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Abstract

Heuristics play an important role in classical planning. Using heuristics during state space

search often reduces the time required to find a solution, but constructing heuristics and

using them to calculate heuristic values takes time, reducing this benefit. Constructing

heuristics and calculating heuristic values as quickly as possible is very important to the

effectiveness of a heuristic.

In this thesis we introduce methods to bound the construction of merge-and-shrink to reduce

its construction time and increase its accuracy for small problems and to bound the heuris-

tic calculation of landmark cut to reduce heuristic value calculation time. To evaluate the

performance of these depth-bound heuristics we have implemented them in the Fast Down-

ward planning system together with three iterative-deepening heuristic search algorithms:

iterative-deepening A∗ search, a new breadth-first iterative-deepening version of A∗ search

and iterative-deepening breadth-first heuristic search.
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1
Introduction

1.1 Motivation
In our lives, we, as humans, encounter many different problems. These problems often vary

greatly in nature of the desired goal and abilities that can be applied to arrive at such a

goal. Most of these problems would be easily solved if only we had a plan, a series of actions,

that would take us from our current situation to the desired destination. This is exactly the

scenario for which classical planning was developed.

In this thesis, we concern ourselves only with classical planning problems. Classical planning

is a type of automated planning of which the main goal is to find any, but often specifically

an optimal solution for a search problem with a finite state space in a generic representation.

More specifically, classical planning deals only with general problem solving methods, which

can be applied to any deterministic, fully observable problem in such a representation.

Classical planning problems can be described by an agent attempting to reach one of many

possible goal states from an initial state by transitioning through other states via a set of

allowed transitions. Depending on the allowed transitions, a state space can be represented

as an undirected graph, a directed graph or a tree. The goal of planning is to find an ordered

sequence of these transitions or actions, which leads from the initial state to a goal state.

Although planners that are run on computers can find optimal plans to problems a lot

faster than humans could, the speed and efficiency of planning algorithms is still an area of

active development. This is, because as problems increase in size and the number of possible

actions in each situation increases, the number of possibilities that need to be considered

increases drastically. To alleviate this problem, a variety of techniques has been developed.

One of the most widely used approaches is heuristic search.

Heuristics are functions that attempt to approximate the cost of an optimal plan from the

current state to a goal state. Heuristics can be specific to a certain problem or task, but

there are also those heuristics which can be applied to a more general problem representation

and can therefore be used for any problem in such a representation. While specific and

general heuristics each have their applications, since we cannot assume any problem specific

features from the general representation of a problem, only general heuristics are of interest in

classical planning. Heuristics allow search algorithms to judge how promising a state is and,

using this information, choose to expand those states which are most likely on the optimal
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path. Search algorithms can also use this cost estimate to disregard states completely if

their projected cost is higher than a certain threshold. This is called search space pruning

and is of central importance to many search algorithms. Ignoring these costly states can

yield a substantial increase in performance, because large amounts of suboptimal or even

dead end paths would otherwise be explored. On the other hand, depending on the heuristic

used and the pruning strategy implemented, it is possible that pruning removes a state on

the optimal path, in which case either a suboptimal solution is found or none at all.

Heuristics often create an abstract representation of the state space of the problem. This

internal representation is usually a highly simplified version of the actual state space, because

problem state spaces are usually too large to work on directly. By considering a simplified

version of the problem state space, heuristics can approximate the cost of paths to a goal

state without having to directly work with the much larger actual state space. However,

since simplifying the state space too much will result in inaccurate heuristic values, many

heuristics are designed to retain only aspects of a state space considered to be important

for the optimal solution.

1.2 Goal
In this thesis, we modify two heuristics, the merge-and-shrink [6] as well as the landmark

cut [5] heuristic, to only use internal representations of the state space up to a given depth

bound. This should increase the speed at which the abstraction is constructed or the heuris-

tic value is generated, but make these heuristics useless for estimating heuristic values for

states only reachable by greater cost than the given bound. To avoid running into states

with undefined heuristic values and to complement the depth-bound nature of these heuris-

tics, we also implement three search algorithms designed for iterative deepening searches:

iterative-deepening depth-first A∗ search (IDA∗) [7], iterative-deepening breadth-first A∗

search (IDBFA∗) and iterative-deepening breadth-first heuristic search (IDBFHS) [12].

We use these heuristics to explore the effectiveness of bounding the depth of construction

of heuristic state space representations in increasing heuristic accuracy, reducing heuristic

construction time and decreasing the overall time required to solve problems. We specifically

analyze the viability of this approach in conjunction with the mentioned iterative-deepening,

depth-bound search algorithms, to ensure states pruned from the internal representation of

the heuristics are also pruned from the respective iterations of the search.
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Background

In this section we will introduce the concepts used in our implementation.

2.1 Classical Planning
Classical planning is concerned with finding a path through a state space. State spaces are

defined as follows:

Definition 2.1.1. A state space is a 6-tuple S = ⟨S,A, cost, T, s0, S⋆⟩ where S is a finite

set of states, A is a finite set of actions, cost ∈ A → R+
0 maps actions to their costs,

T ⊆ S ×A× S is the set of allowed state transitions, s0 is the initial state and S⋆ ⊆ S is a

set of goal states.

In most realistic problems the state space in question is too large to be worked on directly

as a graph or even to be entered into a computer by hand. To compactly describe planning

problem domains, planning formalisms have been developed which represent state spaces

not directly as states and edges, but as rules from which the original search space can be

generated. We consider planning tasks in the SAS+ formalism [1], borrowing the notation

from Sievers et al. [11].

Definition 2.1.2. A planning task is a 4-tuple Π = ⟨V ,O, s0, s⋆⟩, where V is a finite set of

state variables, O is a finite state of operators, s0 is the initial state and s⋆ is the goal. Each

variable v ∈ V has a finite domain D(v). A partial state is a variable assignment on a subset

of V denoted as vars(s). We write s[v] for the variable assignment to v ∈ vars(s), which must

satisfy the condition s ∈ D(v). A state s complies with partial state s′ if s[v] = s′[v] for all

v ∈ vars(s) ∩ vars(s′). A partial state s is a is a state if vars(s) = V. Each operator o ∈ O
has a precondition pre(o) and effect eff(o), which are partial states and a cost c(o) ∈ R+

0 .

An operator o is applicable in a state s if s complies with pre(o), in which case o can be

applied, resulting in the successor state s′ that complies with eff(o) and satisfies s′[v] = s[v]

for all v ̸∈ vars(eff(o)). The initial state s0 is a state; the goal s⋆ is a partial state.

A plan is a sequence o1, ..., on ∈ O of operators which are applicable, in order, to the initial

state, resulting in a state that complies with the goal. Such a plan is optimal if
∑n

i=1 c(o) is
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minimal among all plans. The objective of optimal planning is to find an optimal plan for

a planning task or prove that no plan exists.

Planning formalisms are used to separate the task of defining a problem in such a way

that a planner can understand it from the task of writing code to solve such a problem.

A planning formalism often used in practice is the planning domain definition language

(PDDL)[8]. For the purpose of testing the concepts investigated in this thesis, we use

PDDL planning problems from the Fast Downward benchmark collection, which contains

benchmark instances from International Planning Competitions.1

2.2 Heuristics
Heuristics are functions used in best-first search algorithms and even some breadth- and

depth-first searches. Let S be the set of states of a search space. The heuristic function h

is a function h : S → R+
0 ∪ {∞}, which approximates the perfect heuristic h∗ that returns

the cost of an optimal plan from a state s to some goal state. Heuristics can have different

properties, some of which are necessary for certain search algorithms to find correct solutions.

The following properties are of particular interest to us:

Definition 2.2.1. A heuristic is goal aware if h(s) = 0 for all s ∈ S⋆. A heuristic can also

be safe if h∗(s) = ∞ for all s where h(s) = ∞, admissible if h(s) ≤ h∗(s) for all s ∈ S and

consistent if h(s) ≤ cost(a) + h(s′) for all s
a−→ s′ ∈ T . [10]

All search algorithms examined in this thesis rely on heuristics and require admissible heuris-

tics to ensure they will find optimal plans. This is why all heuristics we modify in this thesis

are admissible heuristics.

2.2.1 Merge-and-Shrink Heuristic
One of the heuristics we modify in this thesis is the merge-and-shrink heuristic originally

developed by Dräger et al. [2] for model checking and adapted for classical planning by

Helmert et al. [6]. While other heuristics directly compute a cost estimate from the evaluated

state and the goal state description, the merge-and-shrink heuristic computes an abstraction

of the entire state space and calculates the true cost of the states in the abstraction.

The merge-and-shrink heuristic makes use of the synchronized product, which combines the

information of two abstract state spaces into one. The synchronized product ⊗ of two state

spaces is defined as follows:

Definition 2.2.2. For i ∈ {1, 2}, let S = ⟨Si, A, cost, T i, si0, S
i
⋆⟩ be state spaces with

equal sets of actions and costs. The synchronized product of S1 and S2, denoted by

S1 ⊗ S2, is the state space S⊗ = ⟨S⊗, A, cost, T⊗, s⊗0 , S
⊗
⋆ ⟩ with S⊗ := S1 × S2, T⊗ :=

{⟨⟨s1, s2⟩, a, ⟨t1, t2⟩⟩ | ⟨s1, a, t1⟩ ∈ T 1 ∧ ⟨s2, a, t2⟩ ∈ T 2}, s⊗0 := ⟨s10, s20⟩ and S⊗
⋆ := S1

⋆ × S2
⋆ .

Merge-and-shrink also uses abstractions which map one state space to another. A state

space abstraction α is defined as follows:

1 https://bitbucket.org/aibasel/downward-benchmarks



Background 5

Definition 2.2.3. A state space abstraction α is a surjective function α : S → S′ which

maps every state in the set of states of the original state space S to a state from the set

of states of the resultant abstract state space S′. The abstract state space Sα induced by

the abstraction α is Sα = ⟨S′, A, cost, T ′, s′0, S
′
⋆⟩ with: T ′ = {⟨α(s), a,α(t)⟩ | ⟨s, a, t⟩ ∈ T},

s′0 = α(s0) and S′
⋆ = {α(s) | s ∈ S⋆}.

When a merge-and-shrink heuristic is computed the initial step is to calculate the projections

of the original state space onto each state variable v ∈ V . A projection onto a state variable

vi is an abstraction α(s) = {vi /→ di} where di is the value of vi in the state s, which

preserves only information about a single state variable. The abstract state space used in

the resultant merge-and-shrink heuristic is generated by merging and shrinking these state

space projections until only one abstract state space remains. Two state spaces are merged

using the synchronized product. The order in which abstract state spaces are merged is

called the merge strategy and is a configurable parameter of the merge-and-shrink heuristic

construction. If the resultant size of the merge of two abstract state spaces would be too

large, a shrink operation is applied to them. A shrink operation is a state space abstraction

aiming to reduce the size of the state space while keeping as much information about the state

space as possible. The exact abstraction used in the shrink operation is called the shrink

strategy and is another parameter of the merge-and-shrink heuristic construction. Another

step during the construction is label reduction. Label reduction reduces the number of

transition labels of an abstract search space by merging similar labels.

Additionally, the abstract state spaces are pruned between merge operations. During the

merge-and-shrink heuristic construction, all states s which are not reachable from the initial

state (g(s) = ∞ where g : s → R+
0 ∪ {∞}, s ∈ S returns the cost of the path to reach s)

or are on no path to a goal state (h(s) = ∞) are removed in this step. This decreases the

size of the abstract state space, while only removing states which cannot be on an optimal

path from the initial state to a goal state. However, this means that a generated merge-

and-shrink heuristic, while it can be used like an admissible heuristic for states reachable

from the initial state, is not technically admissible, because states s with h∗(s) ̸= ∞ but

g(s) = ∞ will have h(s) = ∞.

2.2.2 Landmark Cut Heuristic
Disjunctive action landmarks [5] in a planning task are sets of actions for which every

solution must contain at least one action from each. The cost of each landmark is the cost

of the cheapest action in the set. Landmarks of a given state space can be computed by

building a justification graph.

Definition 2.2.4. A STRIPS planning task in normal form is a tuple Π = ⟨V, I,G,A⟩
where V is a finite set of propositions, I = {i} is the initial state containing only a single

proposition i ∈ V , G = {g} is the goal state containing only a single proposition g ∈ V and

A is a finite set of actions a with cost cost(a) ∈ N0, preconditions pre(a) ⊆ V , add effects

add(a) ⊆ V and delete effects del(a) ⊆ V . The delete-free version of a STRIPS planning

task Π = ⟨V, I,G,A⟩ is the task Π+ = ⟨V, I,G,A⟩ where del(a) = ∅ for all actions a ∈ A.
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A precondition choice function P : A /→ V is a function that maps every action a ∈ A to one

of its preconditions v ∈ add(a). The justification graph induced by the precondition choice

function P is a labeled, directed graph where the vertices are the variables v ∈ V and the

edges are P (a)
a−→ e for every action a ∈ A and effect e ∈ add(a). Justification graphs only

consider the delete-free representation of a planning task.

A landmark can then be computed by selecting all actions along a straight line or “cut”

across all paths between the initial node and the goal node in a justification graph.

The landmark cut heuristic (LM-cut), developed by Helmert and Domshlak [5], is defined

as follows:

Definition 2.2.5. Initialize hLM-cut(I) := 0 of the initial state I

1. Compute hmax values for all variables. Stop if hmax(G) = 0 of the goal state G.

2. Compute the justification graph for the precondition choice function that chooses

preconditions with maximal hmax value.

3. Compute a cut for which cost(L) > 0 for the corresponding landmark L.

4. Increase hLM-cut(I) by cost(L).

5. Decrease cost(a) by cost(L) for each action in the landmark a ∈ L.

6. Repeat from step 1.

hmax is an easily computed heuristic for relaxed planning graphs, the details of which will

not be explored further as they are not important to understanding this thesis.

2.3 Search Algorithms
There exists a wide variety of different search algorithms for state space exploration and

planning, many of which differ greatly from one another. However there are some structures

and components that occur quite commonly in one way or another.

One such structure is the open list. Open lists contain the search nodes a search algorithm

has yet to expand. In many cases, the open list also determines in what order these search

nodes are retrieved from it and thereby specifies the expansion order of nodes. As an

example, an open list might simply be a queue for breadth-first search algorithms or a stack

for depth-first search algorithms.

Another structure often found in search algorithms is the closed list. A closed list contains

a node for each state already expanded by the search. It is usually implemented as some

form of hash map to allow direct access to each node. This fast access allows the closed list

to not only store node information but also to be used for duplicate detection by checking

if a state already exists as an expanded search node.

A commonly used concept in graph search algorithms is node reopening, which makes use

of the previously discussed closed list. Algorithms supporting reopening not only check if a

state has already been expanded as a node, but also if the new node has a lower path cost

than the old node, in which case the old node is removed from the closed list and the new

node is inserted into the open list.
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2.3.1 A∗

One of the most famous and most widely used search algorithms is A∗ search developed by

Hart et al. [3]. It belongs to the category of best-first searches, meaning it relies on the

calculated heuristic value to determine which node will most likely lead to a goal state the

quickest and uses this to determine which node to expand next. To do this, A∗ search makes

use of a priority queue as an open list. As priority value, A∗ uses the sum of the cost of

the search node and the heuristic value of the associated state (f(n) = g(n) + h(s) where

g : n → R+
0 returns the cost of the path on which the search node n was reached). As such,

the open list of A∗ is ordered by an estimate of the cost of an optimal path from the initial

state through the considered node to the closest goal node. This also means that A∗ will

only expand nodes on the optimal path if the heuristic is perfect and f -value ties are broken

by preferring lower h-values.

Hart et al. [3] define the A∗ algorithm as follows:

1. Mark s0 as “open” and calculate f(s0).

2. Select the open node n whose f -value is smallest. Resolve ties favoring n ∈ S⋆.

3. If n ∈ S⋆, mark n “closed” and terminate the algorithm.

4. Otherwise, mark n closed and calculate the f -value of all successors. Mark all successor

nodes “open” which aren’t already marked closed. Mark any successor as open if it

was previously marked as closed and if the new f -value is lower than the f -value of

the node when it was closed. Go to step 2.

As shown by Hart et al. [3], A∗ is guaranteed to find an optimal plan or show that none exist

either when a consistent and admissible heuristic is used, or when an admissible heuristic is

used with node reopening. The authors have proven the former of these claims by proving

that the f -values of nodes expanded by A∗ are non-decreasing when a consistent and admis-

sible heuristic is used [3]. Because of this property, the order in which nodes are expanded

by A∗ resembles layers of f -depths.

2.3.2 Iterative-Deepening A∗

As a best-first search, A∗ may expand large amounts of nodes during a search, especially

when the accuracy of the heuristic is low. Because A∗ stores all nodes previously en-

countered during the search, it can consume very large amounts of memory in unfavorable

circumstances. The memory growth with solution depth d and problem branching factor b

can be as bad as O(bd) in case the heuristic is constant and the search degenerates into a

pure breadth-first search [7].

A search algorithm that avoids this memory problem is iterative deepening depth-first search

(IDDFS). IDDFS is a tree search that finds optimal plans for unit-cost problems by recur-

sively searching a state space up to a certain depth and iteratively restarting the search

with an increased maximum depth. Due to being a tree search however, IDDFS only has a

spatial complexity of O(d), because only node information for the states on the currently

investigated path are kept in memory [7]. Korf [7] has combined this approach with the

idea behind A∗ search into a new search algorithm known as iterative-deepening A∗ search
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(IDA∗). IDA∗ search works in the same way as IDDFS, except that it uses f -value bounds,

instead of depth bounds to restrict the individual iterative searches. The evaluation function

of IDA∗ is the same as the one described for A∗. As a result, every iteration the f -bound

is deepened to the lowest f -value encountered during the previous iteration which is larger

than the f -bound of that iteration [7].

Korf [7] shows that IDA∗ inherits the property of A∗ of always finding a cheapest solution

path if an admissible heuristic is used, while also gaining the spatial efficiency of IDDFS.

Furthermore, the author concludes that IDA∗ search expands the same number of nodes

during its last iteration as A∗ search, however, with a far lower maximum memory usage.

2.3.3 Breadth-First Heuristic Search (BFHS)
During state space search, the further the closest goal state is to the initial state, the

exponentially more search nodes not on the optimal path will be explored along the way.

While this is dependent on the search algorithm used, it can cause a search to fail due to

a lack of memory. Even widely used search algorithms such as A∗ suffer from this problem

when searching large state spaces. During a search of A∗, not only the search frontier in

the open list needs to be stored, but also all search nodes previously explored during the

search. This is necessary to be able to trace a path back to the initial node. To determine if

a goal exists and at what depth it is not necessary to store all previously encountered search

nodes. Ideally, only the nodes in the search frontier needs to be stored at all.

This is the consideration behind breadth-first heuristic search (BFHS) developed by Zhou

and Hansen [12]. As the name suggests, BFHS is in essence a breadth-first search. This

means it expands nodes simply in the order in which they are put into the open list. Because

of this, the expansion of nodes by BFHS can be separated into layers of nodes at different

distances from the initial node in the search graph. In short, each layer is the set of successor

nodes of the previous layer. To reduce the peak memory usage during search, the authors

show that it is possible to delete previously explored layers and still find a solution. However,

most graph searches also store all previously expanded nodes for duplicate detection. If

previously explored layers of nodes are removed from memory, it is impossible to tell if a

node has already been visited during the search. To avoid the search frontier growing much

faster in size than it normally would, Zhou and Hansen [12] show that due to the simple,

layered expansion order of BFHS, it is sufficient for undirected graph search problems to

store the previous search frontier layer as a closed list to prevent duplicate node expansion.

This concept can be seen in Figure 2.1 which shows how under the described conditions

the search frontier is separated from the already explored states in the interior of the graph

by the boundary, which is the search frontier of the previous layer. However, due to these

requirements and assumptions, BFHS, in its original form, only finds optimal plans for unit-

cost problems and only completely avoids expanding duplicates for undirected graph state

spaces.

Since it is impossible to trace back a path from the initial state to a found goal state if all

intermediate search nodes are deleted from memory, Zhou and Hansen [12] describe a divide-

and-conquer approach to solution reconstruction, which only requires one additional search
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Figure 2.1: Visualization of breadth-first search by Zhou and Hansen [12]. The set of
boundary nodes separates the search frontier from the interior of the search graph. All
nodes inside the boundary are closed and all nodes outside the boundary are open while
the boundary may contain both open and closed nodes.

node layer to be saved during the search. Using this approach BFHS can reconstruct the

solution path through recursive subsearches once a goal node and some intermediate node

on an optimal path to this goal node are known. The solution path found is reconstructed

by performing two smaller searches for each successful search. One of these searches finds a

path from the initial node to the intermediate node of the parent search, while the second

search finds a path from the intermediate node to the goal node of the parent search. When

the goal node is a direct successor of the initial node for any of these searches, the action

required to transition from the initial to the goal node is returned. In this way, all actions

required to reach the solution to the initial problem are individually found. Using this

method of recursive subsearches, only the initial node, an intermediate layer, the search

frontier and the search frontier of the previous layer need to be kept in memory at any

one time. All other nodes no longer need to be stored. However, for the solution to be

successfully reconstructed, all nodes expanded after the intermediate layer no longer need

to contain a reference to their parent node, as this node will be deleted in the next layer

anyways, but to the node in the intermediate layer on the path to this node. This allows

the algorithm to determine which node in the intermediate layer is on the optimal path to

the solution when a solution is found [12].

Because pure breadth-first search expands in all directions uniformly, which can lead to very

large search frontiers with increasing length of the optimal solution, Zhou and Hansen [12]

use pruning based on f -value in BFHS. BFHS uses the same function as A∗. This method

of pruning is reasonable, because it specifically disregards search nodes projected to be on a

path costlier than the expected optimal solution. The authors have shown that, if BFHS is

started with a pruning bound equal to the cost of the optimal path, BFHS does not expand

more nodes before finding a goal than A∗ search on the same problem [12].

Since this method of pruning only allows solutions to be found up to the specified bound,

pure BFHS cannot guarantee finding an optimal solution if one exists. Simply choosing

a very large pruning bound does not solve this problem because the solution might still

be at a higher cost and otherwise the bound might be set so much higher than the actual

optimal path cost, that no nodes are pruned. To alleviate this problem, Zhou and Hansen

[12] suggest a version of BFHS which incrementally increases the pruning bound when

no solution is found. Due to its similarity to IDA∗ search, the authors call this iterative
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deepening version of BFHS breadth-first iterative-deepening A∗ search [12].

In this thesis, we will call this iterative version iterative-deepening breadth-first heuristic

search (IDBFHS) because we also implement a version of breadth-first A∗ modified to con-

duct iterative, f -value bound searches, which we call iterative-deepening breadth-first A∗

(IDBFA∗) and which is more closely related to A∗ than IDBFHS.



3
Implementation

All search algorithms and heuristic modifications examined in this thesis were implemented

in the Fast Downward planner2 developed by Helmert [4].

3.1 Depth-Bound Merge and Shrink
We modified the merge-and-shrink construction to prune states with a higher cost than a

given bound during construction of the merge-and-shrink heuristic. We achieved this by

modifying the pruning step of the merge-and-shrink construction process. The merge-and-

shrink construction uses Dijkstra’s algorithm to determine the g- and h-value of each state in

the abstract state spaces. Because the merge-and-shrink abstraction produces an admissible

heuristic we know that the cost of any state in one of the abstracted state spaces is smaller

or equal to the cost of the equivalent state in the actual state space. Therefore, if the cost

of a state in any abstract state space is greater than the given bound, we can be sure that

the cost of the state in the problem state space is greater, which is why we can remove it

entirely from the abstraction.

To accomplish this, we modified the pruning step of merge-and-shrink to not only prune a

state s if h(s) = ∞ or g(s) = ∞ but also when h(s) + g(s) > f -bound where f -bound is the

bound to which the merge-and-shrink heuristic is generated. By pruning these states, the

size of the individual abstract state spaces is reduced, which means fewer shrink operations

are needed to stay within the merge-and-shrink abstraction size bound. Because of this,

states up to the f -bound will be more accurately represented in the final merge-and-shrink

abstraction since the pruned states do not take up any space. Another benefit to this

approach are lower construction times, because states pruned are disregarded for the rest of

the heuristic construction.

However, bounding a merge-and-shrink heuristic has the drawback that it can only be used

for states with an f -value up to this f -bound since the heuristic value for all states with

a higher f -value is undefined. Due to this limitation, depth-bound merge-and-shrink is

best used with an iterative-deepening search algorithm. Many of these algorithms de-

2 http://www.fast-downward.org



Implementation 12

termine their next bound during the search by picking min
n

(f(n)) where n is any search

node encountered and f(n) > f -bound. However, because all f -values for nodes with

g(n) + h∗(n) > f -bound have undefined h(n) when using a depth-bound merge-and-shrink

heuristic bounded to the f -bound, no new f -bound can be determined during the search. To

make depth-bound merge-and-shrink compatible with iterative-deepening search algorithms,

depth-bound merge-and-shrink storesmin
s

(f(s)) for all pruned states s with f(s) > f -bound.

Since a constructed depth-bound merge-and-shrink heuristic is only useful up to the con-

struction f -bound, iterative-deepening searches need to be modified to construct a new

depth-bound merge-and-shrink heuristic before every iteration.

3.2 Depth-Bound Landmark Cut
Because landmark cut does not generate and store the cost of all states in the state space

during initialization, but rather calculates the heuristic value of a state only when it is

needed by the search, we modified the heuristic calculation of landmark cut instead of the

initialization. We implement an additional stop condition during the first step of landmark

cut calculation. Instead of only stopping the heuristic calculation once hmax(G) = 0 for the

goal state G, the heuristic calculation is also stopped when hLM-cut(n) > f -bound for the

evaluated node n. When heuristic calculation is aborted due to violating the depth-bound,

∞ is returned instead of the calculated heuristic value.

Because of the way we bound the landmark cut heuristic, g(n) of the node n and the f -

bound need to be passed to the heuristic when evaluating hLM-cut(n). To make depth-bound

landmark cut compatible with iterative-deepening search algorithms, we store min
s

(f(s)) for

all states s where f(s) > f -bound in the heuristic object as the next possible f -bound.

3.3 Iterative-Deepening A∗

We implemented IDA∗ as described by Korf [7]. An optimization we implemented, that

was already described by Korf [7], is that we allow the initial bound to be determined by

a heuristic of choice. Using an admissible heuristic to determine the initial bound of the

search allows the search to skip all iterations up to this bound while still ensuring that any

solution found is optimal. An optimization we have implemented specifically for the use

with depth-bound merge-and-shrink is that we do not generate a new depth-bound merge-

and-shrink heuristic if no states were pruned because h(s)+ g(s) > f -bound during the last

construction, because the resulting heuristic would be the same. Furthermore, to allow the

use of our depth-bound heuristics, we modified IDA∗ so that if no goal was found during

the iteration, a new iteration is started with the bound determined by the heuristic, if a

depth-bound heuristic is used.

A major difference between our implementation of IDA∗ and the version described by Korf

[7] is our use of a closed list, duplicate detection and reopening. Because of the technical

challenges involved in generating successor states in Fast Downward without the use of a

closed list, we decided to use a closed list in our IDA∗ implementation. While this means

our IDA∗ implementation does not have a significant memory advantage over A∗, we take
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full advantage of the closed list by including duplicate detection and reopening, reducing

the search time while still guaranteeing any solution found will be optimal.

3.4 Iterative-Deepening Breadth-First A∗

As a comparison to IDA∗ we also implemented an iterative-deepening version of A∗ based on

the A∗ implementation in Fast Downward. We call this new algorithm iterative-deepening

breadth-first A∗ (IDBFA∗).

In comparison to the classical A∗ described by Hart et al. [3] IDBFA∗ conducts iterative

searches, of which each iteration is an A∗ search where all nodes with higher f -value than the

f -bound of that iteration are not inserted into the open list. When depth-bound merge-and-

shrink is used and no more states were pruned during generation of the heuristic, IDBFA∗

conducts an unbounded A∗ search.

3.5 Iterative-Deepening Breadth-First Heuristic Search
We implemented IDBFHS as described by Zhou and Hansen [12]. To be able to use IDBFHS

like normal BFHS we also implemented an option to manually specify the bound and to turn

off iterative search. Because the merge-and-shrink heuristic can only be used for the initial

state and goal description it was generated with, we construct a new merge-and-shrink

heuristic for each recursive solution-reconstruction search. Since we know the exact goal

distance in these solution-reconstruction sub-problems, we construct the new depth-bound

merge-and-shrink heuristics with the lowest possible depth-bound for best performance.



4
Evaluation

To be able to compare the implemented algorithms and heuristics fairly, we conducted

our experiments on 57 planning domains containing 1667 planning tasks from the optimal

sequential track of all International Planning Competitions up to 2014. IDBFHS was only

evaluated on a subset of these problems containing 160 planning tasks from six unit-cost

and undirected graph domains. Table 4.1 shows the 10 different configurations of algorithms

and heuristics we tested. For every problem, each algorithm configuration was run with a

time constraint of 30 minutes and a memory constraint of 2 GB. The experiments were

performed on Intel Xeon E5-2660 CPUs running at 2.2 GHz.

Algorithm Name Description

A∗ ms Standard A∗ search with merge-and-shrink heuristic.
A∗ lmcut Standard A∗ search with landmark cut heuristic.
IDA∗ ms IDA∗ search with merge-and-shrink heuristic.
IDA∗ lmcut IDA∗ search with landmark cut heuristic.
IDA∗ dbms IDA∗ search with depth-bound merge-and-shrink heuristic.
IDA∗ dblmcut IDA∗ search with depth-bound landmark cut heuristic.
IDBFA∗ dbms IDBFA∗ search with depth-bound merge-and-shrink heuristic.
IDBFA∗ dblmcut IDBFA∗ search with depth-bound landmark cut heuristic.
IDBFHS dbms IDBFHS search with depth-bound merge-and-shrink heuristic.
IDBFHS dblmcut IDBFHS search with depth-bound landmark cut heuristic.

Table 4.1: Evaluated algorithm configurations.

The parameters used for merge-and-shrink are the default Fast Downward parameters for all

algorithms evaluated with merge-and-shrink heuristics. The shrink strategy used is shrink

bisimulation [9]. The merge strategy used is DFP [11]. For label reduction, exact generalized

label reduction was used. The maximum number of states was set to 50’000, always allowing

perfect shrinking.

4.1 Summary Results
The summary of results collected is shown in Table 4.2. Bold values are the best in their

category.
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A* IDA* IDBFA*
ms lmcut ms lmcut dbms dblmcut dbms dblmcut

Coverage 745 882 725 848 721 833 728 840
Expansions 1822.21 1301.20 3939.90 3088.52 2587.65 3113.72 2389.86 3079.64
Memory 63368336 21006000 53595072 9802372 52926128 9409960 60730232 20403740
Search time 0.13 0.60 0.22 1.12 4.46 1.28 4.76 1.33
Total time 2.01 0.65 2.68 1.22 4.53 1.40 5.07 1.45

Table 4.2: Summary of experiment results.

The summary values for coverage and memory are calculated as the sum of the problem-

wise results, while the values for expansions, search time and total time are calculated

as the geometric mean over commonly solved tasks. Coverage is defined as the number of

problems solved by an algorithm, where a problem is solved if a plan is found within the time

and memory constraints. Expansions is the number of search nodes expanded during the

search. For iterative-deepening search algorithms, this includes the number of expansions

of all iterations, not only the final one. For IDBFHS this also includes the number of nodes

expanded during the solution reconstruction searches. The value for memory is the peak

memory allocated during the search. Search time is the time in seconds required to solve the

problem after the initial heuristic generation but including the construction time of depth-

bound heuristics, whereas total time is the time in seconds required for the entire run. The

summary in Table 4.2 shows the results for the entire benchmark set, which is why results

for IDBFHS are not shown.

The results show, that algorithm configurations using a landmark cut heuristic generally

show better results than those using a merge-and-shrink heuristic. This was expected,

since, as has been shown by other authors in previous work, landmark cut provides more

accurate heuristic results and requires less total time for most problems. Peak memory usage

also shows an expected advantage of landmark cut over merge-and-shrink, since merge-

and-shrink stores an abstract state space representation while landmark cut does not. In

search time, standard merge-and-shrink has a great advantage over landmark cut, since all

heuristic values for merge-and-shrink are stored in the abstract state space representation,

while landmark cut needs to calculate heuristic values during the search. The total time

taken by landmark cut configurations is much lower than for merge-and-shrink searches,

because landmark cut does not take as long to initialize. Unsurprisingly, the measured search

time for depth-bound merge-and-shrink configurations is much larger than of the unbound

equivalent, since the search time measured includes the time taken during the search to

construct new depth-bound merge-and-shrink heuristics. Of the individual algorithms, A∗

search performed the best, which was also expected since A∗ search has been shown to find

a solution faster than IDA∗ search in most cases and since it is not an iterative-deepening

search, it expands far fewer search nodes during a search. As can be seen well from the

coverage of the different configurations, IDBFA∗ search performed better than IDA∗ search

when comparing only depth-bound heuristic configurations. This is most likely the case

because A∗ search, even with the overhead of iterative deepening searches performs better

than IDA∗ search in the final iteration, since the expansion order of A∗ search in the last

f -layer can be controlled with a tie-breaking strategy, while IDA∗ search must expand nodes

in the order of the tree search.
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4.2 IDA∗

An individual comparison of the results of IDA∗ with standard merge-and-shrink against

depth-bound merge-and-shrink and standard landmark cut against depth-bound landmark

cut can be seen in table 4.3. This table includes a new attribute: the geometric mean of

the real search time. The real search time is the pure search time, disregarding time spent

constructing new depth-bound merge-and-shrink heuristics. Real search time is smaller than

search time even for configurations not using depth-bound merge-and-shrink, because search

time includes the time required for the initialization of the search algorithm, part of which

is the generation of the closed list, while real search time does not.

Merge-and-Shrink Landmark Cut
Standard Depth-bound Difference Standard Depth-bound Difference

Coverage 725 721 -4 848 833 -15
Expansions 4252.10 2790.90 -1461.2 3259.94 3286.78 26.84
Memory 62302616 61688396 -614220 12920584 12326636 -593948
Real search time 0.05 0.03 -0.01 0.68 0.72 0.04
Search time 0.24 4.62 4.38 1.20 1.37 0.17
Total time 2.79 4.69 1.9 1.30 1.49 0.19

Table 4.3: Comparison of standard against depth-bound merge-and-shrink and standard
against depth-bound landmark cut for IDA∗.

4.2.1 Merge-and-Shrink
As can be seen in Table 4.3, IDA∗ with standard merge-and-shrink was able to solve 4

more problems than IDA∗ with depth-bound merge-and-shrink. This is most likely because

IDA∗ with depth-bound merge-and-shrink takes more total time in the geometric mean and

therefore more easily violates the time constraint. The results show that IDA∗ expanded

about 34% fewer nodes in the geometric mean with depth-bound in comparison to standard

merge-and-shrink. This is quite interesting, since it shows that depth-bound merge-and-

shrink is in some cases more informative than standard merge-and-shrink. This confirms

that there is an advantage to using depth-bound merge-and-shrink over standard merge-

and-shrink. The difference in real search time also seems to support this theory, since the

geometric mean of the real search time is lower for depth-bound merge-and-shrink. The

difference in peak memory for depth-bound and standard merge-and-shrink in Table 4.3

is not particularly large. While the pruning of the merge-and-shrink abstraction might

reduce the memory requirements for very low depth-bounds, the difference in peak memory

required is probably this small because the space freed by pruning during the merge-and-

shrink abstraction process is used to make the resulting abstraction more accurate. The

geometric means of search time and total time are clearly better with standard merge-and-

shrink instead of depth-bound merge-and-shrink with IDA∗ search, which can be explained

by the overhead of constructing a new merge-and-shrink abstraction before every iteration.

A detailed plot showing the comparison of expansions between depth-bound and standard

merge-and-shrink can be seen in Figure 4.1. For the majority of problems the number of

expanded nodes is very similar between IDA∗ with standard and depth-bound merge-and-

shrink. This becomes especially clear for problems requiring large numbers of expansions

to solve. However, while there are some problems for which IDA∗ with depth-bound merge-
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and-shrink expanded more search nodes than IDA∗ with standard merge-and-shrink, for

many problems that require few expansions to solve, the opposite is the case. What this

shows is that depth-bound merge-and-shrink is only more informative for problems that do

not require many expansions to solve. This is most probably the case because depth-bound

merge-and-shrink construction only increases the accuracy of the resulting heuristic if states

in the abstract state spaces are pruned. For larger problems, where no more states can be

pruned from the depth-bound merge-and-shrink heuristic during construction, the resultant

heuristic will be identical to an unbound merge-and-shrink heuristic and therefore expand

the same number of states.
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Figure 4.1: Comparison of expansions for IDA∗ search with standard against depth-bound
merge-and-shrink
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Figure 4.2: Comparison of total time for IDA∗ search with standard against depth-bound
merge-and-shrink

A plot comparing the total time for depth-bound against standard merge-and-shrink with

IDA∗ search can be seen in Figure 4.2. As expected, the total time taken for most problems

is larger for IDA∗ with depth-bound merge-and-shrink than for IDA∗ with standard merge-
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and-shrink. This is most probably due to the large time overhead of constructing a new

merge-and-shrink heuristic before every iteration. What is interesting is that while there

are only very few problems where IDA∗ was faster with depth-bound merge-and-shrink

than with standard merge-and-shrink and IDA∗ with standard merge-and-shrink took longer

than 102 seconds, there were quite a few problems where IDA∗ was faster with depth-bound

merge-and-shrink than with standard merge-and-shrink and IDA∗ with standard merge-and-

shrink took fewer than 102 seconds. This shows that while the overhead of creating a new

merge-and-shrink abstraction every iteration results in a large overhead, for some quickly

solved problems the increased accuracy and lower construction time make up enough time

to overcome the overhead.

4.2.2 Landmark Cut
Table 4.3 shows that IDA∗ with standard landmark cut heuristic solved 15 more prob-

lems than depth-bound landmark cut. This is most likely due to the increased search

time of depth-bound landmark cut. The difference in peak memory between depth-bound

landmark cut configurations and their unbound equivalents is rather unexpected, since the

depth-bound in landmark cut is only enforced by stopping a calculation, not by pruning

an abstract state space. A possible explanation for this is that due to technical details of

the implementation of depth-bound landmark cut, the heuristic values are not cached for

searches with the depth-bound version, which would not only explain the lower peak mem-

ory, but also the minor increase in search time of depth-bound landmark cut in comparison

to standard landmark cut. Unfortunately this means that the time gained by stopping

calculation of the heuristic value early with landmark cut is not enough to negate this im-

plementation specific overhead. If there is a time gain in aborting heuristic calculation when

the calculated value is greater than a bound, it is not particularly significant.

4.3 IDBFA∗

Table 4.4 shows comparison results of A∗ with merge-and-shrink and landmark cut heuristics

against IDBFA∗ with depth-bound versions of the same heuristics.

Merge-and-Shrink Landmark Cut
A∗ IDBFA∗ Difference A∗ IDBFA∗ Difference

Coverage 745 728 -17.0 882 840 -42.0
Expansions 2572.05 3670.80 1098.75 1566.76 3715.71 2148.95
Memory 81405464 78403932 -3001532.0 21751332 21101688 -649644.0
Search time 0.17 5.67 5.5 0.74 1.66 0.92
Total time 2.36 6.03 3.67 0.80 1.80 0.99

Table 4.4: Comparison of A∗ search with standard merge-and-shrink and landmark cut
against IDBFA∗ search with depth-bound merge-and-shrink and landmark cut.

The results show that IDBFA∗ with depth-bound merge-and-shrink or landmark cut solves

fewer problems than A∗ with the equivalent unbounded heuristic. This is most likely because

of the time overhead resulting from performing iterative A∗ searches, in comparison to a

single one, which causes IDBFA∗ to violate the time constraint. The results also show that

the geometric mean of expansions for standard heuristics with A∗ search is far lower than
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the geometric mean of expansions for the equivalent depth-bound heuristic with IDBFA∗

search. This is expected, because expansions for iterative-deepening algorithms includes

the expansions during all iterations. IDBFA∗ with depth-bound merge-and-shrink becomes

an unbound A∗ search once no more states are pruned during construction of the merge-

and-shrink abstraction, while IDBFA∗ with depth-bound landmark cut continues to iterate.

Because of this, the relative difference in geometric mean of expansions of IDBFA∗ to A∗

with the equivalent unbound heuristic is greater for landmark cut than for merge-and-shrink.

Furthermore, Figure 4.3 shows that the number of expansions for most tasks is greater for

IDBFA∗ with depth-bound merge-and-shrink than A∗ with merge-and-shrink. However,

there are some tasks that require relatively low numbers of expansions with IDBFA∗, where

IDBFA∗ requires fewer expansions than A∗ despite the expansions overhead due to iterative-

deepening. This is a similar result as can be observed for IDA∗ with standard and depth-

bound merge-and-shrink and is most likely due to the increased accuracy of depth-bound

merge-and-shrink for relatively easy problems. The peak memory usage of IDBFA∗ search

with depth-bound heuristics is slightly lower than that of A∗ search with the equivalent

unbound heuristic, however not significantly. The search time and total time results for

IDBFA∗ and A∗ show a trend similar to the results for expansions.
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Figure 4.3: Comparison of expansions for A∗ search with standard merge-and-shrink
against IDBFA∗ search with depth-bound merge-and-shrink

4.4 IDBFHS
The results for the experiments of IDBFHS in comparison to A∗ on problems from six

unit-cost and undirected graph domains can be seen in Table 4.5.

Most of the results displayed in Table 4.5 are very similar to the results observed for IDBFA∗.

IDBFHS does not have as high a coverage as A∗, expands more search nodes in the geometric

mean due to iterations and solution reconstruction steps and takes longer both in search

time and total time. What is surprising, is that IDBFHS has a higher peak memory than

A∗. Since IDBFHS is designed to use as little memory as possible during a search, this is
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A∗ IDBFHS
Merge-and-Shrink Landmark Cut Merge-and-Shrink Landmark Cut

Coverage 88 82 75 80
Expansions 2184.86 2020.73 23929.42 11388.37
Memory 6320500 1032548 9927308 1518924
Search time 0.14 0.50 4.39 1.79
Total time 1.30 0.52 4.43 1.81

Table 4.5: Experiment results of A∗ with merge-and-shrink and landmark cut heuristics
and IDBFHS with depth-bound merge-and-shrink and landmark cut heuristics for
problems from six unit-cost and undirected graph domains.

Number A∗ IDBFHS
Domain of tasks Merge-and-Shrink Landmark Cut Merge-and-Shrink Landmark Cut

Blocks 24 1.95 0.13 8.46 0.30
Depot 6 10.45 3.84 59.51 10.09
Driverlog 12 1.50 0.31 4.16 1.09
Gripper 6 0.02 0.68 0.43 2.31
Logistics00 20 1.02 0.48 1.80 1.61
Logistics98 5 6.39 0.37 4.62 2.86

Total 73 1.30 0.52 4.43 1.81

Table 4.6: Total time results of A∗ with merge-and-shrink and landmark cut heuristics and
IDBFHS with depth-bound merge-and-shrink and landmark cut heuristics by domain.

rather unfortunate and probably means that, due to the involved implementation of closed

lists in Fast Downward, search node information is not correctly removed from memory in

our implementation.

A more detailed summary of total time by domain for IDFHS and A∗ search can be seen in

Table 4.6. Most domains show a clear advantage of A∗ search over BFHS. Curiously, there is

one domain where this is not the case. For the planning domain Logistics98 IDBFHS with

depth-bound merge-and-shrink achieves a lower total time than A∗ search with standard

merge-and-shrink. Since only five tasks in this domain were solved by all four algorithm

configurations this could simply be an outlier, but if it is not, this could show that the

combination of IDBFHS with depth-bound merge-and-shrink can find solutions faster than

A∗ search with merge-and-shrink for some domains.

4.5 Discussion
The experiments have shown that depth-bound heuristics tend to take longer during searches

than their unbound equivalents. This is particularly apparent for depth-bound merge-and-

shrink, where most of the time during a run is spent on generating new merge-and-shrink

heuristics, as can be seen from the comparison of real search time to search time. The

experiments also show that iterative-deepening searches with depth-bound merge-and-shrink

can reduce the number of expansions necessary to find a solution. This observation can be

attributed to the increased accuracy of depth-bound merge-and-shrink for problems where

states are still pruned from the abstract state space due to the depth-bound during heuristic

construction in the final iteration.
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Conclusion

In this chapter we summarize our findings and reach a conclusion based on our results.

We also suggest further areas of research related to the topic of this thesis which could be

explored in future work.

5.1 Results Overview
We introduced two depth-bound heuristics based on the merge-and-shrink heuristic and the

landmark cut heuristic. The strategy implemented to bound the merge-and-shrink heuristic

is based on pruning by f -value, whereas the strategy to bound landmark cut stops heuristic

calculation once an f -bound has been exceeded. We also introduced a breadth-first iterative-

deepening version of A∗ search making use of the A∗ algorithm but also using concepts of

IDA∗ search.

To test our depth-bound heuristics, we implemented three depth-bound iterative-deepening

search algorithms: iterative-deepening A∗, iterative-deepening breadth-first A∗ and iterative-

deepening breadth-first heuristic search. We have shown that in general, depth-bound

heuristics increase time required to solve a problem with iterative-deepening algorithms.

However, we have also shown that depth-bound merge-and-shrink can provide more accu-

rate heuristic values than unbound merge-and-shrink for some problems.

5.2 Future Work
The main drawback of using depth-bound merge-and-shrink to its unbound equivalent is

the large time overhead of having to generate a new heuristic every iteration of iterative-

deepening search, even for larger problems where the final heuristic might be equivalent

to an unbound merge-and-shrink heuristic. This problem could be approached in various

ways in future work. One potential solution would be to allow the algorithm to determine

at the beginning of the search whether to use depth-bound merge-and-shrink or standard

merge-and-shrink. Since depth-bound merge-and-shrink only shows an advantage over stan-

dard merge-and-shrink for problems with a low solution depth and search space complexity,

the algorithm should only choose depth-bound merge-and-shrink in those cases. A second
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approach to reducing the overhead of generating a new heuristic every iteration would be

to only increase heuristic bounds in larger steps. By increasing the depth-bound of the

heuristic by a multiple of the lowest action cost rather than just raising it to the next it-

eration depth the same heuristic could be used for several iterations, while only sacrificing

some potential accuracy during some of the iterations. However, since each new f -bound

layer could contain exponentially more search nodes than the previous, this might cause

depth-bound merge-and-shrink to lose its size and accuracy advantages for easy problems.

Both of these solution approaches could even be combined.
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