 if( switched )

24 step size = −step size

25 switched = false

26 else

27 step size = step size / 2

28 switched = true

29 iterations wo improvement++

30 if(max symmetry score == 0)

31 return no useful partitioning found

32 number of partitions = number of partitions + step size

33 return best partition

3.3 Path Pruning A*

Nissim et al.[1] introduced path pruning A* called PP-A*, which is based on the A*-

algorithm, described in section 2.2.1, with slight alterations which allow the algorithm to

prune based on the creating actions of a state while preserving optimality. The used pruning

method needs to have the following properties:

• The pruning method is optimality preserving

• The pruning method prunes based on the previously applied action.
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Figure 3.2: pseudo-code for PP-A*

1 open list:={}
2 closed list:={}
3 open list.insert(new node(none, none, initial state))

4 while not open list.is empty():

5 n := open list.pop lowest();

6 if not closed list.contains(n.state) or get closed g(n.state) > get g(n):

7 closed list.insert(n.state)

8 if is goal(n.state):

9 return get path(n)

10 actions = prune actions(n, applicable actions)

11 for each <action, succ state> in expand(n.state, actions)

12 if heuristic(succ state) < infinity

13 if not closed list.contains(succ state)

14 if open list.contains(succ state) && get open g(succ state) == get g(n)+action.cost

15 get open node(succ state).add creating action(action)

16 else

17 open list.insert(new node(n, action, succ state)

18 else

19 closed node = get closed node(succ state)

20 if get closed g(succ state) > get g(n)+action.cost

21 closed node.remove all creating actions()

22 closed node.add creating action(action)

23 reopen(closed node, action)

24 else if get closed g(succ state) == get g(n)+action.cost

25 get closed node(succ state).add creating action(action)

26 reopen(closed node, action)

27 return no solution

PP-A* (figure 3.2) is different from A* in a few aspects. First of all, a search node has to

contain all actions which led to it’s state with the lowest cost. This is needed because all of

these actions are used in the pruning process.

The second alteration is that while expanding, an action is applied if there exists an incoming

action that allows it’s use with respect to the pruning rule in the node’s set of generating

actions.

The last change alters how reaching the same state multiple times is handled. If an already

open state is reached again with the same path cost via another action it is added to the

list of generating actions in the search node, if the new path-cost is lower, the action list is

replaced with only the new action. In the case that a state that is closed is reached again

with the same path-cost it’s reopened, when expanding such a node only actions that are

now possible with the new generating actions are applied.

3.4 Implementation

The implementation for our test has been designed as an extension for the Fast Downward [2]

planning system. Fast Downward can be used to perform search tasks on problems presented

in the propositional PDDL representation [3]. It contains multiple search algorithms and

various heuristics and pruning methods that can be used.
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3.4.1 PP-A*

The PP-A* algorithm was realized as an extension of the built-in A* implementation, adding

the changes to the search described in section 3.3. Since our implementation is only intended

to run with the partition based pruning method, some aspects of the PP-A* algorithm were

slightly altered to improve performance or adapt it to Fast Downward.

A node contains instead of all actions creating the state with the same path-cost, only one

private action per partition or a public action, to reduce memory usage. This is allowed

because in the pruning process, the actual action itself is not relevant only it’s public or

private property and it’s partition if it’s private, are needed.

3.4.2 Retracing

Another change that has to be made is when retracing the plan after the search has con-

cluded. Since multiple generating actions can be saved in a node, a choice has to be made

for which action is used for the resulting plan in each state. Normally any of the saved

actions can be chosen since all of them have a path with the same cost attached to them,

but in the case of 0-cost actions being present the retracing can result in cycles. These

cycles are created by paths that are explored with a sum of 0 cost returning to an already

contained state. These can not be ignored in the search, because they can potentially result

in additional actions becoming applicable in this state. This was handled by specifically not

using 0-cost actions in the retracing that were added when reopening a state with the same

cost.



4
Experiments

Experiments were performed to evaluate the overall value of the partition based pruning

method for different problems. Additionally the application of the pruning method in in-

formed and uninformed search were evaluated. Besides the overall performance, the useful-

ness of the symmetry score and the local search to find good partitions were explored. For

the experiments a set of benchmark problems provided with the Fast Downward planning

system were used, containing multiple problems from several standard planning domains.

The tests have a memory limit of 2 GB and a runtime limit of 30 min per run.

First of all the experiments verify the optimality of the PP-A* search with partition based

pruning, for all problem instances a plan with optimal cost was found or the search ran out

of memory or time. The value of partition based pruning depends as expected heavily on

the problem domain, especially on the commutativity of the actions.

4.1 Uninformed Search

Here we discuss the results of the experiments run with uninformed search, meaning using

Fast Downward’s blind heuristic. Mainly the comparison between blind A* and blind PP-

A* with partition based pruning is shown in this section. To inspect the change in size

of the search space caused by partition based pruning we compare the number of states

generated excluding the last f-layer with blind A* to the number of PP-A* with partition

based pruning. A state counts as generated if it is ever reached during the search. An

expansion is when the successor states of a state are generated, if a state is reopened during

the search it can be expanded multiple times and counts every time towards the number of

expansions.

Table 4.1: Uninformed search results summary

Summary blind A* blind PP-A*

cost - Sum 6’395’625 6’395’625
generated states- Sum 5’925’421’104 5’742’188’449

expansions - Sum 593’886’589 588’347’885

memory - Sum 94’808’800 143’537’164
coverage - Sum 598 578
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Overall the amount of generated States with PP-A* is lower than with A*. The improvement

varies heavily between the problem instances. For example, the problems with a clear multi

agent structure show very high improvements with PP-A*, because they are easy to partition

(one partition per agent), the best example for this is the satellite domain where the number

of generated states is about 60% reduced compared to A*.

Figure 4.1: Comparison of generated states with and without pruning for uninformed
search
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Another interesting behavior that can be seen in figure 4.1 is that in smaller problems, the

pruning method does not have much of an influence. This is because of the fact that small

problems tend to have fewer actions and are thus more difficult to partition in way that a

lot of actions become private. In some cases the pruning method shows no improvements in

the size of the explored search space. This is caused by the problem not having actions that

can be partitioned in a way that actions can be pruned in the search or by the fact that our

local search doesn’t always find these partitions.
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Table 4.2: Uninformed search results by domain

domain A* gen. PP-A* gen. A* cov. PP-A* cov.

airport 113’000’242 112’848’865 21 21
driverlog 116’045’495 115’411’418 7 7
elevators-opt08-strips 95’683’946 90’100’870 10 9
elevators-opt11-strips 95’115’562 89’544’286 8 7
floortile-opt11-strips 65’976’949 61’229’356 2 1
logistics00 11’434’652 11’434’652 10 10
logistics98 4’554’852 4’549’483 2 2
mprime 52’948’085 51’672’008 18 17
mystery 33’346’122 33’232’555 15 14
openstacks-opt08-strips 6’676’982 6’669’495 18 18
openstacks-opt11-strips 6’652’254 6’644’835 13 13
parcprinter-08-strips 7’945’013 7’824’901 10 9
parcprinter-opt11-strips 7’929’566 7’810’574 6 5
pathways-noneg 5’176’108 4’728’130 4 4
psr-small 13’354’909 13’350’791 48 47
overs 135’111’806 129’623’061 5 5
satellite 5’926’926 745’421 4 4
scanalyzer-08-strips 709’100’492 707’927’453 12 9
scanalyzer-opt11-strips 532’842’564 532’282’403 9 6
tetris-opt14-strips 46’595’649 46’325’490 7 7
tpp 119’411 68’803 5 5
transport-opt08-strips 52’687’623 27’323’838 11 11
transport-opt11-strips 52’628’620 27’288’429 6 6
transport-opt14-strips 18’867’064 8’794’897 4 5
woodworking-opt08-strips 40’894’144 18’840’918 7 7
woodworking-opt11-strips 38’105’951 18’032’722 2 2
zenotravel 10’750’124 5’946’238 7 7
Sum 2’279’471’111 2’140’251’892 271 258

Others 3’470’460’433 3’470’460’433 327 317
Sum 5’749’931’544 5’610’712’325 598 575

No improvements can be seen in about 40% of the domains. This also explains the fact that

the overall memory usage is lower without partition based pruning, since the memory needed

per node is higher in PP-A* because additional creating actions have to be saved where A*

only ever saves one creating action. This leads to higher memory usage of PP-A* while

solving problems where no good partitions can be found. The number of expanded states

shows a very similar pattern as the number of generated states. The coverage of PP-A*

is slightly lower than the one of A*, this is again directly caused by the increased memory

usage of PP-A* , and in the cases where not a lot of pruning takes place, the memory usage

can not be equalized by generating a lower amount of states.
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4.2 Informed search

The experiments for the informed search were conducted with the LM-cut heuristic [7]. LM-

cut is a very powerful heuristic that is efficiently calculable using landmarks. We compare

the statistics of A* against PP-A* when both are using the LM-cut heuristic. Overall the

improvements with respect to state generation when using PP-A* are much less noticeable

when using a powerful heuristic. This can be explained with the fact that a heuristic stops

the search from exploring some of the same states which would not be explored because of

the pruning method.

Table 4.3: Informed search results summary

Summary lm-cut A* lm-cut PP-A*

cost - Sum 6’395’625 6’395’625
generated until last jump - Sum 478’746’717 475’332’039

expansions until last jump - Sum 55’301’339 55’254’598

memory - Sum 20’604’712 58’668’740
coverage - Sum 873 873

Like in the uninformed search difference in the number of generated states is lower with

PP-A*, but the difference is not as noticeable. The domains having the highest difference in

generated states are the same as in the uninformed search because the partitioning process

is the same in both cases resulting in the same pruning in a given state.

Figure 4.2: Comparison of generated states with and without pruning for informed search
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An interesting difference can be seen in the number of expansions, because in comparison

to the uninformed search, when using informed search the fact that PP-A* reopens states

when reached with the same path cost using a new action comes into play. These states are

not reopened when using the normal A* algorithm. The reopening of these states can result

in the possibility of PP-A* expanding them multiple times even though the path-cost to the

state did not change in between.

Table 4.4: Informed search results by domain

domain A* gen. PP-A* gen A* cov. PP-A* cov.

driverlog 3’674’560 3’640’485 13 13
elevators-opt08-strips 62’928’198 55’933’649 22 22
elevators-opt11-strips 51’633’260 50’314’479 18 18
floortile-opt11-strips 35’034’404 34’103’855 7 7
floortile-opt14-strips 62’025’753 60’215’404 6 6
logistics00 12’849’032 12’144’973 20 20
logistics98 2’230’437 2’150’078 6 6
mprime 2’559’414 2’559’407 22 22
mystery 29’697’441 29’697’361 17 17
openstacks-opt08-strips 5’707’994 5’700’527 19 18
openstacks-opt11-strips 5’684’374 5’676’955 14 13
openstacks-opt14-strips 2’543’816 2’543’816 3 2
parcprinter-08-strips 30’208’366 20’133’498 19 19
parcprinter-opt11-strips 30’208’357 20’133’489 14 14
pathways-noneg 2’158’087 1’624’680 5 5
pipesworld-notankage 12’063’640 12’063’118 17 17
psr-small 23’710’452 23’710’102 49 48
rovers 1’894’389 1’466’287 7 7
satellite 5’057’697 322’179 7 12
scanalyzer-08-strips 13’942’542 13’942’542 16 12
scanalyzer-opt11-strips 140’983’160 140’387’216 13 10
tetris-opt14-strips 4’768’909 4’730’899 6 6
tidybot-opt14-strips 500’349 500’349 9 9
tpp 233’191 130’970 6 6
transport-opt08-strips 426’278 249’540 11 11
transport-opt11-strips 423’275 247’833 6 6
transport-opt14-strips 3’396’223 1’645’447 6 6
woodworking-opt08-strips 6’109’688 5’382’655 17 19
woodworking-opt11-strips 6’109’399 5’382’438 12 13
zenotravel 7’921’205 7’293’315 13 13
Sum 566’683’890 524’027’546 400 397

Others 300’422’896 300’422’896 474 474
Sum 867’106’786 824’450’442 874 871

The experiments show that, when using a powerful heuristic the impact partition based

pruning has on the search becomes less noticeable, but when the partitioning process results

in valuable partitions it results in a considerable amount of states that are not explored

because of the pruning method. In the best case we had in the experiments the (satellites

domain) the reduction of generated states is about 40% compared to the A* algorithm when

using the LM-cut heuristic.
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4.3 Symmetry Score

In this section we discuss the symmetry score as proposed by Nissim et al. [1]. The symmetry

score has the purpose of evaluating given partitions in how valuable they are for the pruning

method. Based on this score we chose the used partitions in our experiments. Here we want

to see how much of a correlation there is between the symmetry score and the reduction of

the search state size due to pruning. In all of the cases where the symmetry score remained

at 0 no improvement for the search can be seen, which shows that the symmetry score can

identify bad partitions.

Table 4.5: Symmetry score - generated states evaluation

problem s-score blind A* blind PP-A* LM-cut A* LM-cut PP-A*

satellite 01 0 576 576 14 14
satellite 02 0 13’245 13’245 17 17
satellite 03 0.88 224’751 29’870 86 42
satellite 04 0.89 5’688’354 701’730 0 0
satellite 05 0.53 3’290 1911
satellite 06 0.65 165’598 66’610
satellite 07 2.71 4’888’692 253’585
transport 01 0.08 302 213 5 5
transport 02 0.08 11’432 6’236 128 114
transport 03 0.08 3’094’556 1’489’999 48’269 28’805
transport 04 0.07 33’642’535 17’801’547 206’707 116’501
transport 05 0.09 734 416 46 26
transport 06 0.09 102’280 52’027 1’820 1’290
transport 07 0.09 3’508’797 1’523’191 12’847 6’289
transport 08 0.11 644 336 60 52
transport 09 0.08 45’891 28’208 2’764 1’510
transport 10 0.06 721’372 424’985 11’154 6’490
transport 11 0.06 11’559’080 5’996’680 142’478 88’458
woodworking 01 0.66 87’070 60’610 54 42
woodworking 02 1.55 293’533 103’512 0 0
woodworking 03 0.72 40 31
woodworking 04 0.25 37’186 32’900 19 19
woodworking 05 1.68 24’171’231 9’915’004 31 31
woodworking 06 1.32 2’312 2’027 0 0
woodworking 07 3.54 2’368’092 609’147 216 156
woodworking 08 2.35 13’934’720 8’117’718 49 49
woodworking 09 1.82 273’904 139’085

in table 4.5 we can see the symmetry score of the partitions used by our algorithm and the

number of generated states with and without pruning. It is clearly visible that the higher

the symmetry score, the higher the impect of the pruning tends to be. However based on the

symmetry score alone, it can not reliably be predicted how much the pruning will improve

the search especially when using a strong heuristic like LM-cut. Overall we can say that the

symmetry score provides a useful estimate of the value of given partitions for partition-based

pruning.
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4.4 Partitioning

In the partitioning process our approach was to use a local search algorithm to get the

number of used partitions in addition to the graph partitioning method proposed by Nissim

et al. [1], since in the paper the method used to find the number of partitions is not described.

From the experimental data we can see that our approach can find good partitions in some

of the problems. In about 40% of the cases no valuable partition could be found resulting

in no pruning during the search. The local search concludes in all of the cases in less than

10 iterations which results in less preprocessing time used, but overall the speed increase

due to pruning in the search can not counteract the needed time to find a good partition

unless the problem is very large in size and the found partitions are exceptionally good for

the pruning method. Another downside of the local search is that it assumes that if for 2

partitions the symmetry score results in 0 no good partitions can be found, when potentially

a large number of partitions could have a symmetry score > 0 but finding this number if it

exists would require a lot of time to calculate.

Overall our approach can result in good partitions in very few iterations for problems that

can be partitioned in a low number of partitions.



5
Conclusion

In this thesis we have shown that the partition based pruning method can have a significant

impact on the size of the explored space. The overall improvement varies highly between

the problems and especially between the problem domains. The pruning method is most

effective when used on problem domains which have a multi agent structure to them because

they can be partitioned easily. For many problems our implementation for partitioning is

not able to find partitions which are useful for the pruning method and thus do not improve

the size of the explored search space and have even a negative impact on memory usage

and time needed, because the usage of the pruning method takes additional computational

resources. Partition based pruning also has more impact on the performance of uninformed

search than of informed search because the heuristic can hinder the search from exploring

states which would also not be explored when using partition based pruning.

5.1 Future Work

Nissim et al. proposes a second pruning method in the paper called action tunneling pruning,

which can be combined with partition based pruning and should further improve the search

efficiency, while both use some of the same information and prune based on creating actions

of a state. It would be interesting to see further tests where both of the pruning methods

work together and how much this would improve the overall performance of the search.

Another possible continuation of this work is to further explore the partitioning process and

test other approaches on finding partitions. This includes investigating alternatives to the

symmetry score to decide if a partition is useful in the search.

Our implementation of PP-A* could also be improved to lower memory usage and runtime.

For example another data structure to save all creating actions of a node could be changed to

improve memory usage, this was difficult to implement because the Fast Downward Planner

we worked with is not designed to save more than one creating action per node.
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