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Abstract

Suboptimal search algorithms can offer attractive benefits compared to optimal search,

namely increased coverage of larger search problems and quicker search times. Improving on

such algorithms, such as reducing costs further towards optimal solutions and reducing the

number of node expansions, is therefore a compelling area for further research. This paper

explores the utility and scalability of recently developed priority functions, XDP, XUP, and

PWXDP, and the Improved Optimistic Search algorithm, compared to Weighted A*, in the

Fast Downward planner. Analyses focus on the cost, total time, coverage, and node ex-

pansion parameters, with experimental evidence suggesting preferable performance if strict

optimality is not desired. The implementation of priority functions in eager best-first search

showed marked improvements compared to A* search on coverage, total time, and number

of expansions, without significant cost penalties. Following previous suboptimal search re-

search, experimental evidence even seems to indicate that these cost penalties do not reach

the designated bound, even in larger search spaces.
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1
Introduction

Optimality is theoretically significant when designing search algorithms, but in practice,

for solving large and complex search spaces, as found in the real world, optimality is not

always feasible (Chen et al. [2]). Take two environments, the first static, deterministic,

discrete, and fully observable like that of the Romanian route planning problem1. The

second environment is dynamic, deterministic, discrete, and partially observable, like that

of a real-time strategy video game. An optimal search algorithm like A* (Hart et al. [5]) can

efficiently and effectively solve the route planning problem due to the predictable and easily-

defined properties of the environment (Helmert [7]). The same cannot be said of the second

environment, as A* is limited by its large computational needs and requires modifications to

handle the more difficult properties at a speed that is enjoyable to the end user (Churchill

[3]).

Suboptimal search algorithms can solve for this, as the restrictive optimality guarantee

no longer holds, and computational time can be significantly reduced when even a small

amount of suboptimality is allowed (Chen et al. [2]). The most common suboptimal search

algorithm is Weighted A* (WA*) (Pohl [8]), which finds solutions that are at most w times

larger than the optimal solution cost, with w being a predefined weight. Solutions are

therefore considered w-suboptimal. Recent research in suboptimal search has aimed to

develop easily implementable algorithms and supporting evaluation functions that can find

bounded suboptimal solutions and do not require space-intensive node re-expansions (Chen

and Sturtevant [1]). Three such evaluation functions aiming to outperform WA* will be

examined further in this paper: the convex downward parabola (XDP), convex upward

parabola (XUP) (Chen and Sturtevant [1]), and XX convex downward parabola (PWXDP).

Additionally, the Improved Optimistic Search (IOS) algorithm (Chen et al. [2]), using a focal

list for search and an open list to prove sub-optimality, is compatible with the aforementioned

evaluation functions and has shown experimental performance improvement compared to

WA*. In this paper, a modified version of the IOS algorithm will be analyzed. With such

improved algorithms, the corresponding solution cost difference, among other properties,

1 Route planning in Romania is a simple state space example that includes the paths of major cities in
Romania to the capital, Bucharest (goal state) (Helmert [7]).
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between suboptimal and optimal search becomes smaller, without significantly limiting the

coverage and speed of suboptimal search. This paper aims to expand on previous research

and test the IOS algorithm, with its evaluation function variants, on a different range of

problems, to see if the experimental search improvements can be reproduced.

This paper will first introduce the necessary background on the planning system used, as

well as the functionality of the algorithms included. The implementation of these algorithms

in the Fast Downward planner will follow, the results of which will then be analyzed and

evaluated in context. Finally, future work in this area will be proposed, to provide further

experimental support of the utility and scalability of suboptimal search algorithms.



2
Background

This chapter will provide an overview of the terminology, definitions, and concepts used

throughout this paper. The background provided here is mainly standard artificial intelli-

gence introductory knowledge, although references to more advanced papers are given where

appropriate.

2.1 Environments and State Spaces
An artificial intelligence problem is constructed through a performance measure, an agent

model, and an environment. Performance measures relevant to this paper include properties

like cost (optimal or w-suboptimal), coverage, and time, while an agent model represents the

actions of the agent (mapping observations to actions and computing an evaluation function

that guides the agent around a certain search space). The environment of the search space

describes the space in which the agent exists, and allows the following classifications.

Definition 2.1.1 (Properties of Environments). (Helmert [7]) An environment can be cat-

egorized as follows:

• If the state of the environment remains the same while the agent is determining its

next action, it is called static. Otherwise, it is called dynamic.

• An environment is called deterministic, if the next state of the environment is fully

determined by the current state and the agent’s next action. Otherwise, it is called

stochastic.

• An environment is called discrete if its state is given by finitely discrete (predefined)

parameters. If its given parameters take infinitely many values, it is called continuous.

• If an agent’s observations can completely determine the state of the environment at

any given time, the environment is called fully observable. Otherwise, it is called

partially observable.

These parameters help define the state space for a search problem.
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A state space is a 6-tuple describing the space in which an artificial intelligence agent

operates, given by the following definition.

Definition 2.1.2 (State Space). (Helmert [7]) A state space or transition system is defined

as S = 〈S,A, cost, T, s0, S∗〉 with

• S, the finite set of states

• A, the finite set of actions

• cost, A→ R+
0 , the action costs

• T ⊆ S ×A× S, the transition relation

• s0 ∈ S, the initial state

• S∗ ⊆ S, the set of goal state(s)

Only deterministic state spaces are considered in this paper, which means that in S, the

transition 〈s, a, s′〉 ∈ T , written as s
a−→ s

′
only has s

a−→ s1 and s
a−→ s2 if s1 = s2. This

condition greatly simplifies the search process. State spaces are defined for search problems

in planners, where the problem is described in such a formalism that allows for algorithms

to be implemented and compute solutions.

2.2 Classical Planning
Plans, the sequence of actions from the initial state to reach a goal state, offer a practical ap-

plication and testing for the theoretical optimal and suboptimal search approaches discussed

above. Classical plans aim to solve classical state space search problems that are static, de-

terministic, discrete, and fully observable (Helmert [7]). Given a state space description in

a planning formalism, a planner will either find a plan for the state space (a solution) or

proof that no such plan exists with the given algorithm(s) (Helmert [7]). Optimal planning

guarantees optimal solutions, while suboptimal planning will find all plans in a given bound

of the optimal cost (if a bound is provided), even if the solution is suboptimal.

Fast Downward is a classical planning system developed in 2003 based on heuristic search

(Helmert [6]). The system solves deterministic planning problems encoded in the Planning

Domain Definition Language (PDDL) formalism by first converting the problem into the

Simplified Action Structures (SAS+) formalism before solving. This allows for implicit con-

straints of a propositional planning task to become explicit, and the use of the causal graph

heuristic. Improved performance on solving planning problems has been shown experimen-

tally, as the planner reduces the number of states for which a heuristic must be computed

(Helmert [6]). All experiments in this paper were implemented in the Fast Downward plan-

ner, and computed on sciCORE, the scientific computing center at the University of Basel,

offering high-performance computing and data analysis capabilities.
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2.3 Heuristics
Heuristics are the basis for informed search algorithms, where aspects of the problem itself

are used to find the solution. In a state space S, an arbitrary heuristic function, h : S ←
R+

0 ∪{∞} maps each state to a non-negative number (or∞), to guide the algorithm through

the state space more efficiently. Heuristics act as goal distance estimators, to compute how

far the agent is from the goal state. An example for a heuristic for route planning in Romania

could be the straight line distance from a state to Bucharest (the goal state). Heuristics can

also have the following properties:

Definition 2.3.1 (Properties of Heuristics). (Helmert [7]) For state space S with states S,

a heuristic h for S can be

• safe, if the optimal solution cost h∗(s) = ∞ for all s ∈ S with h(s) = ∞ (if the

heuristic claims there is no solution, there is none)

• goal-aware, if h(s) = 0 for all goal states s ∈ S∗

• admissible, if h(s) ≤ h∗(s) for all states s ∈ S (the heuristic is never larger than the

optimal solution)

• consistent, if h(s) ≤ cost(a) + h(s‘) for all transitions s
a−→ s‘ where s, s′ ∈ S (veri-

fying the triangle equality, catching an inaccuracy if the path towards the goal state

decreases more than the action taken)

In this paper, the safe, admissible, and consistent (and goal-aware) additive Counterexample-

guided Abstraction Refinement (CEGAR) heuristic (Seipp and Helmert [9]) was used as the

tie-breaker.

2.4 Optimal Search Algorithms
Using the state space and planning formalisms described above, the next step to solve search

problems is developing the search algorithm. Search algorithms operate with open and closed

lists. The open list organizes the leaves of a search tree, determining and removing the next

node to expand, and inserting a new node that has potential for expansion (Helmert [7]).

The closed list stores the expanded states to avoid duplicate expansions (reopenings) of a

certain state.

2.4.1 A*
Best-first search (BFS) is a heuristic search algorithm that evaluates search nodes with an

evaluation function f and always expands a node n with minimal f(n) value (Helmert [7]).

BFS uses a heuristic to determine node expansion, normally expanding promising nodes

with low heuristic values h(n) over those with higher h(n) values. A sketch of BFS can be

found in Algorithm 1.

A* (Hart et al. [5]) is a variant of best-first search that aims to find an optimal solution

through computing f(n) = g(n) + h(n), with f(n) as the evaluation function, g(n) as the

path cost, and h(n) as the heuristic cost, and expanding the nodes with minimal f(n)
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Algorithm 1: Generic Best-First Search (Chen and Sturtevant [1])

initialization: (start, goal)
Push(start, OPEN)
while OPEN not empty do

Remove best from OPEN
if best == goal then

return success
end
Move best to CLOSED
foreach successor si of best do

if si on OPEN then
Update cost of si on OPEN if shorter

else if si not on CLOSED then
Add si to OPEN

end

end

end
return failure

values. A* search is complete with safe heuristics, so it is then guaranteed to find a solution

if one exists and terminate if no solution exists. If reopening previously closed states is

allowed, A* is optimal with admissible heuristics. Without reopening, A* is only optimal

with admissible and consistent heuristics (Helmert [7]). In this paper, reopening previously

closed nodes is allowed, as there would be significant limitations in algorithm coverage

(algorithm finding a solution) if reopening was not allowed. A* is used in this context as the

optimal search algorithm, as a baseline for comparison with suboptimal evaluation function

implementations.

2.5 Suboptimal Search Algorithms
Suboptimal search algorithms offer an alternative to optimal search with the introduction of

a weight w that ensures that all found solutions are at most w times as costly as the optimal

solution cost (in this case the minimal cost). These solutions are called w-suboptimal. This

can be useful to boost optimal search algorithms, as the relaxed requirement for optimality

means solutions can be found in less time. If w is well-chosen (even a weight of 1.1 can lead

to faster results (Helmert [7])), the cost penalty of suboptimality can be managed. There

are two groups of suboptimal search algorithms - ones based on BFS (for example WA*)

and others based on focal search (Optimistic Search).

2.5.1 Focal Search
Focal search (Cohen et al. [4]) is a variant of bounded suboptimal search (BSS), using both

an open list and focal list in parallel to separately find a solution and guarantee its w-

suboptimality. The open list is like that of A*, it contains all states in increasing order of

f(n). The focal list contains states from the open list, although only those whose f(n) values

are smaller than the w ·fmin, where w is the weight, wf = 2w−1 the weight bound, and fmin

is the smallest f(n) value on the open list. This mechanism leads to quick solution finding,
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so that solutions can be tested for w-suboptimality while the focal list continues searching,

potentially leading to refinement and better solutions. Evaluation functions support sorting

the focal list, to optimize this process even further.

2.5.2 Weighted A*
Weighted A* (WA*) (Pohl [8]) is a suboptimal variant of A*, with an evaluation function

f(n) = g(n) + w · h(n) with weight w ≥ 1, guaranteeing a solution at most w times as

expensive compared to A* when reopening is used. WA* carries the same properties as A*,

so will provide w-suboptimal solutions if the heuristics are admissible (with reopening) or

admissible and consistent (without reopening). WA* will be used in this paper as the baseline

for comparing the functionality of recently developed suboptimal evaluation functions and

algorithms.

2.5.3 Optimistic search
Optimistic search (OS) (Thayer and Ruml [10]) is a focal search variation of WA* that

searches with f(n) = g(n)+(2w−1)·h(n) and can find solutions that are even w-suboptimal.

The algorithm takes into account that WA* often finds solutions that are less costly (and

therefore better) than w-suboptimal, given weight w. Optimistic search uses the weight

bound of 2w−1 on a focal list, which improves total search time, and runs checks in parallel

through A* search that a solution found is w-suboptimal. Optimistic search will reopen

states if a shorter path is found. The base algorithm is sketched in Algorithm 2.
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Algorithm 2: Optimistic Search (Thayer and Ruml [10])

initialization: initial, bound

OPENf ← {initial}
OPENf̂ ← {initial}
incumbent←∞
repeat until bound · f(first on OPENf ) ≥ f(incumbent)

if f̂(first on OPENf̂ ) < f̂(incumbent) then
n← remove first on OPENf̂

remove n from OPENf

else
n← remove first on OPENf

remove n from OPENf̂

end

add n to CLOSED

if n is a goal then
incumbent← n

else

foreach child c of n do

if c is duplicated in OPENf then

if c is better than the duplicate then
replace copies in OPENf and OPENf̂

end

else if c is duplicated in CLOSED then

if c is better than the duplicate then
add c to OPENf and OPENf̂

end

else
add c to OPENf and OPENf̂

end

end

end

end



3
Improved Optimistic Search

Improved Optimistic Search (IOS) and its associated non-linear evaluation functions will be

introduced in this chapter, based on the ongoing research in improving suboptimal search

algorithms. The IOS algorithm is covered in detail, with an accompanying pseudo code

scheme.

3.1 Evaluation Functions
Referred to also as priority functions, evaluation functions guide informed search algorithms

to a solution in various ways. Current research has explored how to improve solution quality

while still avoiding node re-openings through evaluation functions in the form of f(n) =

Φ(h(n), g(n)), where Φ : R × R → R. Four functions are of interest to this paper, one

of which is the well-known WA*, introduced in the Background section. These functions

are either linear or nonlinear, each with favorable performance depending heavily on the

properties of the search problem and heuristic.

3.1.1 Linear Evaluation Functions
Linear evaluation functions keep the maximum level of suboptimality constant at the weight

and are easy to implement. Taking the function form from above, WA* has the following

construction, with w as the weight, h as the heuristic function h(n) and g as the path cost

g(n):

ΦWA∗(h, g) =
1

w
· g + h. (3.1)

Through this formulation, it has been easy to demonstrate that WA* maintains w-suboptimality

without needing to reopen states (Chen and Sturtevant [1]).

3.1.2 Non-Linear Evaluation Functions
Nonlinear evaluation functions allow the tolerance for suboptimality to vary during search.

Whereas linear functions always provide the same level of suboptimality throughout the

entire search, nonlinear functions like convex parabolas can strongly limit the degree of

suboptimality at the beginning of the search. This ensures that suboptimality is focused
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on the critical parts of the search process, with a little more tolerance available after the

beginning of the path. Experimentally, this would imply that the non-linear functions would

perform better with regards to degree of suboptimality than the linear functions. The first

nonlinear function is the Convex Downward Parabola (XDP) (Chen and Sturtevant [1])

which can be calculated by the following, where w is the weight, h is the heuristic function

h(n) and g is the path cost g(n):

ΦXDP (h, g) =
1

2w
(g + (2w − 1)h +

√
((g + h)2 + 4wgh) (3.2)

Through its construction, paths with low g (path cost) should be near optimal (Chen and

Sturtevant [1]).

The second nonlinear function is the Convex Upward Parabola (XUP) (Chen and Sturtevant

[1]), whose parabola is constructed such that the path found near the goal will be near-

optimal. The formula for XUP is the following, using the same weight, heuristic and path

cost parameters.

ΦXUP (h, g) =
1

2w
(g + h +

√
((g + h)2 + 4w(w − 1)h2) (3.3)

The third nonlinear function of interest is a piece-wise linear function, the Piece-Wise Con-

vex Downward Parabola (PWXDP), which is constructed through the concatenation of two

linear functions. Since this evaluation function has not yet been published, only f(n) for-

mulations are available at this time.

f(n) =

g(n) + h(n) if h(n) > g(n)

g(n)+(2w−1)h(n)
w otherwise

(3.4)

3.2 Improved Optimistic Search
The recently developed Improved Optimistic Search (IOS) algorithm (Chen et al. [2]) adapts

and simplifies, to some extent, the OS algorithm. IOS is deterministic and also runs two

searches - one designed to find a quick solution through expansions on the focal list and

the other to verify w-suboptimality through the open list. The open list search runs an A*

search with f(n) = g(n)+h(n), whereas the focal list uses an evaluation function, f ′(n). The

theoretical pseudo code for IOS can be found in Algorithm 3, although impactful changes

are also found in the dual termination conditions and the general parameterization. On

the latter point, IOS is adapted to run with both linear and non-linear evaluation functions,

allowing for greater testing capabilities. The termination conditions expand on those already

found in OS (c(I) ≤ wfmin) to prove the w-suboptimality of a solution found. To clarify

terminology, c(I) is the cost of I, the incumbent plan, w the weight, and fmin the minimum

f(n) value of a state in the open list. Through the rearranged Φ(h, g) functions, the f(n)

cost is not an estimate of the experimental solution cost, but of the optimal solution cost,

so can be taken like fmin on the open list (Chen et al. [2]). This implies that a termination

condition involving Φ(h, g), or f ′(n), can be used directly on the focal list. This termination

condition is presented as c(I) ≤ wf ′max, with f ′max the maximum f ′(n) (evaluation function)

value of a state on the focal list. The dual termination conditions should result in solutions

being even closer to optimal cost.
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To elaborate on the algorithm’s functionality, the IOS algorithm initializes by defining a

clear start state and goal description, as well as a weight tolerance for the w-suboptimality

of the solution. The OPEN and FOCAL lists are initialized and the start state is added to

both lists. The initial incumbent plan (I) is not defined, so its cost, c(I) is infinite. While

c(I) is not w-optimal, meaning c(I) fails both termination conditions2, and if the estimated

path length of the best state on FOCAL is less than c(I) 3, the best state on FOCAL is

expanded. This will generate successors that will be added to FOCAL. If the best state is

a goal state, then the path to this best state will be added to the incumbent plan. If the es-

timated path length of the best state on FOCAL is greater or equal to c(I) (indicating that

an incumbent plan has been found on FOCAL), the w-suboptimality verification process

takes place on the open list search, where the best state is then expanded on OPEN . For

each child s of the best state, applicable operators (path costs) are computed 4. If the path

cost of s, g(s) in OPEN is less than the path cost of the state in FOCAL, three actions

can take place: the path cost, g value, of state s on FOCAL can be updated; state s can

be re-opened on FOCAL; or, if state s is in the incumbent list, I, update the cost, c(I) of

the incumbent path. And if no path to any goal state is found, return failure. This can

be seen in the pseudo code scheme found in Algorithm 2. Though still theoretical at this

point, the next section of this paper will explore the implementation of this IOS algorithm

into the Fast Downward planner.

2 while c(I) > weight ∗ fmin && c(I) > weight ∗ f ′
max

3 c(I)→ f ′
min of nodes in FOCAL

4 g(s) in OPEN = g(best state) + cost(operator)
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Algorithm 3: Improved Optimistic Search (Chen et al. [2])

initialization: (start, goal, w)

push(start, OPEN)

push(start, FOCAL)

incumbent← null [c(incumbent) =∞]

while c(incumbent) not w-optimal do

if estimated path length of best on FOCAL < c(incumbent) then
expand best from FOCAL

if best == goal then

incumbent = path(best) else
expand best from OPEN

end

if child s has shorter path to s on FOCAL then
// Choose one of the following policies:

(a) Update cost of s on FOCAL // Update

(b) Re-open s on FOCAL // Re-open

if s ∈ incumbent then
(c) update cost of incumbent // Solution update

end

end

end

return failure
end



4
Implementation

This chapter covers the implementation of IOS and the evaluation functions in the Fast

Downward planner. The source code and corresponding experiments can be found in a

personal fork and branch of the Downward repository here. The IOS algorithm discussed in

Chapter 3 was modified, with changes seen in a pseudo code scheme.

4.1 Implementation
To explore and test the functionality of the evaluation functions and IOS algorithm described

in the last chapter, a multi-stage implementation scheme was proposed:

• Implement the four relevant evaluation functions, WA*, XDP, XUP, and PWXDP, in

eager BFS, in the Fast Downward planner (Helmert [6]), and evaluate results among

the functions themselves, as well as an A* control search, on a standardized set of

benchmarks.

• Implement the IOS algorithm (or a modified version thereof) with each evaluation

function, to test both the difference between IOS and eager BFS and the evaluation

function compatibility with IOS on a standardized set of benchmarks.

Three experiments were created to carry out the implementation (one for each implementa-

tion type and a final comparison experiment) to run over the optimal-strips benchmark

suite, the standard for Fast Downward experiments. Experiments were written in a Python

environment, following the protocol of Lab and Downward Lab experiments, although the

evaluation functions and algorithms themselves were programmed in C++. The weight used

in all experiments was held at w = 2 to maximize efficiency and coverage, although this is

higher than weights typically used in practice. The weight bound was set at the standard

wf = 2w − 1 (wf = 3). As well, CEGAR was used in all experiments as the heuristic

function, as it is admissible, safe, and consistent.

https://github.com/swissmathmodel/downward/tree/steiblinbscthesis
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4.1.1 Evaluation Function and Algorithm Implementation
There were no issues directly applying the theoretical evaluation functions to the Fast Down-

ward planner, although the PWXDP function was computed in its f(n) formulation, versus

the f ′(n) formulation of the other three. This would also limit the implementation of the

IOS algorithm, especially with regards to the second termination condition, c(I) ≤ wf ′max,

which is dependent on a f ′(n) function. This was not the only limitation to the IOS al-

gorithm implementation though. The two searches - with the open and focal lists - were

modified to be run sequentially versus in parallel. The capability to run two search spaces

with access to one state registry (required as each search space shares the same states for

each search problem) could be achieved through hard-coding the focal search space (with

the weight bound wf = 2w − 1), focal and open lists (these were best-first open lists in

Fast Downward). A scheme of the modified IOS algorithm used can be found in Algorithm

4. Both individual searches reopen nodes in their own search space, but no information is

shared between the searches. The second part of the IOS algorithm, where the algorithm

switches between both search spaces, and path costs are updated across search spaces, was

not able to be implemented at this point.

Algorithm 4: Improved Optimistic Search (modified)

initialization: (start, goal, w)

push(start, OPEN)

push(start, FOCAL)

incumbent← null [c(I) =∞]

while c(I) not w-optimal do

if incumbent is null then
expand best from FOCAL

if best is goal state then
incumbent = path(best)

end

else
expand best from OPEN

if best is goal state then
incumbent = path(best)

break
end

end

end

if incumbent is null then
return failure

else
return incumbent

end



5
Results

This Chapter will cover the results of the three experiments conducted, organized by at-

tribute. Firstly, a relative cost comparison of the linear and nonlinear evaluation functions

in eager best-first search (BFS) and IOS will be provided. An analysis of the number of

expansions and relative time of the linear versus nonlinear evaluation functions in both al-

gorithms will follow. Finally, the first experiments will be compared, specifically examining

the cost penalties of suboptimal search and coverage of the evaluation functions.

5.1 Relative Cost, linear and non-linear functions
Figure 5.1 presents the relative costs of the nonlinear evaluation functions XDP, XUP, and

PWXDP, compared to the linear WA* evaluation function, in both the eager BFS and IOS

implementations. From previous research and theoretical concepts explained in Chapter 3,

a nonlinear evaluation function should have some cost advantage over a linear evaluation

function. As seen in Figure 5.1 though, there does not seem to be any marked cost benefit

for nonlinear evaluation functions. The XUP function in the IOS implementation is the only

nonlinear function showing a faster relative time compared to WA*, although the benefit is

only a factor of 1.01x faster than the WA* implementation in the same algorithm.

5.2 Number of Expansions and Relative Time, linear and non-linear func-
tions

Figure 5.2 presents the number of expansions of the nonlinear evaluation functions XDP,

XUP, and PWXDP, compared to the linear WA* evaluation function, in both the eager

BFS and IOS implementations. A nonlinear evaluation function should have, according to

previous experiments, fewer expansions (and reopenings) versus a linear evaluation function.

As seen in Figure 5.2 though, the opposite seems to be the case. In both algorithms, WA* has

fewer expansions, although significantly so with regards to the XUP and PWXDP functions

in the IOS algorithm. The PWXDP function seems to have gotten lost in larger search

problems in the benchmark suite, with an average of 11.6 times more expansions in its IOS

implementation than WA*.
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WA* vs. XDP WA* vs. XUP WA* vs. PWXDP

Table 5.1: Relative cost comparison of linear (WA*) and nonlinear evaluation functions in
eager BFS algorithm (top) and IOS algorithm (bottom)

WA* vs. XPD WA* vs. XUP WA* vs. PWXDP

Table 5.2: Number of expansions comparison of linear (WA*) and nonlinear evaluation
functions in eager BFS algorithm (top) and IOS algorithm (bottom)

A similar trend can be seen in Figure 5.3, comparing the relative time of the nonlinear evalu-

ation functions XDP, XUP, and PWXDP, to the linear WA* evaluation function, in both the

eager BFS and IOS implementations. This correlation makes sense, as a larger number of

expansions will mean greater time. Referring back to the PWXDP implementation in IOS,

the PWXDP function was 2.5 times slower than the WA* function for the same algorithm.
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WA* vs. XPD WA* vs. XUP WA* vs. PWXDP

Table 5.3: Relative time comparison of linear (WA*) and nonlinear evaluation functions in
eager BFS algorithm (top) and IOS algorithm (bottom)

5.3 Algorithm Comparison

Algorithm Cost (Weight) Coverage (%)

A* 1.00x 48.5

WA* 1.08x 62.3

XDP 1.08x 63.2

XUP 1.07x 56.3

PWXDP 1.10x 63.3

IOS-WA* 1.11x 63.7

IOS-XPD 1.12x 64.5

IOS-XUP 1.10x 59.2

IOS-PWXDP 1.13x 56.2

Table 5.4: Effective weight and Coverage Summary

for each algorithm- evaluation function pair, in

percentage coverage (out of 1827 search problems)

Table 5.4 shows the effective weights

of the solution costs of each algo-

rithm and evaluation function pair.

As mentioned in previous experi-

ments, this trend was to be expected,

and validates the concept on which

suboptimal focal search algorithms

are based. This finding was one of

the two most positively surprising re-

sults of this research, as the average

effective weights are, even in the IOS

algorithm, are under 1.15 times the

cost of the optimal solution. The in-

crease in coverage provided by the

nonlinear evaluation functions was

expected, but a pleasant result, as it

validates the existence of suboptimal search algorithms to solve larger and more complex

state spaces.

The plots in Appendix A show comparisons of each linear and nonlinear evaluation function

in both the eager BFS and IOS algorithms.
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Future Work

This paper can be viewed as a non-comprehensive introduction of modern suboptimal search

algorithms to the Fast Downward planner, lightly laying a foundation for further research

in suboptimal search. As well, this research has been a somewhat entrepreneurial attempt

to extract theoretical functions and algorithms into practice. The first, and probably most

important, area for future work would be in implementing a full version of the IOS algorithm

as described in Algorithm 3, providing the capability to switch between search spaces contin-

uously versus just once sequentially. This switching mechanism posed feasibility challenges

and was finally dismissed, as even the authors of the initial research paper chose to use a

one-time sequential switch from one search space to the other. Secondly, a lazy implemen-

tation of the IOS algorithm could be beneficial for comparison to the eager implementation

described in this paper. A first attempt at incorporating the nonlinear evaluation functions

into a lazy best-first search would also test these nonlinear evaluation functions in a different

search environment. In this context, observing how high the suboptimality of the solution

plan compares to the search time required would be informative.

To extend the validity of already existing implementations, further testing is recommended.

Using a larger suite of benchmarks, testing the implementations with a larger weight range

(e.g. weights in increments of 0.1 from 1.1x to 3.0x optimal cost), or even implementing the

nonlinear functions and IOS algorithm in other planners would provide more quantitative

and qualitative insight into the functionality and usefulness of the research done so far.
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Conclusion

The evaluation functions showed marked benefits with regards to total time and expansions

versus the optimal algorithm with little cost penalty (the average suboptimal solution was

only 1.1x the optimal cost, even with a weight of 2). With that, if optimality is not required

to solve certain problems, these implementations may have a use case. There was no clear

“best” evaluation function, although the XDP function had slightly better overall perfor-

mance, and the XUP function showed the lowest costs in all suboptimal implementations.

Disappointingly, there was no significant advantage to implementing nonlinear evaluation

functions over WA* in the standardized benchmarks chosen from the Fast Downward plan-

ner. Furthermore, this paper only covers a small part of the testing needed to validate the

utility and scalability of nonlinear evaluation functions and the IOS algorithm for suboptimal

search.

On a positive note, it was encouraging to reproduce an effect described in some of the

referenced research papers - when given a defined weight, suboptimal search implementations

return solution paths that are “better” than the weight. This is an encouraging step for

suboptimal focal search algorithms to exploit, although more research is needed to truly

provide breakthrough improvements to already existing algorithms.

In the greater context of artificial intelligence, even though there was a clear increase in

coverage compared to optimal search - from 48.6% in A* to around 61.0% in suboptimal

implementations - these implementations of suboptimal search still cannot find solution

plans for large search spaces. That said, current research tackling all sides of the issue,

from algorithm development to more realistic state space descriptions, may sometime in the

future reach significant usability and scalability.
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“row 1, column 1” “row 1, column 2”

“row 2, column 1” “row 2, column 2”

Table A.1: Relative cost comparison of evaluation functions in eager BFS algorithm and
IOS algorithm (preprended ”IOS”)
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“row 1, column 1” “row 1, column 2”

“row 2, column 1” “row 2, column 2”

Table A.2: Relative time comparison of evaluation functions in eager BFS algorithm and
IOS algorithm (preprended ”IOS”)
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“row 1, column 1” “row 1, column 2”

“row 2, column 1” “row 2, column 2”

Table A.3: Number of expansions comparison of evaluation functions in eager BFS
algorithm and IOS algorithm (preprended ”IOS”)
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