
Correlation Complexity Under Variant
Descending and Dead-End Avoiding

Heuristics
Master’s Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence Research Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Florian Pommerening

Nadine Sonderegger

nad.sonderegger@stud.unibas.ch

18-054-304

July 14, 2025

Abstract: Heuristics play a central role in classical planning by estimating the distance from a

given state to the goal, thereby guiding search effectively. A key challenge is understanding how

much information a heuristic must account for to avoid dead ends and ensure progress. This

is captured by the concept of correlation complexity, which measures how many variables must

be considered jointly. While various DDA (descending and dead-end avoiding) heuristics have

been proposed, their correlation complexities and relative strengths across planning domains

remain poorly understood. In this work, we establish a correlation complexity hierarchy among

four variants (DDA, UDDA, ∞-DDA, and PDDA) and systematically analyse their behaviour

across Blocksworld, Spanner, Logistics, and a modified Termes domain. We find that DDA, ∞-

DDA, and PDDA share the same correlation complexity in Spanner and Logistics, with UDDA

matching them in Logistics but being undefined in Spanner. In Blocksworld, ∞-DDA requires

higher correlation complexity than DDA and PDDA. In modified Termes, we show evidence of

correlation complexity 3. These findings are supported by constructing and validating potential

heuristics using Fast Downward.

https://ai.dmi.unibas.ch/

Acknowledgments

I am deeply grateful to my supervisor, Florian Pommerening, for his guidance throughout this

thesis. His expertise, thoughtful feedback, and careful criticism of my writing were incredibly

valuable. I’m especially grateful for his patience and the way he always helped me think through

problems and find a path forward when I encountered difficulties. I’m also very grateful to Prof.

Malte Helmert for giving me the opportunity to write my thesis within the Artificial Intelligence

Research Group at the University of Basel. My gratitude extends to the members of the AI

Research Group for generously taking the time to answer my questions and share their expertise

whenever I needed support. Your help was very much appreciated. Lastly, I want to express

my heartfelt appreciation to my family and friends for their constant support. Whether it was

reading through my thesis drafts, offering feedback, or just listening when I needed to talk

things through, your help means a lot to me.

Table of Contents

Acknowledgments ii

1 Introduction 1

2 Background 3

2.1 Planning Tasks . 3

2.2 Potential Heuristics . 5

2.3 Descending and Dead-End Avoiding Heuristics (DDA) 5

2.4 Landmarks . 6

3 Previous Work 7

3.1 DDA Variants . 7

3.2 Correlation Complexity . 9

4 Comparison of DDA Variants 11

4.1 UDDA vs. DDA, ∞-DDA and PDDA . 11

4.2 ∞-DDA vs. PDDA . 14

4.3 DDA vs. ∞-DDA . 15

4.4 DDA vs. PDDA . 17

4.5 Correlation Complexity Hierarchy . 18

5 Blocksworld 20

5.1 Non-Existence of UDDA . 20

5.2 Lower Bound Results . 21

5.3 Upper Bound Results . 23

5.4 Exact Correlation Complexities . 28

6 Spanner 29

6.1 Non-Existence of UDDA . 30

6.2 Lower Bound Results . 30

6.3 Upper Bound Results . 32

6.4 Exact Correlation Complexities . 35

7 Logistics 36

7.1 Lower Bound Results . 37

Table of Contents iv

7.2 Upper Bound Results . 39

7.3 Exact Correlation Complexities . 43

8 Linear Termes 44

8.1 Non-Existence of UDDA . 45

8.2 Lower Bound Results . 45

8.3 Upper Bound Results . 48

8.3.1 General Constraints . 49

8.3.2 Construction Phase . 51

8.3.3 Destruction Phase . 61

8.3.4 Linear Termes Heuristic . 61

8.4 Discussion and Extensions . 65

9 Experiments 68

10 Conclusion 71

Bibliography 73

Appendix A MiniZinc Model Code 75

Appendix B Linear Termes: Destruction Phase 77

Appendix C Linear Termes: Refined Proof Using Recursive Weights 83

1
Introduction

In many areas of computer science and mathematics, understanding the complexity of a prob-

lem can be just as important as finding a solution. Instead of aiming for fast or efficient ways

to solve a problem, we can focus on the quastion of how difficult it is to represent a solution in

classical planning. A key question, then, is: How complex must a heuristic be in order to guide

a planner towards a solution?

To explore this question, Seipp et al. [14] introduce the concept of correlation complexity, build-

ing on the framework of potential heuristics [12]. Potential heuristics estimate the cost to reach

a goal by assigning weights to features (or facts) of a given state and summing these weights.

Rather than focusing on the efficiency of finding a solution, correlation complexity quantifies

the minimal amount of information a heuristic must encode to satisfy two key properties: it

must strictly decrease along every solution path (descending) and avoid misleading the planner

into unsolvable states (dead-end avoiding). Heuristics that satisfy both properties are known

as DDA heuristics. Additionally, Seipp et al. [14] introduce simple operator-based criteria that

can be used to establish lower bounds on the correlation complexity of planning tasks.

Extending this idea, Dold and Helmert [2] introduce a new, more general approach based on

states rather than operators to detect lower bounds on correlation complexity. A central concept

in their approach is the quartet criterion, which provides a way to check whether a potential

heuristic can be represented in just two dimensions. This test looks for a special configuration

of four states, called a witnessing quartet, that demonstrates the heuristic’s dimension must

be at least 2. The quartet criterion thus offers a useful tool for understanding the minimal

complexity necessary for heuristics in planning tasks. Building on this, they further generalize

their approach to establish lower bounds for arbitrary correlation complexity, making it pos-

sible to analyse heuristics with even higher-dimensional representations. By generalizing their

approach, they extend its reach and offer enhanced insight into the correlation complexity of

heuristics in planning.

While the original definition of DDA heuristics offers valuable insights, it has notable limita-

tions: it only imposes constraints on solvable tasks. As a result, any arbitrary heuristic for an

Introduction 2

unsolvable task can still satisfy the DDA criteria. To address these limitations, several refined

variants of DDA heuristics are introduced, such as unrestricted DDA (UDDA), ∞ -DDA, and

predicate-based pruning DDA (PDDA) [6]. Each variant captures distinct characteristics of

planning domains and their solutions, making it possible to analyse how these differences im-

pact correlation complexity.

In this thesis, we investigate the hierarchy of different DDA heuristic variants (DDA, ∞-DDA,

UDDA, and PDDA) and examine their correlation complexities across Blocksworld, Spanner,

Logistics, and a modified version of Termes. Our results show that in both Spanner and Logis-

tics, the correlation complexities for DDA, ∞-DDA, and PDDA are the same. Moreover, the

Logistics domain maintains this consistency for UDDA as well, while no UDDA heuristic exists

for Spanner. In contrast, Blocksworld reveals an increase in the correlation complexity: from

2 for DDA and PDDA to 3 for ∞-DDA. For the modified Termes domain, we present evidence

indicating a correlation complexity of 3. These findings are supported through the construc-

tion of concrete potential heuristics, whose properties we validate within the Fast Downward

planning system.

The thesis is structured as follows: Chapters 2 and 3 provide the necessary background. Chap-

ter 4 introduces and establishes the hierarchy among the DDA variants. Chapters 5 to 8 offer

domain-specific analyses, and Chapter 9 summarizes our experimental results.

To enhance clarity, style, and coherence throughout the thesis, large language models were

extensively used for linguistic refinement and grammatical consistency. These models supported

language improvement through rephrasing, grammar correction, and stylistic adjustments of

text that was written independently. At no point was any technical, conceptual, or scientific

content generated by the models. All ideas, results, arguments, and interpretations presented

are entirely original. The language models served strictly as writing aids, not as sources of

content.

2
Background

This chapter provides the necessary foundation for understanding the concepts and method-

ologies that are central to this thesis. It introduces planning tasks, which serve as the basis for

automated planning; potential heuristics, a key approach for evaluating planning tasks; and the

various descending and dead-end avoiding (DDA) properties that form the focus of this work.

Finally, the chapter discusses correlation complexity, which is used to assess the difficulty of

representing solutions in classical planning and serves as the primary measure in this thesis.

2.1 Planning Tasks

Planning tasks in Artificial Intelligence involve finding a sequence of operators that transitions

an agent from an initial state to a goal state. These tasks are formally represented as search

problems in a state space, where each state corresponds to a configuration of the environment,

and operators define transitions between states. A classical SAS+ planning task [1] is typically

represented as Π = ⟨V,O, I, g⟩ with the following components:

• V is a finite set of state variables. Each state variable v ∈ V has a finite domain dom(v).

An atom is a pair ⟨v, d⟩ where v ∈ V and d ∈ dom(v). A set of atoms is called consistent

if all atoms correspond to different variables. A partial variable assignment is a consistent

set of atoms. We refer to such partial assignments as features. We write vars(f) to denote

the set of variables involved in a feature f . If vars(f) = V , then f is a state. A state s

is consistent with a partial variable assignment f if f ⊆ s. In this case, we say that the

feature f is active (or present) in s.

• O is a finite set of operators. An operator o ∈ O is given as ⟨pre(o), eff(o)⟩, where pre(o)

and eff(o) are partial variable assignments. An operator o is applicable in a state s if s is

consistent with pre(o). When an applicable operator o is applied in s, it produces a new

state, called the successor state, denoted sJoK. This successor state is derived by updating

s according to the effects eff(o), which specify changes to certain variables in s.

• I is the initial state.

Background 4

• g is the goal condition. It is a partial variable assignment. A state s satisfies the goal if

it is consistent with g. We denote the set with all states that are consistent with g by G.

It is useful to understand certain characteristics of states in the search space. For a state s,

an s-plan is a sequence of operators from s to a goal state s⋆ ∈ G, meaning the goal can be

achieved from s. Formally, an s-plan ⟨o1, . . . , on⟩ is a finite sequence of operators such that

sJo1KJo2K . . . JonK is a goal state. A state s is considered solvable if an s-plan exists and unsolvable

otherwise. A task Π is solvable if the initial state I is solvable. A state s is defined as reachable

if there exists a sequence of operators that leads from the initial state I to s, i.e., ⟨V,O, I, s⟩
is solvable. A state is referred to as an alive state if it is reachable, solvable, and not a goal state.

In classical planning, a planning domain describes a general environment in which various

planning tasks can be formulated. A planning domain defines the predicates, actions, and con-

straints that govern possible interactions but does not specify a particular initial or goal state.

Domains provide a framework for creating multiple planning tasks using domain-independent

algorithms. The Planning Domain Definition Language (PDDL), developed in the late 1990s [8],

standardized this approach by providing a common language to define planning domains and

tasks, which can then be translated into SAS+ tasks to enable compatibility with various clas-

sical planning systems.

Example 1 (Blocksworld). In the Blocksworld domain [15], a set of blocks denoted as B must

be rearranged from an initial configuration into a specified goal arrangement. Each block can

either be placed on a table or stacked on another block. Operators allow moving a block from

one block to another, from a block to the table, or from the table onto a block.

The planning task in this Blocksworld domain can be represented formally as Π = ⟨V,O, I, g⟩:

• State Variables (V):

For all A ∈ B there are the following two variables:

- posA: The location of block A, where dom(posA) = ({T} ∪ B) \ {A}, meaning that

A is either on the table or on another block B.

- clearA: Whether block A has no block on top of it, with domain dom(clearA) =

{yes,no}.

An example state could be {⟨posA, B⟩, ⟨clearA, yes⟩, ⟨posB , T ⟩, ⟨clearB ,no⟩}, meaning block

A is on B, B is on the table, A is clear and B is not.

• Operators (O):

- move-to-T(A,B) = ⟨{posA = B, clearA = yes, }, {posA := T, clearB := yes}⟩ moves

block A from on top of block B and places it on the table.

- move-to-B(A,B) = ⟨{clearA = yes, clearB = yes}, {posA := B, clearB := no}⟩ moves

block A onto block B.

• Initial State (I):

An example initial state could be {⟨posA, B⟩, ⟨posB , T ⟩, ⟨posC , T ⟩, ⟨clearA, yes⟩,

Background 5

⟨clearB ,no⟩, ⟨clearC , yes⟩}, where block A is on B, B is on the table, and C is on the

table, with A and C being clear.

• Goal Condition (g):

The goal might be {⟨posA, T ⟩, ⟨posB , C⟩, ⟨clearA, yes⟩, ⟨clearB , yes⟩}, indicating that block

A should be on the table and block B should be on C, with both A and B being clear.

Starting from I, a valid plan could involve first moving block A from B to the table using the

move-to-T(A, B) operator. Then, block B is moved onto block C using the move-to-B(B, C)

operator. This sequence defines an s-plan that transitions the initial state I to a state satisfying

the goal condition g.

2.2 Potential Heuristics

A heuristic is a function h : S → R+ that estimates the cost from a given state to the near-

est goal state. Pommerening et al. [12] introduced a new class of heuristics, namely potential

heuristics. A potential heuristic assigns a numerical weight to each feature of a planning task.

The heuristic value of a state can then be calculated from the sum of the weights of the feature

present in that state. This simple structure allows potential heuristics to be evaluated very

efficiently, making them a practical choice in many domains.

In this context, we define features as partial assignments of variables. We say that a state s has

the features F if s is consistent with F . Additionally, we use Iverson brackets [P] to represent

indicator functions. Specifically, this function takes the value 1 for variable assignments where

the statement P is true, and 0 otherwise.

Definition 1 (Potential Heuristic [12]). Let Π be a planning task, F be a set of state features

of Π, and w : F → R ∪ {∞}. The potential heuristic with features F and weight function w

maps each state s to:

hpot(s) =
∑
F∈F

w(F)[F ⊆ s]

The complexity of a potential heuristic is measured by the size of the largest conjunction used

as a feature, called its dimension. In formal terms, a potential function with features F has

dimension maxF∈F |F |.

2.3 Descending and Dead-End Avoiding Heuristics (DDA)

In complex planning tasks, search processes often encounter dead ends, states from which

reaching the goal is impossible, or states that do not significantly contribute to goal progression.

descending and dead-End avoiding (DDA) heuristics aim to address these challenges by guiding

the search towards states with lower heuristic values and avoiding paths that may lead to

unsolvable areas.

Background 6

Definition 2 (Descending Heuristic). A heuristic h is descending if, for all alive states s that

are not goal states, there exists a successor state s′ such that h(s′) < h(s).

In other words, a descending heuristic ensures that, at every step, there is at least one neigh-

bouring state with a lower heuristic value, guiding the search closer to the goal.

Definition 3 (Dead-End Avoiding Heuristic). A heuristic h avoids dead ends if every improving

successor of an alive state is solvable. Formally, for all states s ∈ S and their successors

s′ ∈ succ(s):

s is alive and h(s′) < h(s) =⇒ s′ is solvable.

This property ensures that any state transition to a lower heuristic value (i.e. an improving

successor) from an alive state will always lead to a state from which the goal remains reachable,

thereby avoiding paths that lead into dead ends.

Together, these properties define the DDA heuristic framework, introduced by Seipp et al. [14],

which guides the process towards finding a solution by focusing on states with progressively

lower heuristic values, while avoiding dead ends in complex state spaces.

2.4 Landmarks

Landmarks, first introduced by Porteous et al. [13], are facts that must be true at some point

in every valid plan. They represent necessary conditions that any solution must satisfy and can

be extended into two key types: state landmarks and action landmarks.

A state landmark is a complete state that must be reached in every plan before achieving

the goal. These serve as intermediate stages that cannot be bypassed. While the initial and

goal states are trivial examples, more complex state landmarks can be derived through domain

structure and causal analysis.

An action landmark, introduced by Zhu and Givan [16], is an action that must appear in

all valid plans. Unlike fact landmarks, which concern conditions, action landmarks identify

operations that are unavoidable for goal achievement.

3
Previous Work

3.1 DDA Variants

An interesting detail of the DDA definition is pointed out by Helmert et al. [6], namely that

it only applies constraints to solvable tasks. For unsolvable tasks, since there are no reachable

states, any heuristic can technically satisfy the DDA conditions. For example, even a constant

heuristic that immediately stalls without finding an improved successor counts as descending

and dead-end-avoiding in unsolvable tasks. This aspect reveals a potential limitation of DDA,

as it combines two different properties: the ability to solve solvable tasks by local search and

the handling of unsolvable tasks.

The following sections introduce three different variants of the DDA heuristic proposed by

Helmert et al. [6]. Each variant represents a different property of a heuristic, based on how it

deals with dead-ends in the search space.

Unrestricted DDA Heuristics (UDDA)

Unrestricted descending and dead-end avoiding (UDDA) heuristics are the simplest form of

DDA heuristics. These heuristics guarantee that the search remains goal-directed by ensuring

that every non-goal state has a successor with a lower heuristic value.

Definition 4 (UDDA heuristic). A heuristic h is UDDA if it satisfies the following condition

for all states s ∈ S (where S is the set of all states):

∀s ∈ (S \G) ∃s′ ∈ succ(s) : h(s′) < h(s)

This condition ensures that every non-goal state has a successor with a lower heuristic value,

effectively guiding the search towards the goal by continually improving the heuristic value.

Since UDDA treats all states equally and does not distinguish between solvable and unsolvable

states, it applies the descending condition universally. This approach makes UDDA a simpler

property than DDA, as it does not require the heuristic to check whether states are alive (i.e.

both reachable from the initial state and solvable).

Previous Work 8

However, this simplicity comes with a key limitation: UDDA is less powerful because it cannot

handle tasks that contain unsolvable states. If the search encounters an unsolvable area, it may

continue indefinitely, unable to determine that no solution exists. Thus, UDDA heuristics are

only effective in fully solvable state spaces.

To address this limitation, more advanced variants like ∞-DDA and PDDA introduce mecha-

nisms for identifying and avoiding unsolvable states, extending applicability to more complex

tasks.

∞-DDA Heuristics

The ∞-DDA heuristic extends UDDA by incorporating the notion of dead-end avoidance while

still allowing for descending behaviour. The primary idea behind ∞-DDA is to assign infinite

heuristic values to states that are considered dead ends. This adjustment ensures that the

search avoids these dead-end states by treating them as unreachable, while maintaining the

descent condition in solvable areas.

In the original definition of potential heuristics [12], the heuristic could not assign an infinite

value to any state. This limitation meant that dead-end states were not explicitly handled and

remained part of the search space, even though they could not contribute to goal progression.

However, this limitation was later addressed by modifying the potential heuristic definition to

allow the assignment of infinite values to dead-end states.

Definition 5 (∞-DDA heuristic). A heuristic h is ∞-DDA if it satisfies the following condi-

tions:

∀s ∈ (Sfin \G) ∃s′ ∈ succ(s) : h(s′) < h(s),

I ∈ Sfin,

where Sfin denotes the set of states with finite heuristic values. This ensures that the search

avoids dead ends while maintaining the descent condition in solvable regions.

The introduction of infinite heuristic values resolves one of the primary shortcomings of UDDA

by providing a clear mechanism to avoid dead ends, but it still relies on the heuristic’s ability to

define the alive state space accurately. However, ∞-DDA can still be limited in situations where

identifying dead ends requires more nuanced decision-making than simply assigning infinite

values.

Predicate-Based Pruning DDA Heuristics (PDDA)

Predicate-based pruning descending and dead-end avoiding (PDDA) heuristics generalize the

∞-DDA approach by introducing a predicate-based pruning mechanism for identifying dead-

end states. Unlike∞-DDA, which relies on a single potential function to assign infinite heuristic

values to dead ends, PDDA uses two distinct potential functions to separately determine finite

heuristic values and dead-end conditions.

Previous Work 9

Definition 6 (PDDA heuristic). a PDDA heuristic uses two potential functions hpot1 and

hpot2, and is defined as:

h(s) =

∞ if hpot2(s) > 0,

hpot1(s) otherwise.

Additionally, the heuristic satisfies the following properties:

∀s ∈ (Sfin \G) ∃s′ ∈ succ(s) : h(s′) < h(s),

I ∈ Sfin,

where Sfin denotes the set of states with finite heuristic values.

In this formulation, hpot1(s) is used to assign the heuristic value for non-dead-end states, while

hpot2(s) is used to determine whether a state should be considered a dead end (i.e., assigned an

infinite heuristic value). If a state s satisfies the predicate hpot2(s) > 0, it is treated as a dead

end and assigned an infinite heuristic value. Otherwise, the heuristic is derived from hpot1(s).

This predicate-based pruning approach allows for greater flexibility and accuracy in dead-end

detection, especially in tasks where dead ends are defined by complex conditions that a single

heuristic function may not capture. For instance, hpot2 can incorporate conditions specific to

the task, such as resource constraints or state properties indicating unsolvability.

By decoupling the heuristic values from dead-end detection, PDDA heuristics can adapt to

a wider range of problem domains than ∞-DDA heuristics. However, this flexibility requires

careful design of hpot2 to ensure it accurately captures meaningful dead-end conditions, making

PDDA a powerful yet sophisticated tool for planning in complex state spaces.

3.2 Correlation Complexity

To further understand the demands of a planning task, Seipp et al. [14] introduce correlation

complexity, which evaluates the minimum dimensional complexity required for a DDA heuristic

to solve a task. Based on potential heuristics, correlation complexity provides a measure of how

many features or conditions must be considered simultaneously to reliably guide the search.

Definition 7 (correlation complexity of a planning task). The correlation complexity of a

planning task Π is the minimum dimension d for which there exists a potential heuristic that

is both descending and dead-end avoiding for Π.

Intuitively, correlation complexity reflects how many state features an agent must evaluate

simultaneously to determine the best successor state. It is always bounded above by the number

of state variables, n, since, in the worst case, a potential heuristic can assign a feature with

weight h∗(s) to every state s. Because each state has |s| = n variables, this results in a heuristic

of dimension of at most n. Here, h∗(s) represents the perfect heuristic, which gives the exact

cost from state s to the goal. This ensures that the correlation complexity of any planning task

is well-defined. As long as not all reachable states are goal states, the correlation complexity is

at least 1. Seipp et al. [14] identify criteria that indicate when a planning task has a correlation

Previous Work 10

complexity of at least 2. To generalize this concept, correlation complexity has been extended

from individual tasks to entire planning domains.

Definition 8 (correlation complexity of a planning domain). The correlation complexity of

a planning domain is the highest correlation complexity among all planning tasks within the

domain. If the correlation complexities of the tasks are unbounded, the domain’s correlation

complexity is ∞.

In their analysis of several common planning domains, they found that many domains exhibit a

relatively low correlation complexity of 2. These domains, such as Spanner, Gripper, VisitAll,

and Blocksworld, can be solved with heuristics that consider only pairs of state features. This

indicates that these domains do not require highly complex heuristics to avoid local minima

and navigate towards the goal.

Witnessing Quartet

A formal tool for proving a lower bound on correlation complexity is introduced by Dold and

Helmert [2] through the concept of a witnessing quartet. This construction captures specific in-

teractions among variables that demonstrate the necessity of at least two-dimensional potential

heuristics.

Definition 9 (Witnessing Quartet [2]). Let Π = ⟨V,O, I, g⟩ be a planning task and h a heuristic

for Π. A pair ⟨[a, b, c, d], [W,M]⟩ is a witnessing quartet for h if a, b, c, d are states in Π, and

{W,M} is a partition of the variables V , such that:

h(a) > h(b), aW = bW , aM = dM ,

h(c) ≥ h(d), cW = dW , bM = cM .

The witnessing quartet provides a structural pattern that potential heuristics must respect to

remain consistent and dead-end avoiding. If a heuristic assigns values to a set of states in a

way that forms a witnessing quartet, this immediately implies a lower bound on the heuristic’s

dimensionality.

Theorem 1 (Quartet Criterion [2]). Let Π be a planning task, and let h be a potential heuristic

defined over Π. If there exists a witnessing quartet for h, then dim(h) ≥ 2.

This result links directly to correlation complexity by certifying that certain planning tasks

cannot be solved using heuristics of dimension 1. The witnessing quartet thus acts as a diag-

nostic tool for identifying minimum heuristic complexity, and supports the broader theoretical

foundations of correlation complexity.

Building on previous work, we examine how the correlation complexity varies under different

DDA heuristics, specifically UDDA, ∞-DDA, and PDDA. To formalize this, we introduce a new

notation: when referring to the DDA variant correlation complexity, we mean the correlation

complexity evaluated under that specific DDA heuristic.

4
Comparison of DDA Variants

In this chapter, we focus on comparing the original DDA definition, the unrestricted DDA

(UDDA), the ∞-DDA, and the predicate-based pruning DDA (PDDA). While these variants

were introduced in Section 3.1, our focus here is on understanding how their properties influ-

ence one another, particularly in terms of different correlation complexity. By analysing these

differences, we gain insights into how each heuristic interacts with the structure of the planning

problem.

4.1 UDDA vs. DDA, ∞-DDA and PDDA

A first result in this comparison is that UDDA heuristics always satisfy the conditions of other

DDA variants, meaning that UDDA heuristics can be transformed into DDA, ∞-DDA, and

PDDA heuristics.

Lemmas 1. Every UDDA heuristic can be transformed into a DDA, ∞-DDA and PDDA

heuristic.

Proof. Let Π be a planning task and let h be a UDDA heuristic. By definition of UDDA

(Definition 4), the heuristic h ensures that for every non-goal state s, there exists a successor

state s′ such that h(s′) < h(s).

• UDDA implies DDA:

Since every non-goal state has a successor with a strictly lower heuristic value, it follows

that every alive state (i.e., a state that belongs to a path leading to a goal) also has such

a successor. This property directly satisfies the definition of a DDA heuristic, implying

that h is a DDA heuristic.

• UDDA implies ∞-DDA:

Because h provides a strictly decreasing sequence of heuristic values along at least one

path to a goal from every state, it guarantees that all states are guided towards a solution.

Consequently, no state requires an infinite heuristic value to prevent dead ends, meaning

that h is also an ∞-DDA heuristic.

Comparison of DDA Variants 12

• UDDA implies PDDA:

To transform h into a PDDA heuristic, we define hpot1 = h and set the potential function

hpot2 to a constant negative value (e.g., hpot2(s) = −1 for all states s). This construction

ensures that h satisfies the requirements of a PDDA heuristic.

Thus, every UDDA heuristic can be transformed into a DDA,∞-DDA, and PDDA heuristic.

Therefore, in cases where UDDA heuristics exist, the DDA, ∞-DDA, and PDDA correlation

complexity is always upper bounded by the UDDA correlation complexity. This is because ev-

ery UDDA heuristic satisfies the conditions of DDA, ∞-DDA, and PDDA (as shown in Lemma

1), meaning that any heuristic from these variants can be derived from a UDDA heuristic.

To further illustrate the relationship between the correlation complexities of the different DDA

variants, we present an example using a modified Gray code [4]. The Gray code is a well-known

encoding scheme where consecutive numbers differ by only one bit. This example will show

how the correlation complexities of DDA, ∞-DDA, and PDDA heuristics can be lower than

that of a UDDA heuristic.

Lemmas 2. There are tasks where the DDA, ∞-DDA, and PDDA correlation complexities are

lower than the UDDA correlation complexity.

Proof. We modify the Gray code [4] example used by Seipp et al. [14]. The Gray code graph

represents a systematic way of encoding binary sequences such that consecutive numbers differ

by only one bit, making it a useful structure for analysing correlation complexities.

000

001

010

011

110

111

101

100

Figure 4.1: State space representation of a
planning task using a modified Gray code.
The task consists of three binary variables,
v1, v2, and v3. Each node, labelled xyz, rep-
resents the state ⟨v1, x⟩, ⟨v2, y⟩, ⟨v3, z⟩.
Directed edges indicate operators that have
three preconditions and one effect. The ini-
tial state is 000, and the goal state is 100.

Consider the state space in Figure 4.1, where each node represents a binary string of length

three, and directed edges indicate valid state transitions. On the left, we display heuristic

values within the nodes, while on the right, we define weight functions for different heuristics:

UDDA: Applying Theorem 5 from Seipp et al. [14], we observe that whenever a planning

task contains critical operators that are inverses of each other, its correlation complexity must

be at least 2. In the modified Gray code graph, the operators responsible for flipping the bit

values of v2 create such inverse relationships, thereby establishing the lower bound for UDDA.

The weight function for a UDDA heuristic with dimension 2 is defined as follows:

Comparison of DDA Variants 13

3

6

5

4

3

2

1

0

w({⟨v1, 0⟩}) = 3

w({⟨v1, 1⟩ ⟨v2, 1⟩}) = 2

w({⟨v1, 0⟩ ⟨v3, 1⟩}) = 2

w({⟨v2, 0⟩ ⟨v3, 1⟩}) = 1

w({⟨v2, 1⟩ ⟨v3, 0⟩}) = 1

DDA: Since DDA only requires an improved successor for all alive states, it can assign weights

based on a simple condition. Specifically, it assigns a weight of 1 when v1 = 0 and a weight of

0 otherwise. This results in a straightforward evaluation with a DDA correlation complexity of

1. The weight function is:

1

1

1

1

0

0

0

0

w({⟨v1, 0⟩}) = 1

We cannot directly apply this heuristic to ∞-DDA and PDDA. Both variants require a strictly

improving successor for every state with a finite heuristic value. Under this heuristic, state 001

has a heuristic value of 1, implying that its successor must have a lower value. However, this

would result in a DDA correlation complexity of 2, as seen in UDDA. To address this, we define

new heuristics that assign infinity to specific states.

∞-DDA: The ∞-DDA heuristic assigns infinite weights to the second and third variables

when they are set to 1, while maintaining the same weights as the DDA heuristic for the first

variable. This also leads to a ∞-DDA correlation complexity of 1. The weight function is:

1

∞

∞

∞

∞

∞

∞

0

w({⟨v2, 1⟩}) = ∞
w({⟨v3, 1⟩}) = ∞
w({⟨v1, 0⟩}) = 1

PDDA: The PDDA heuristic assigns positive weights to variables v2 and v3 when they are

1, using the potential function hpot2, while maintaining the same weights for hpot1 as the DDA

heuristic. This also results in a PDDA correlation complexity of 1. The weight functions are:

Comparison of DDA Variants 14

1

∞

∞

∞

∞

∞

∞

0

for hpot2 : w2({⟨v2, 1⟩}) = 1

w2({⟨v3, 1⟩}) = 1

for hpot1 : w1({⟨v1, 0⟩}) = 1

In summary, the DDA, ∞-DDA, and PDDA correlation complexity maintains 1, whereas the

UDDA correlation complexity is 2 due to dependencies between variable pairs.

4.2 ∞-DDA vs. PDDA

Another key result in this comparison is that ∞-DDA heuristics can always be transformed

into a PDDA heuristic.

Lemmas 3. Every ∞-DDA heuristic can be transformed into a PDDA heuristic.

Proof. As noted by Helmert et al. [6], the predicate-based pruning DDA (PDDA) heuristic is a

generalization of the ∞-DDA heuristic. In this proof, we show that any ∞-DDA heuristic can

indeed be transformed into a PDDA heuristic.

An ∞-DDA heuristic is defined by a weight function w∞ : F → R ∪ {∞}, where:

- Features assigned a finite weight, i.e., w∞(f) ∈ R, contribute to the heuristic value as

usual.

- Features assigned an infinite weight, i.e., w∞(f) = ∞, define dead-end states where the

heuristic value must be infinite.

To transform this into a PDDA heuristic, we construct two potential heuristics, hpot1 and hpot2,

with corresponding weight functions w1, w2 : F → R, as follows:

Handling Dead-End Features: Let F∞ be the set of features assigned an infinite weight

in the ∞-DDA heuristic, i.e., F∞ = {f ∈ F | w∞(f) = ∞}.
All features f ∈ F∞ that were assigned an infinite weight in the ∞-DDA heuristic are trans-

ferred to the second potential heuristic, hpot2. Instead of assigning infinity, we assign a constant

c > 0:

w2(f) = c for all f : w∞(f) = ∞.

This ensures that any state containing such a feature still evaluates to infinity in the PDDA

framework.

Handling Non-Dead-End Features: The remaining features, which had finite weights in

the ∞-DDA heuristic, are retained in the first potential heuristic, hpot1, with their original

weights:

w1(f) = w∞(f) for all f : w∞(f) ∈ R.

Comparison of DDA Variants 15

To complete the proof, we show that the resulting PDDA heuristic correctly combines hpot1

and hpot2 to preserve the ∞-DDA heuristic’s behaviour. A PDDA heuristic uses two potential

functions hpot1 and hpot2, and is defined as:

h(s) =

∞ if hpot2(s) > 0,

hpot1(s) otherwise.

This ensures that the states that were assigned an infinite heuristic value in the original ∞-

DDA heuristic (due to the features in F∞) will still evaluate to infinity, while all other states

will retain the heuristic values as determined by hpot1.

Therefore, the transformation preserves the heuristic values and satisfies the PDDA properties,

proving that every ∞-DDA heuristic can be expressed as a PDDA heuristic.

As a result, the PDDA correlation complexity is always upper bounded by the ∞-DDA corre-

lation complexity. This is because every ∞-DDA heuristic can be transformed into a PDDA

heuristic (as shown in Lemma 3), meaning that a PDDA heuristic can be derived from a∞-DDA

heuristic. Thus, the PDDA correlation complexity heuristics cannot exceed the ∞-DDA corre-

lation complexity.

To further illustrate the relationship between the ∞-DDA and PDDA correlation complexity,

we present an example in Figure 4.2. It will show how the PDDA correlation complexity can

be lower than the ∞-DDA correlation complexity.

Lemmas 4. There are tasks where the PDDA correlation complexity is lower than the ∞-DDA

correlation complexity.

Proof. Consider the Blocksworld domain, which will be formally introduced in Chapter 5. As

we prove in Theorem 3, the ∞-DDA correlation complexity in this domain is 3. In contrast,

Theorem 4 demonstrates that the PDDA correlation complexity is only 2. This establishes

that, for certain tasks, the PDDA correlation complexity can be strictly lower than that of

∞-DDA.

4.3 DDA vs. ∞-DDA

When comparing DDA and ∞-DDA, we observe that neither can be universally transformed

into the other. In other words, for certain problems, the DDA correlation complexity is higher

than the ∞-DDA correlation complexity, while for others, the opposite holds. The following

lemmas illustrate this contrast.

Lemmas 5. There are tasks where the DDA correlation complexity is lower than the ∞-DDA

correlation complexity.

Proof. Consider the Blocksworld domain, which will be formally introduced in Chapter 5. Seipp

et al. [14] establish that the DDA correlation complexity for Blocksworld is 2. However, as we

will prove in Theorem 3, the∞-DDA correlation complexity in this domain is 3. This shows that

Comparison of DDA Variants 16

the DDA correlation complexity can be strictly lower than the ∞-DDA correlation complexity

for certain tasks.

Figure 4.2: State space representation of a planning task in which the agent receives
a coupon at the start and must decide whether to use it. Using the coupon leads to a
Blocksworld subproblem that must be solved, while discarding it allows the agent to
reach the goal directly. This example illustrates the concept for two blocks, but the
approach generalizes to an arbitrary number of blocks.

Lemmas 6. There are tasks where the ∞-DDA correlation complexity is lower than the DDA

correlation complexity.

Proof. Consider the planning task represented in Figure 4.2. The state space contains a de-

cision point where the agent chooses either to use a coupon, forcing it to solve a Blocksworld

subproblem (as described in Example 1), or to discard the coupon and transition directly to

the goal. This task extends Blocksworld by introducing a new variable, coupon, which is set

to no in all states except the initial one, where it is set to yes. The initial state is the goal

configuration of the Blocksworld task, but with the coupon present. Effectively, this modifi-

cation doubles the Blocksworld problem, as the coupon variable can take two values, but only

the initial state has the coupon set to yes. In all other states, the coupon is no, meaning the

variable can be treated as a constant during heuristic evaluation. Consequently, the addition of

this variable does not affect the DDA correlation complexity. Thus, it remains unchanged from

the original Blocksworld problem. Seipp et al. [14] show that the DDA correlation complexity

for Blocksworld is 2, and this result directly carries over to the extended task.

In contrast, an ∞-DDA heuristic ensures that the only possible action is to discard the coupon

and reach the goal. To achieve this, we assign an infinite weight to all states in which a block

has any variable assigned differently than in the initial state, except for the coupon. This

enforces that the transition into the Blocksworld subproblem is impossible, leaving discarding

the coupon as the only viable option. Formally, we define the weight function as follows:

w({⟨posX , Y ⟩}) = ∞ for all ⟨posX , Y ⟩ /∈ I

w({⟨clearX , Z⟩}) = ∞ for all ⟨clearX , Z⟩ /∈ I

w({⟨coupon, yes⟩}) = 1

Comparison of DDA Variants 17

With this weighting scheme, only the initial and goal states are assigned finite weights. Conse-

quently, the only operator that remains applicable without incurring an infinite cost is discard-

ing the coupon, which directly leads to the goal. As a result, the heuristic avoids evaluating

the internal structure of the Blocksworld subproblem, establishing an ∞-DDA correlation com-

plexity of 1.

4.4 DDA vs. PDDA

When comparing DDA and PDDA, we observe that neither can be universally transformed

into the other. In other words, for certain problems, the DDA correlation complexity is higher

than the PDDA correlation complexity, while for others, the opposite holds. The following two

lemmas illustrate this contrast.

Lemmas 7. There are tasks where the PDDA correlation complexity is lower than the DDA

correlation complexity.

Proof. Consider the planning task represented in Figure 4.2. As shown in Lemma 6, the DDA

correlation complexity of the planning task is 2 while the ∞-DDA correlation complexity for the

same task is 1. By Lemma 3, we can transform the ∞-DDA heuristic into a PDDA heuristic,

thereby establishing a PDDA correlation complexity of 1.

The previous lemma demonstrates that, in some cases, PDDA heuristics can achieve lower cor-

relation complexity than DDA heuristics. However, the relationship between DDA and PDDA

correlation complexities is not one-sided. In the following lemma, we present a complementary

result: there are planning tasks where DDA heuristics require strictly lower correlation com-

plexity than PDDA heuristics.

011

000 001 010

110111101

100

Figure 4.3: State space representation of a
planning task consisting of three binary vari-
ables, v1, v2, and v3. Each node, labelled xyz,
represents the state ⟨v1, x⟩, ⟨v2, y⟩, ⟨v3, z⟩.
Directed edges indicate operators. The initial
state is 011, and the goal state is 100.

Lemmas 8. There are tasks where the DDA correlation complexity is lower than the PDDA

correlation complexity.

Proof. Consider the planning task illustrated in Figure 4.3. Define a heuristic h based on the

following weight function:

w({⟨v1, 0⟩} = 1.

This heuristic satisfies the DDA property. Specifically, since the only two alive states in this

task are the initial state and the goal state, and the heuristic is descending along the path

Comparison of DDA Variants 18

between them, it is trivially DDA. Hence, the DDA correlation complexity of this task is 1.

We now show that the PDDA correlation complexity of the same task is at least 2, using the

witnessing quartet method (see Definition 9). Assume for contradiction that there exists a 1-

dimensional potential function hpot (defined as in Definition 6) satisfying the PDDA property.

Consider the following four states (as shown in Figure 4.3):

s1 : {⟨v1, 0⟩, ⟨v2, 1⟩, ⟨v3, 1⟩} s2 : {⟨v1, 1⟩, ⟨v2, 0⟩, ⟨v3, 0⟩}

s3 : {⟨v1, 0⟩, ⟨v2, 1⟩, ⟨v3, 0⟩} s4 : {⟨v1, 1⟩, ⟨v2, 0⟩, ⟨v3, 1⟩}

The initial state s1 and the goal state s2 are both solvable, so their heuristic values for hpot2

must be non-positive: hpot2(s1) ≤ 0 and hpot2(s2) ≤ 0. In contrast, states s3 and s4 are

clearly unsolvable, which implies that their heuristic values for hpot2 must be strictly positive:

hpot2(s3) > 0 and hpot2(s4) > 0.

We now define the variable partition {W,M} as follows:

W = {v1, v2}, M = {v3}.

We claim that ⟨[s4, s2, s3, s1], [W,M]⟩ forms a witnessing quartet for hpot2 as per Definition 9.

We verify the conditions:

- hpot2(s4) > hpot2(s2): State s4 is unsolvable, while s2 is a goal state.

- sW4 = sW2 : Both share the same assignments on v1 = 1 and v2 = 0.

- sM4 = sM1 : Both have v3 = 1.

- hpot2(s3) ≥ hpot2(s1): State s3 is unsolvable, while s1 is the initial state.

- sW3 = sW1 : Both have v1 = 0 and v2 = 1.

- sM3 = sM2 : Both have v3 = 0.

All conditions are satisfied, so this is indeed a valid witnessing quartet. By Theorem 1, the

existence of such a quartet implies that the potential function hpot2 must be of dimension at

least 2. This contradicts the assumption that a 1-dimensional PDDA heuristic exists.

Therefore, the PDDA correlation complexity of this task is at least 2, while the DDA correlation

complexity is 1.

4.5 Correlation Complexity Hierarchy

In this section, we analyse the hierarchical and practical relationships among the four principal

variants of the DDA heuristic: UDDA, DDA, ∞-DDA, and PDDA.

The hierarchical relationships among the four heuristics are shown in Figure 4.4, where each

edge labelled X ≥ Y indicates that the correlation complexity of X is always at least that of Y .

Comparison of DDA Variants 19

UDDA

DDA∞-DDA

PDDA

≥≤≤

≶

≶

≤

Figure 4.4: Hierarchy of DDA heuristic variants. An edge labelled X ≥ Y
indicates that the correlation complexity of X is always greater than or
equal to that of Y . An edge labelled X ≶ Y indicates that the correlation
complexities of X and Y are incomparable, neither consistently dominates
the other.

Edges labelled X ≶ Y indicate that the correlation complexities of X and Y are incomparable:

their relative performance varies depending on the problem instance.

Among all variants, UDDA is the most general. As established in Lemma 1, every UDDA

heuristic can be transformed into a DDA, ∞-DDA, or PDDA heuristic. This implies that the

correlation complexity of any of these specialized forms is always upper-bounded by that of

UDDA.

Through concrete examples, such as the modified Gray code, we demonstrated that DDA,

∞-DDA, and PDDA can, in certain planning tasks, yield strictly lower correlation complexity

than UDDA (Lemma 2).

Furthermore, every∞-DDA heuristic can be reduced to an equivalent PDDA heuristic (Lemma 3),

making PDDA a more general representation. Consequently, the correlation complexity of

PDDA is always upper-bounded by that of ∞-DDA. Nonetheless, there are problem instances

where PDDA achieves strictly lower correlation complexity (Lemma 4).

In contrast, DDA and ∞-DDA are not mutually reducible. Neither formulation can be uni-

versally transformed into the other, highlighting a structural divergence between them. Their

relative correlation complexities depend on the specific instance: Lemma 5 and 6 show that

either heuristic can yield lower complexity than the other, depending on the specific planning

scenario. A similar incomparability holds between DDA and PDDA (Lemma 7 and 8).

5
Blocksworld

As outlined in Example 1 of Chapter 2, the objective in the Blocksworld domain is to rearrange

a set of blocks B from an initial configuration into a goal configuration that specifies every

variable assignment. Therefore, this goal configuration corresponds to a single, unique goal

state G. The domain is modelled using state variables that represent the position of each block

(posX) and whether the top of each block is clear (clearX), for all X ∈ B. Both the initial and

goal states are structurally valid, satisfying the following constraints: no block is positioned on

itself, no two distinct blocks are positioned on the same block simultaneously, and a block is

clear if and only if no other block is positioned on top of it, with the opposite holding for a

block that is not clear. Operators in the domain define actions that move a block either from

one block onto another or from a block onto a table.

Seipp et al. [14] introduce a DDA heuristic for the Blocksworld domain and show that its cor-

relation complexity is 2. In this chapter, we extend their work by analysing three additional

DDA variants: the UDDA, the ∞-DDA and the PDDA heuristic. In the following subsec-

tions, we prove that UDDA heuristics for Blocksworld do not exist, that the PDDA correlation

complexity is 2, while the ∞-DDA correlation complexity is 3.

5.1 Non-Existence of UDDA

We now show that no heuristic can satisfy the UDDA property in the Blocksworld domain.

Theorem 2. There exists no UDDA heuristic for Blocksworld.

Proof. Consider a Blocksworld planning task Π with two blocks, A and B. Let s be a state in

which block A is on block B, and simultaneously, block B is on block A. Furthermore, assume

that neither block is clear. This configuration creates a cycle in which no block can be moved.

As a result, no action is applicable in s. Therefore, s is a dead-end (it has no successors).

Although s is unreachable from the initial state, it is still part of the state space. Since a

UDDA heuristic requires that any non-goal state must allow progress towards the goal, the

existence of this unsolvable state s contradicts this requirement. Hence, no heuristic function

Blocksworld 21

can satisfy the UDDA property in Blocksworld, proving that a UDDA heuristic does not exist

for this domain.

5.2 Lower Bound Results

In this section, we establish lower bounds on the correlation complexity of Blocksworld for the

PDDA and ∞-DDA heuristic variants.

Lemmas 9. The PDDA correlation complexity of Blocksworld is at least 2.

Proof. Assume for contradiction that the PDDA correlation complexity is less than 2. Then

there exists a one-dimensional potential heuristic hpot satisfying the PDDA properties.

Consider a Blocksworld task with four blocks. Initially, A is on B, B on C, and C on D. The

goal is for A to be on B, B on D, and D on C. To achieve this goal, any valid plan must

involve first removing A from B (placing it on the table), and later placing A back onto B.

These two actions, placing A from B onto the table and placing A from the table back onto

B, are action landmarks. They are unavoidable and occur in every valid plan that solves the

task. Since PDDA requires that every finite state has a successor state with a strictly lower

heuristic value, all actions that must appear in every valid plan, i.e. action landmarks, must

cause a decrease in the heuristic when applied.

Consider the first action: picking up A from B. This changes the state as follows: posA

transitions from B to T (table), and clearB from no to yes. Let s be the state before, and s′

the state after the action. Then the PDDA property implies:

h(s′)− h(s) = w({⟨posA,T⟩}) + w({⟨clearB , yes⟩})− w({⟨posA,B⟩})− w({⟨clearB ,no⟩}) < 0

⇒ w({⟨posA,T⟩}) + w({⟨clearB , yes⟩}) < w({⟨posA,B⟩}) + w({⟨clearB ,no⟩}).

Now consider the later landmark action: placing A back on B. This reverses the variable

changes: posA goes from T to B and clearB from yes to no. Applying the same reasoning:

h(s′)− h(s) = w({⟨posA,B⟩}) + w({⟨clearB ,no⟩})− w({⟨posA,T⟩})− w({⟨clearB , yes⟩}) < 0

⇒ w({⟨posA,B⟩}) + w({⟨clearB ,no⟩}) < w({⟨posA,T⟩}) + w({⟨clearB , yes⟩}).

Combining both inequalities leads to a contradiction:

w({⟨posA, B⟩}) + w({⟨clearB ,no⟩}) < w({⟨posA, T ⟩}) + w({⟨clearB , yes⟩})

< w({⟨posA, B⟩}) + w({⟨clearB ,no⟩}).

Hence, no one-dimensional PDDA potential heuristic can exist for this task. The PDDA cor-

relation complexity of Blocksworld is therefore at least 2.

By the structural relationship summarized in Figure 4.4, the ∞-DDA correlation complexity is

bounded below by the PDDA correlation complexity. Since the latter is at least 2, we obtain

the following immediate consequence:

Blocksworld 22

Corollary 9.1. The ∞-DDA correlation complexity of Blocksworld is at least 2.

We now strengthen this result by showing that even 2-dimensional heuristics are insufficient

under ∞-DDA constraints. This yields the following lemma:

Lemmas 10. The ∞-DDA correlation complexity of Blocksworld is at least 3.

Proof. By Corollary 9.1, the ∞-DDA correlation complexity of Blocksworld is at least 2. As-

sume for contradiction that it is exactly 2. Then there exists a heuristic h of dimension 2 that

satisfies the ∞-DDA properties.

(a) Initial state I (b) Goal state G (c) State landmark s (d) Unsolvable state s′

Figure 5.1: Four example states from a Blocksworld task Π with three blocks. If the
top of a block is shown with a dashed outline, it indicates that the block is not clear.

Consider a Blocksworld planning task Π with three blocks A, B, and C as depicted in Figure 5.1.

The initial state is

I = {⟨posA,T⟩, ⟨posB ,A⟩, ⟨posC ,T⟩, ⟨clearA,no⟩, ⟨clearB , yes⟩, ⟨clearC , yes⟩},

and the goal state is

G = {⟨posA,T⟩, ⟨posB ,T⟩, ⟨posC ,A⟩, ⟨clearA,no⟩, ⟨clearB , yes⟩, ⟨clearC , yes⟩}.

To achieve the goal, block B must first be moved to the table to clear block A, allowing block

C to be placed on top of A. Therefore, the following state s is a state landmark in this task:

s = {⟨posA,T⟩, ⟨posB ,T⟩, ⟨posC ,T⟩, ⟨clearA, yes⟩, ⟨clearB , yes⟩, ⟨clearC , yes⟩}.

Now consider the following state:

s′ = {⟨posA,T⟩, ⟨posB ,T⟩, ⟨posC ,T⟩, ⟨clearA,no⟩, ⟨clearB , yes⟩, ⟨clearC , yes⟩}.

In this state s′, all blocks are on the table, but A is not clear. Since placing C on A requires

A to be clear, and there is no block on A that could be removed, the goal is unreachable from

this state. Therefore, s′ must be assigned an infinite heuristic value.

To satisfy the ∞-DDA condition at dimension 2, some singleton atom or pair of atoms present

in s′ must explain this infinite cost. There are 6 variables in s′, giving 6 singleton atoms and(
6
2

)
= 15 pairs, a total of 21 features. As shown in Table 5.1, every singleton or pairwise

features present in s′ also appears in at least one of the following: the initial state I, the goal

state G, or the state s. Since each of these features must therefore have finite heuristic, no 1-

or 2-dimensional feature can explain the infinite cost of s′. This contradicts the assumption

that a 2-dimensional ∞-DDA heuristic exists. Hence, the ∞-DDA correlation complexity of

Blocksworld must be at least 3.

Blocksworld 23

Feature Initial (I) Goal (G) State s

⟨posA,T⟩ ✓ ✓ ✓
⟨posC ,T⟩ ✓ ✕ ✓
⟨clearA,no⟩ ✓ ✓ ✕
⟨clearB , yes⟩ ✓ ✓ ✓
⟨clearC , yes⟩ ✓ ✓ ✓
⟨posB ,T⟩ ✕ ✓ ✓
{⟨clearB , yes⟩, ⟨clearC , yes⟩} ✓ ✓ ✓
{⟨clearB , yes⟩, ⟨clearA,no⟩} ✓ ✓ ✕
{⟨clearC , yes⟩, ⟨clearA,no⟩} ✓ ✓ ✕
{⟨clearB , yes⟩, ⟨posA,T⟩} ✓ ✓ ✓
{⟨clearC , yes⟩, ⟨posA,T⟩} ✓ ✓ ✓
{⟨clearA,no⟩, ⟨posA,T⟩} ✓ ✓ ✕
{⟨clearA,no⟩, ⟨posC ,T⟩} ✓ ✕ ✕
{⟨posA,T⟩, ⟨posC ,T⟩} ✓ ✕ ✓
{⟨clearC , yes⟩, ⟨posC ,T⟩} ✓ ✕ ✓
{⟨clearB , yes⟩, ⟨posC ,T⟩} ✓ ✕ ✓
{⟨clearA,no⟩, ⟨posB ,T⟩} ✕ ✓ ✕
{⟨posA,T⟩, ⟨posB ,T⟩} ✕ ✓ ✓
{⟨clearB , yes⟩, ⟨posB ,T⟩} ✕ ✓ ✓
{⟨clearC , yes⟩, ⟨posB ,T⟩} ✕ ✓ ✓
{⟨posB ,T⟩, ⟨posC ,T⟩} ✕ ✕ ✓

Table 5.1: The 21 singleton and pairwise features present in state s′, along with their
presence in the initial state (I), goal state (G), and state s. A checkmark (✓) indicates
the feature appears in the corresponding state, a cross (✕) indicates it does not.

5.3 Upper Bound Results

For both the ∞-DDA and PDDA heuristics, assigning infinite values to unsolvable states is

essential. Let B denote the set of blocks in a task. We identify two types of problematic

features that can make a state s unsolvable:

(i) Incorrectly marked block as not clear:

A block X is marked as not clear (i.e., ⟨clearX ,no⟩ ∈ s), yet no other block is positioned

on top of it. In this case, block X will remain not clear indefinitely, since no operator can

change its state. This becomes a problem if the goal requires placing another block on X,

which would require it to be clear. Formally:

⟨clearX ,no⟩ ∈ s and for all Y ∈ B : s(posY) ̸= X

(ii) Cyclic dependency of blocks:

A cycle exists in which each block is stacked on another block in the cycle, and none

of the blocks are on the table. Additionally, all blocks in the cycle are not clear. This

configuration is unsolvable because no block in the cycle can be moved. Formally:

{⟨posY1
, Y2⟩, ⟨posY2

, Y3⟩, . . . , ⟨posYn
, Y1⟩} ∪ {⟨clearYi ,no⟩ | 1 ≤ i ≤ n} ⊆ s

where Y1, Y2, . . . , Yn ∈ B are distinct blocks and none of them is positioned on the table.

Blocksworld 24

Identifying unsolvable states and assigning them a heuristic value of infinity is crucial, as the

∞-DDA and PDDA properties require that every state with a finite heuristic value has at least

one successor with a strictly lower value. If an unsolvable state were given a finite value, it could

begin a descending chain. However, since no state in this chain can reach a goal, the sequence

must eventually reach a state with no successor or only successors with higher heuristic values,

violating the ∞-DDA and PDDA properties.

Before proceeding, we introduce some terminology and notation [14] that will be used in both

the PDDA and ∞-DDA constructions. Let B be the set of blocks in a given Blocksworld task.

For each block A ∈ B, let GA denote its goal position, i.e. the position of A in the goal state

(either another block or the table). A block A is said to be correctly placed in a state s if

s(posA) = GA, and misplaced otherwise. Furthermore, we say that block A controls block B if

B appears below A in the goal tower structure. To formalize this notion of vertical ordering, we

assign a level to each block in the goal configuration: in every goal tower, the block at the top is

assigned level 1, the block immediately beneath it level 2, and so on. A block is said to be done

in a state if it is correctly placed and all blocks below it in the goal stack are also correctly placed.

We now construct PDDA and ∞-DDA heuristics for Blocksworld, establishing that their cor-

relation complexities are bounded above by 2 and 3, respectively. Both heuristics are designed

to encourage a structured, two-phase solution strategy: first, move all blocks that are not yet

done onto the table. Then, build the goal towers from the bottom up.

Lemmas 11. The PDDA correlation complexity of Blocksworld is at most 2.

Proof. We prove the lemma by constructing a heuristic hpot of dimension 2 that satisfies the

PDDA property. Let Π be a Blocksworld task, and let B denote its set of all blocks in Π. To

ensure that planning avoids dead-end states, we define the potential heuristic hpot2 over the

following weight function w2:

(a) We immediately assign a weight large enough that the heuristic function hpot evaluates to

infinity whenever the following invalid or undesirable configurations are detected:

(i) A block cannot be declared clear when another block is on top of it:

w2({⟨clearA, yes⟩, ⟨posB , A⟩}) = |B|+ 1

for all A,B ∈ B.

(ii) Prevent structurally invalid or unintended stacking configurations by penalizing cer-

tain pairs of positional relationships between blocks:

Specifically, if two block-to-block relations (e.g., block A on block B, and block C on

block D) do not jointly occur in either the initial state or the goal state, they are

considered invalid and heavily penalized. This general formulation captures specific

undesirable cases, such as a block being on itself or multiple blocks stacked on the

same block.

w2({⟨posA, B⟩, ⟨posC , D⟩}) = |B|+ 1

for all A,B,C,D ∈ B with A ̸= C, {⟨posA, B⟩, ⟨posC , D⟩} ̸⊂ I and

{⟨posA, B⟩, ⟨posC , D⟩} ̸⊂ g.

Blocksworld 25

(b) We ensure consistency between clear annotations and actual block placements. Specifically,

we count the number of blocks marked as not clear and compare it to the number of blocks

that are actually positioned on top of other blocks. If more blocks are marked as not clear

than are truly supporting another block, this indicates an inconsistency, i.e. at least one

block is incorrectly marked as not clear despite having nothing on top of it.

(i) Block marked as not clear:

w2({⟨clearA,no⟩}) = 1

for all A ∈ B.

(ii) Block positioned on another block:

w2({⟨posB , A⟩}) = −1

for all A,B ∈ B with A ̸= B.

We show that |B|+1 is large enough to guarantee hpot2(s) > 0 whenever any feature from item

(a)(i) or (a)(ii) is active. Such a feature contributes a penalty of |B|+ 1 to hpot2(s). To offset

this, the state would need a total negative contribution of at least −(|B|+ 1) from item (b)(ii)

features. Since there are only |B| blocks, at most |B| such features can be active, limiting the

maximum negative offset to −|B|, which is insufficient to cancel the penalty. Hence, hpot2(s)

remains strictly positive whenever a feature from item (a) is active. Consequently, any state s

with hpot2(s) ≤ 0 must satisfy:

- Every clear block is truly clear: If a block A is marked as clear in s, i.e. ⟨clearA, yes⟩ ∈ s,

then no block B may be positioned on top of A, that is, ⟨posB,A⟩ /∈ s for any B.

Otherwise, a conflicting feature would be activated, contributing a penalty of |B| + 1 to

hpot2(s), causing it to exceed zero.

- Block configurations are structurally valid: Any feature F = {⟨posA, B⟩, ⟨posC , D⟩} with

A ̸= C cannot be present in s unless F is a subset of either the initial state I or the

goal state G. Since both I and G are assumed to be structurally valid, such features in s

imply that no block is on itself and no two distinct blocks are placed on the same block

at the same time. Thus, s must also respect these constraints.

- Every not clear block is truly not clear: For the heuristic value to be negative, the

number of facts ⟨posB , A⟩ ∈ s (blocks positioned on other blocks) must be at least as

large as the number of facts ⟨clearA,no⟩ ∈ s (blocks marked as not clear). The previous

points guarantee that no block is placed on itself and that no two distinct blocks share

the same support, so each block can have at most one block on top. Combined with the

fact that every block marked as clear is truly clear, this means these two counts must in

fact be equal.

Therefore, any state s with hpot2(s) ≤ 0 is structurally valid.

While these penalty terms exclude undesirable states, they provide no guidance within the

space of valid, finite configurations. To handle these remaining states, we adapt the weight

function that Seipp et al. [14] define for the Blocksworld domain. Accordingly, hpot1 is defined

using the following weight function w1:

Blocksworld 26

(i) w1({⟨posA, X⟩}) = 2

for all A ∈ B, X ∈ B \ {A}, X ̸= GA.

(ii) w1({⟨posA, T ⟩}) = −1

for all A ∈ B with GA = T .

(iii) w1({⟨posA, T ⟩}) = 1

for all A ∈ B with GA ̸= T .

(iv) w1({⟨posA, GA⟩, ⟨posB , X⟩}) = 2level(A)

for all A,B ∈ B where B is controlled by A and all X ∈ dom(posB) with X ̸= GB .

Now, we will verify that this heuristic function satisfies the PDDA properties, ensuring the

PDDA correlation complexity is at most 2.

The initial state has a finite value, i.e. I ∈ Sfin: First, consider the high-penalty terms

defined in part (a) of w2. The penalty in (a)(i) is triggered when a block is simultaneously

marked as clear and has another block positioned on top of it. However, by definition of the

initial state in Blocksworld, the clear predicates are consistent with the block positions: a block

is marked clear if and only if no other block is on top of it. Therefore, such conflicting feature

pairs {⟨clearA, yes⟩, ⟨posB , A⟩} do not appear in I, and the corresponding penalty is avoided.

For (a)(ii), the heuristic assigns a penalty to any pair of stacking relationships that does not

jointly occur in either the initial state I or the goal state g. Since we are evaluating hpot2 in

the initial state itself, any such pair that appears in I is, by definition, part of the initial state

and thus not penalized.

Now consider part (b) of the weight function, which uses positive weights for features ⟨clearA,no⟩
and negative weights for features ⟨posB , A⟩. In the initial state, every block that is marked as

not clear indeed has another block on top of it, and vice versa. This means the total count of

“not clear” annotations exactly matches the number of actual stacking relationships. Therefore,

the positive and negative contributions cancel out, yielding a net weight of zero.

Combining these observations, we conclude that no penalties are applied in hpot2(I), and the

overall sum is zero.

For all non-goal states with a finite heuristic value there exists a successor with a

lower heuristic value, i.e. ∀s ∈ (Sfin \ G)∃s′ ∈ succ(s) : h(s′) < h(s): To prove that, we

make a case distinction over an arbitrary state s ∈ Sfin \G:

As shown above, the finiteness of s implies that all block arrangements in s are structurally

valid. Additionally, all pairs of stacking relations that appear in s must be consistent with

either the initial state or the goal state, as enforced by the penalty described in part (a)(ii) of

the weight function w2. We distinguish two cases:

Blocksworld 27

Case 1: There exists at least one block that is positioned on a block as in the initial state I,

but not as in the goal state g. Therefore, s has a tower of at least two blocks such that the top

block A is not done. Seipp et al. [14] show that placing block A onto the table decreases the

heuristic value. Hence, we only have to prove that the heuristic value stays finite:

After moving A onto the table, the resulting state s′ avoids any infinite penalty features. In

particular, if in s no block incorrectly marked as clear has another block on top of it, this

property is preserved in s′ since placing a block onto the table does not introduce such a

violation. Similarly, all pairs of stacked blocks remain consistent with either the initial or the

goal state in s′, as moving A removes a block-on-block relation without introducing any illegal

ones. Moreover, since the number of blocks marked as not clear matches exactly the number of

blocks stacked on top of others, moving A onto the table clears the block below A and decreases

the number of block-on-block relations by one. Thus, the equality between these quantities is

preserved, ensuring that no infinite penalties are introduced. Hence, the heuristic value in s′

remains finite.

Case 2: No block remains in its initial position (if that position differs from the goal), all

remaining stacks are partially or fully aligned with the goal state, meaning that all not-done

blocks are placed on the table. Seipp et al. [14] show that moving block A onto GA, where GA

is done, decreases the heuristic value. , we only have to proof that the heuristic value stays finite:

The reasoning is analogous to Case 1. After moving block A onto its goal position GA, which is

done, the resulting state s′ maintains consistency with the goal stack relations: since s contained

no block-on-block relations from the initial state I and the move only adds a block-on-block

relation present in the goal g, s′ contains only goal state relations. Additionally, the balance

between blocks marked as not clear and the actual block-on-block relations is preserved. No

block incorrectly marked as clear gains a block on top, ensuring that no infinite penalties are

introduced. Therefore, the heuristic value in s′ remains finite.

In both cases, we can apply a valid action that strictly reduces the value of the heuristic.

Therefore, for all non-goal states s ∈ Sfin \ G, there exists a successor s′ ∈ succ(s) such that

h(s′) < h(s), as required.

We now turn to the ∞-DDA variant, using a similar construction to show that the ∞-DDA

correlation complexity for Blocksworld is upper-bounded by 3.

Lemmas 12. The ∞-DDA correlation complexity of Blocksworld is at most 3.

Proof. We prove the lemma by constructing a heuristic h of dimension 3 that satisfies the

∞-DDA property. Let Π be a Blocksworld task, and let B denote its set of all blocks in Π.

Our heuristic h is defined by adapting weights from the previously defined heuristic hpot2. The

key difference is that features which previously received a large but finite penalty in hpot2 are

now assigned infinite weights to strictly enforce the ∞-DDA property. Specifically, these infinite

penalties directly exclude invalid configurations such as blocks incorrectly marked clear with

Blocksworld 28

another block on top, and cyclic or structurally invalid stacking, as defined before.

A notable additional difference addresses blocks marked as not clear when no block is on top

of them. We solve this problem by assigning infinite weights to all blocks marked not clear but

none of the expected blocks to be on them (according to the initial state I and goal G) actually

occupy that position. To capture this, we introduce the following infinite penalties:

(i) w({⟨clearA,no⟩, ⟨posB , C⟩, ⟨posD, E⟩}) = ∞
for all A,B,C,D,E ∈ B, with C ̸= A, and E ̸= A, where ⟨posB , A⟩ ∈ I, ⟨posD, A⟩ ∈ G.

(ii) w({⟨clearA,no⟩, ⟨posB , C⟩}) = ∞
for all A,B,C ∈ B, with C ̸= A, where ⟨posB , A⟩ ∈ I and ⟨clearA, yes⟩ ∈ G.

(iii) w({⟨clearA,no⟩, ⟨posB , C⟩}) = ∞
for all A,B,C ∈ B, with C ̸= A, where ⟨posB , A⟩ ∈ G and ⟨clearA, yes⟩ ∈ I.

(iv) w({⟨clearA,no}) = ∞
for all A ∈ B, with ⟨clearA, yes⟩ ∈ I, ⟨clearA, yes⟩ ∈ G.

For all remaining finite states, the heuristic uses the weight function proposed by Seipp et al.

[14]. The argument that h satisfies the ∞-DDA property follows exactly as in the PDDA proof,

with infinite penalties ensuring stricter exclusion of invalid or undesired states while preserving

the existence of improving successors for all finite, non-goal states.

Thus, the ∞-DDA correlation complexity of Blocksworld is at most 3.

5.4 Exact Correlation Complexities

With the lower and upper bounds established in the preceding lemmas and corollaries, we now

arrive at the main conclusion of this chapter: the∞-DDA correlation complexity of Blocksworld

is 3, while the PDDA correlation complexity is 2.

Theorem 3. The ∞-DDA correlation complexity of Blocksworld is 3.

Proof. Lemma 10 and 12 establish that the ∞-DDA correlation complexity is bounded below

and above by 3, respectively. Hence, we conclude that the correlation complexity is 3.

Theorem 4. The PDDA correlation complexity of Blocksworld is 2.

Proof. By combining Lemma 9 and 11, which provide a matching lower and upper bound of 2,

we conclude that the exact correlation complexity is 2.

6
Spanner

In the Spanner domain (IPC 2014), an agent must navigate a sequence of m + 1 locations,

loc0 through locm, to reach a gate at locm. Along this path, the agent encounters N single-use

spanners placed at various locations before reaching the gate. At the gate itself, there are n

loose nuts, each of which requires a spanner to be tightened. We assume N ≥ n. Otherwise, the

task would be unsolvable, making it impossible to define an UDDA,∞-DDA or PDDA heuristic.

The agent must collect enough spanners before reaching the gate. Importantly, movement is

constrained: the agent can only move forward, not backward. A visual representation of a

Spanner task is shown in Figure 6.1.

Figure 6.1: Example of the initial state of a Spanner task with six locations,
three loose nuts, and three spanners scattered among the locations. The
goal is to collect all spanners and tighten the three nuts. The agent can only
move from left to right.

The domain is formally defined using variables that describe:

- agent : The agent’s current location, with domain dom(agent) = {loci}mi=0.

- spannerj : The location of spanner j, with domain dom(spannerj) = {loci}mi=0 ∪ {agent}.

- usablej : The usability status of spanner j, with domain dom(usablej) = {yes,no}.

- nutj : The state of nut j, with domain dom(nutj) = {tightened, loose}.

Initially, the agent starts at loc0, all spanners are positioned at some location (not carried by the

agent), all spanners are assumed to be usable, and all nuts are loose. The available operators

are moving forward, picking up a spanner, and tightening a nut.

Spanner 30

Seipp et al. [14] introduce a DDA heuristic for the Spanner domain and demonstrated that its

correlation complexity is 2. In this chapter, we extend their work by analysing three additional

variants: the UDDA, the ∞-DDA, and the PDDA heuristics. We show that there is no UDDA

heuristic for the Spanner domain (Theorem 5). Furthermore, we prove that the ∞-DDA and

the PDDA correlation complexity remains 2 (Theorems 6 and 7).

6.1 Non-Existence of UDDA

In this section, we show that no heuristic function can satisfy the UDDA property in the

Spanner domain. The key insight lies in the existence of dead-end states, states from which

no sequence of actions leads to a goal. These states violate the core UDDA requirement that

every non-goal state must have a successor with strictly lower heuristic value. We formalize

this argument in the following theorem.

Theorem 5. There exists no UDDA heuristic for Spanner.

Proof. We can demonstrate this by presenting a dead-end state where no valid action can lead

to a goal state. Consider a Spanner planning task Π with two locations, one spanner and one

nut. Suppose the agent is at loc2, while the spanner is at loc1. In this state s, the agent is

unable to move forward, pick up the spanner, or tighten the nut (since they are not carrying the

spanner). As a result, no applicable operator exists, meaning s has no successors. Consequently,

no heuristic function can satisfy the UDDA property in the Spanner domain, proving that a

UDDA heuristic does not exist for this domain.

6.2 Lower Bound Results

In the following, we establish a lower bound on the PDDA correlation complexity and use this

result to derive a corresponding lower bound for the ∞-DDA correlation complexity.

Lemmas 13. The PDDA correlation complexity of Spanner is at least 2.

Proof. We prove by contradiction that the PDDA correlation complexity of Spanner is at least

2 by using a witnessing quartet. Assume for contradiction that there exists a 1-dimensional

potential function hpot (defined as in Definition 6) satisfying the PDDA property.

Consider a Spanner planning task Π with 2 locations, 2 spanners, and 2 nuts. The initial state

I is given by:

I = {⟨agent, loc0⟩, ⟨spanner1, loc0⟩, ⟨spanner2, loc0⟩, ⟨usable1, yes⟩, ⟨usable2, yes⟩,

⟨nut1, loose⟩, ⟨nut2, loose⟩}.

Since any plan that reaches the goal must pass through a state where one spanner is unusable

and one nut is already tightened, at least one such state s1 must be assigned a finite heuristic

value. Otherwise, the goal would be unreachable, contradicting the assumption that the task

is solvable.

Spanner 31

Assume w.l.o.g. that spanner 1 was used to tighten nut 1 in s1. This assumption is justified by

the symmetry of the problem, as relabelling the spanners and nuts would yield an equivalent

case.

(a) s1 (b) s2

(c) s3 (d) s4

Figure 6.2: Four example states from a Spanner task with two locations,
two nuts, and two spanners. Spanners that are no longer usable are shown
in red, and tightened nuts are displayed in green.

Now, consider the following four states represented in Figure 6.2:

s1 : {⟨agent, loc1⟩, ⟨spanner1, agent⟩, ⟨spanner2, agent⟩, ⟨usable1,no⟩, ⟨usable2, yes⟩,

⟨nut1, tightened⟩, ⟨nut2, loose⟩}

s2 : {⟨agent, loc0⟩, ⟨spanner1, loc0⟩, ⟨spanner2, loc0⟩, ⟨usable1, yes⟩, ⟨usable2, yes⟩,

⟨nut1, loose⟩, ⟨nut2, loose⟩}

s3 : {⟨agent, loc0⟩, ⟨spanner1, agent⟩, ⟨spanner2, agent⟩, ⟨usable1,no⟩, ⟨usable2, yes⟩,

⟨nut1, loose⟩, ⟨nut2, loose⟩}

s4 : {⟨agent, loc1⟩, ⟨spanner1, loc0⟩, ⟨spanner2, loc0⟩, ⟨usable1, yes⟩, ⟨usable2, yes⟩,

⟨nut1, tightened⟩, ⟨nut2, loose⟩}

From the previous argument, we know that s1 must be assigned a finite heuristic value. Since s2

is the initial state, it too must have a finite heuristic value. State s3 is unsolvable because only

one spanner is usable, while both nuts are still loose. As it is impossible to tighten both nuts

in this state, the goal cannot be reached from s3, so it must be assigned an infinite heuristic

value. Similarly, s4 is also unsolvable. Although the agent is at the final location, it lacks a

spanner to tighten the nuts, making it impossible to reach the goal. Therefore, s4 must also be

assigned an infinite heuristic value.

This results in the following constraints on hpot2:

hpot2(s1) ≤ 0, hpot2(s2) ≤ 0, hpot2(s3) > 0, hpot2(s4) > 0.

We now define the variable partition {W,M} as follows:

W = {usable1, usable2, spanner1, spanner2}, M = {agent,nut1,nut2}.

Spanner 32

We claim that ⟨[s4, s2, s3, s1], [W,M]⟩ forms a witnessing quartet for hpot2 as per Definition 9.

We verify the conditions:

- hpot2(s4) > hpot2(s2): State s4 is unsolvable, while s2 is solvable.

- sW4 = sW2 : In both states, the spanners are located at loc0 and are usable.

- sM4 = sM1 : The agent is at loc1; nut1 is tightened and nut2 is loose in both states.

- hpot2(s3) ≥ hpot2(s1): State s3 is unsolvable, while s1 is solvable.

- sW3 = sW1 : In both states, the agent holds both spanners, spanner1 is not usable and

spanner2 is usable.

- sM3 = sM2 : The agent is at loc0, and both nuts are loose in both states.

Thus, all conditions for a witnessing quartet are satisfied. By Theorem 1, the existence of such

a witnessing quartet implies that dim(hpot2) ≥ 2. This contradicts our initial assumption that

the PDDA correlation complexity of Spanner is less than 2. Therefore, we conclude that the

PDDA correlation complexity of Spanner is at least 2.

We have established a lower bound for the PDDA correlation complexity. Since every ∞-DDA

heuristic can be transformed into a PDDA heuristic (Lemma 3), the same bound holds for

∞-DDA. Thus, we arrive at the following corollary.

Corollary 13.1. The ∞-DDA correlation complexity of Spanner is at least 2.

6.3 Upper Bound Results

Next, we derive an upper bound on the ∞-DDA correlation complexity and use it to establish

a corresponding bound for the PDDA correlation complexity.

Lemmas 14. The ∞-DDA correlation complexity of Spanner is at most 2.

Proof. We prove the lemma by constructing a heuristic h of dimension 2 that satisfies the

conditions of an ∞-DDA heuristic, ensuring that the ∞-DDA correlation complexity of Spanner

is at most 2. Let Π be a Spanner task with m locations, N spanners, and n nuts.

The heuristic h forces the agent to pick up every spanner and to use each spanner for a specific

nut. The heuristic function is defined by the following weight function:

w({⟨agent, loci⟩}) = m− i for all i ∈ {0, . . . ,m}

w({⟨spannerj , loci⟩}) = 1 for all i ∈ {0, . . . ,m}, j ∈ {1, . . . , N}

w({⟨nutl, loose⟩}) = 1 for all l ∈ {1, . . . , n}

w({⟨nutl, loose⟩, ⟨usablel,no⟩}) = ∞ for all l ∈ {1, . . . , n}

w({⟨agent, loci⟩, ⟨spannerj , lock⟩}) = ∞ for all i ∈ {0, . . . ,m}, j ∈ {1, . . . , N},

k ∈ {1, . . . , i− 1}

Spanner 33

Now, we will verify that this heuristic function satisfies the ∞-DDA properties, ensuring the

∞-DDA correlation complexity is at most 2.

The initial state has a finite value, i.e. I ∈ Sfin:

Let I be the initial state. We show that h(I) ∈ R, meaning it has a finite heuristic value:

Since the agent always starts at loc0, there is no lock with k < 0, ensuring that for all

i = 0, j ∈ {1, . . . , n}, k ∈ {0, . . . , i − 1} : ⟨spannerj , lock⟩ /∈ I. Additionally because ini-

tially all spanners are usable, it holds that for all j ∈ {1, . . . , n} : ⟨usablej ,no⟩ /∈ I. From this,

we can conclude that the initial state is in Sfin.

For all non-goal states with a finite heuristic value there exists a successor with a

lower heuristic value, i.e. ∀s ∈ (Sfin \G)∃s′ ∈ succ(s) : h(s′) < h(s):

To prove that, we make a case distinction over s:

1) The agent is at location loci where i ∈ {0, . . . ,m− 1}:

a) Spanner j is lying at loci (usable or non-usable) where j ∈ {1, . . . , N}:
Picking up spanner j only affects the variable assignment of spannerj , changing it from

loci to agent. This updates the state by removing the fact ⟨spannerj , loci⟩ and adding

⟨spannerj , agent⟩.

Since ⟨spannerj , loci⟩ /∈ s after the pickup, its associated weight is removed from the

heuristic sum. Whether the weight w(⟨agent, loci⟩, ⟨spannerj , lock⟩) contributes to the

heuristic depends on k ∈ {0, . . . , i − 1}. Because k is always less than i, it refers only

to spanners at earlier locations and is therefore unaffected by changes to a spanner at loci.

Consequently, picking up a spanner reduces the heuristic value by the weight associated

with the fact ⟨spannerj , loci⟩, which is 1:

h(s′) = h(s)− 1 < h(s).

b) No spanner is present at loci:

Moving forward from loci to loci+1 only affects the agent’s position, changing the variable

assignment of agent from loci to loci+1. This transition updates the state by removing

the fact ⟨agent, loci⟩ and adding the fact ⟨agent, loci+1⟩.
This change affects two types of weights:

First, the weight of w({⟨agent, loci⟩}) = m − i disappears as the fact is removed, while

w({⟨agent, loci+1⟩}) = m− (i+ 1) is added as the new fact is introduced.

Second, this update could potentially influence weights that depend on both the agent’s

position and the presence of a spanner at an earlier location.

The relevant weights in this case are w({⟨agent, loci⟩, ⟨spannerj , locki⟩}) and

w({⟨agent, loci+1⟩, ⟨spannerj , locki+1⟩}), where j ∈ {1, . . . , N} and kx ∈ {0, . . . , x− 1}.

Spanner 34

Since the current state s is in (Sfin \ G), we know that no spanner is present at any

location locki
where ki < i. Furthermore, by our case distinction, there is no spanner at

loci either. This allows us to extend the statement further: since there is no spanner at

loci or any earlier location, it follows that no spanner can be present at any locki+1
with

ki+1 < i + 1. Therefore, the pair {⟨agent, loci+1⟩, ⟨spannerj , locki+1
⟩} is not a subset of

s. As a result, no infinite weight is added to the sum, and the heuristic value remains

finite.

This results in a change in the heuristic value by −(m− i) + (m− (i+ 1)) = −1:

h(s′) = h(s)− 1 < h(s).

2) The agent is at location locm:

a) Spanner j is lying at locm (usable or non-usable) where j ∈ {1, . . . , N}:
Picking it updates the state the same way as in Item 1a, therefore decreasing the heuristic

value by 1:

h(s′) = h(s)− 1 < h(s).

b) No spanner is present at locm:

Since the state s lies in (Sfin \ G), at least one nut remains loose, otherwise s would be

a goal state. Moreover, because h(s) < ∞, the following pairs cannot be subsets of s:

{⟨nutj , loose⟩, ⟨usablej ,no⟩} and {⟨agent, locm⟩, ⟨spannerj , lock⟩}for k < m.

The exclusion of the first pair ensures that every loose nut has its corresponding usable

spanner available. Consequently, the agent is always able to tighten a nut when neces-

sary. The exclusion of the second pair ensures that any spanner located at an earlier

position must already have been picked up by the agent. This ensures that all necessary

tools are carried forward and available for use when needed.

When the agent tightens a nut using its corresponding spanner, two variable assignments

are updated. First, nutl transitions from loose to tightened. Second, usablel changes from

yes to no.

The only variable assignment directly affected by this is ⟨nutl, loose⟩, which lets the cor-

responding weight get removed from the heuristic sum. As we established earlier, the

feature {⟨nutl, loose⟩, ⟨usablel,no⟩} is absent in state s. Since the tightening operator re-

moves the fact ⟨nutl, loose⟩, this feature remains absent in the successor state s′, meaning

that the corresponding weight does not contribute to the heuristic sum.

Consequently, tightening a nut decreasing the heuristic value by 1:

h(s′) = h(s)− 1 < h(s).

In each case, the heuristic value decreases, meaning that for every non-goal state s, there exists

a successor state s′ such that h(s′) < h(s).

Spanner 35

Since we have shown that for every state s in Sfin, there exists a successor state where the

heuristic decreases, we conclude that the ∞-DDA correlation complexity of Spanner is at most

2.

We have established that the ∞-DDA correlation complexity is at most 2. Since every ∞-DDA

heuristic can be transformed into a PDDA heuristic (Lemma 3), the same upper bound applies

to the PDDA correlation complexity. This leads to the following corollary.

Corollary 14.1. The PDDA correlation complexity of Spanner is at most 2.

6.4 Exact Correlation Complexities

Building on the lower and upper bounds established in the previous lemmas and corollaries, we

can now draw the key conclusion of this chapter: the∞-DDA and PDDA correlation complexity

of Spanner is 2.

Theorem 6. The ∞-DDA correlation complexity of Spanner is 2.

Proof. From Corollary 13.1, we know that the ∞-DDA correlation complexity of Spanner is at

least 2. Furthermore, Lemma 14 establishes that the ∞-DDA correlation complexity of Spanner

is at most 2. Together, these results imply that the ∞-DDA correlation complexity of Spanner

is exactly 2.

Theorem 7. The PDDA correlation complexity of Spanner is 2.

Proof. From Lemma 13, we know that the PDDA correlation complexity of Spanner is lower

bounded by 2. Furthermore, Corollary 14.1 establishes that the PDDA correlation complexity

is at most 2. Together, these results imply that the PDDA correlation complexity of Spanner

is exactly 2.

7
Logistics

The Logistics domain [9] is a well-established benchmark in classical planning, modelling the

problem of transporting packages across a network of cities using trucks and airplanes. Each

package has a specified origin and destination, and the planner must devise a sequence of ac-

tions to deliver all packages to their destinations using available transport resources.

To define the domain, we introduce some important sets and functions:

Let L be a finite set of locations, C a finite set of cities, P a finite set of packages, T a finite

set of trucks, and A a finite set of airplanes. The function city : L → C assigns each location

a city. The function airport : C → L designates exactly one location in each city as its airport.

The function dest : P → L specifies the goal location for each package.

The domain is formally defined using the following variables:

- package ∈ P : location of a package with dom(package) = L ∪ T ∪A

- airplane ∈ A: location of an airplane with dom(airplane) = {airport(c) | c ∈ C}

- truck ∈ T : location of a truck with dom(truck) = {package ∈ P | city(l) = city(I[truck])}

Each package is initially located at a specific location, and the goal is for it to arrive at a

designated location, potentially in another city.

Trucks can move between any two locations within the same city, while airplanes can fly between

airports in different cities. Packages are loaded into or unloaded from trucks when both are

at the same location, and similarly, transferred to or from airplanes only at airports. Intercity

delivery requires a package to be transported by truck to a local airport, flown to the destina-

tion city’s airport, and then delivered by truck to its final destination. Using these actions, a

planner must coordinate both local and intercity transport to deliver all packages to their goals.

In this chapter, we show that for Logistics domain, the DDA, the UDDA, the ∞-DDA and the

PDDA correlation complexity is 2.

Logistics 37

7.1 Lower Bound Results

In the following, we establish a lower bound on the DDA and PDDA correlation complexity and

use the second result to derive a corresponding lower bound for the UDDA and the ∞-DDA

correlation complexity.

Lemmas 15. The DDA correlation complexity of Logistics is at least 2.

Proof. Consider the Logistics planning task Π described in Figure 7.1. To achieve the goal,

the truck must first drive from loc2 to loc1, load the package, and then return to loc2 to unload it.

The drive actions from loc2 to loc1 and from loc2 to loc1 are both necessary and form a pair of

inverse operators. The claim follows by Theorem 5 of Seipp et al. [14], which states that if a

planning task has two critical operators that are inverses of each other, then its DDA correlation

complexity is at least 2.

The proof of Lemma 15 shows that the DDA correlation complexity of Logistics is at least 2 by

identifying critical inverse operators that must be executed sequentially. However, to extend

this analysis to the PDDA correlation complexity, we need a more structured understanding of

how state transitions unfold during the plan execution.

This is where the concept of landmarks, as introduced in Section 2.4, becomes crucial. State

landmarks provide a structured framework for analysing dependencies and ordering constraints

among key intermediate states, enabling a principled discussion of the minimum correlation

complexity required for PDDA.

Lemmas 16. The PDDA correlation complexity of Logistics is at least 2.

Proof. We assume for contradiction that the PDDA correlation complexity of Logistics is less

than 2. This would imply the existence of a potential heuristic function hpot of dimension 1

that satisfies the PDDA properties.

(a) (b)

(c) (d)

Figure 7.1: Four example states from a logistics task Π with two locations,
loc1 and loc2, within a single city, one truck, and one package. The initial
state I is given by I = {⟨package, loc1⟩, ⟨truck, loc2⟩}. The goal is to deliver
the package from loc1 to loc2.

Logistics 38

Consider the Logistics planning task Π described in Figure 7.1.

We show that every valid plan must pass through the four distinct states illustrated in Figure 7.1

during the process of completing the task:

(a) The initial state, where the package is at loc1 and the truck is at loc2.

(b) The truck has moved to loc1, but the package is still on the ground.

(c) The package has been loaded into the truck, but the truck is still at loc1.

(d) The truck has reached loc2, but the package is still inside the truck.

To reach the goal from state c, we have to go through state d, since the truck must arrive at

loc2 carrying the package. This makes d a landmark of c. Similarly, to reach the goal from

b, we must go through c, because the package must be loaded into the truck before it can be

moved. Thus, c is a landmark of b. To reach the goal from a, we must go through b, since the

truck needs to move to loc1 to pick up the package. Therefore, b is a landmark of a.

By transitivity, d is a landmark of c, which is a landmark of b, which is a landmark of a, so b, c,

and d are all landmarks of a. Since a is the initial state, it follows that b, c and d must appear

in every valid plan. We can now further analyse the order in which these landmarks must be

achieved. Because each landmark depends on the previous one, any valid plan must visit these

states in a specific sequence. This implies a strict ordering: last(a) < last(b) < last(c) < last(d),

where last(s) denotes the time index of the last occurrence of state s in any valid plan.

Since these four states are part of every valid plan, the potential heuristic value hpot2 must be

positive for all four states. Therefore, we turn our attention to hpot1. We will now construct a

witnessing quartet for hpot1, as defined in Definition 9.

Let us denote these four states as a, b, c, d, respectively:

a : {⟨package, loc1⟩, ⟨truck, loc2⟩}, b : {⟨package, loc1⟩, ⟨truck, loc1⟩},

c : {⟨package, truck⟩, ⟨truck, loc1⟩}, d : {⟨package, truck⟩, ⟨truck, loc2⟩}.

Given that the PDDA property requires that every non-goal state has a successor with a strictly

lower heuristic value, it follows that every valid plan must descend strictly with respect to hpot1.

Combined with the ordering of last occurrences among the landmarks, this implies:

hpot1(a) > hpot1(b) > hpot1(c) > hpot1(d)

We partition the variables as follows:

W = {package} and M = {truck}.

Now we verify the quartet conditions:

- We already showed that hpot1(a) > hpot2(b) and hpot1(c) > hpot2(d).

Logistics 39

- In both a and b, the package is at loc1, satisfying aW = bW .

- In both a and d, the truck is at loc2, satisfying aM = dM .

- In both c and d, the package is inside the truck, satisfying cW = dW .

- In both b and c, the truck is at loc1, satisfying bM = cM .

All the conditions of a witnessing quartet are satisfied. The contradiction follows via the

quartet criterion (Theorem 1), which says that if there exists a witnessing quartet for a potential

heuristic h, then the dimension of h is at least 2.

The previous lemmas show that the DDA and PDDA correlation complexities of Logistics are

both at least 2, indicating that solving even simple Logistics tasks requires capturing corre-

lations across at least two dimensions. According to the structure illustrated in Figure 4.4,

the correlation complexities of ∞-DDA and UDDA are never smaller than those of DDA and

PDDA. This means that the lower bound of 2 established for DDA and PDDA must also apply

to ∞-DDA and UDDA, as their complexity is always at least as high.

We now formalize this insight in the following corollaries.

Corollary 16.1. The ∞-DDA correlation complexity of Logistics is at least 2

Corollary 16.2. The UDDA correlation complexity of Logistics is at least 2.

7.2 Upper Bound Results

In this section, we first derive an upper bound on the UDDA correlation complexity and use it

to establish a corresponding bound for the DDA, ∞-DDA and PDDA correlation complexity.

Lemmas 17. The UDDA correlation complexity of Logistics is at most 2.

Proof. To prove the lemma, we construct a two-dimensional heuristic h that satisfies the UDDA

condition, thereby showing that the UDDA correlation complexity of the Logistics domain is

at most 2. The heuristic is inspired by the framework introduced by Francès Medina et al. [3],

particularly the concepts they propose for the Logistic domain.

We define weights over selected binary features that relate packages to trucks, airplanes, and

locations. These weights reflect the estimated closeness of a package to its goal, factoring in

both its current position and the accessibility and placement of trucks or airplanes.

To formalize this, we define a function the truck : C → T that selects one designated truck

per city, representing the preferred vehicle for intra-city transport. Vice versa, the variable

the airplane ∈ A representing the primary vehicle for inter-city package transport.

We define h with the following weights. Each weight reflects a distinct qualitative state of a

package, ordered from most to least favourable in terms of delivery progress:

Logistics 40

1. The package is in a truck at its destination:

w({⟨package, truck⟩, ⟨truck, dest(package)⟩}) = 1

for all package ∈ P, truck ∈ T

2. The package is in a truck in the correct city, but not at the destination:

w({⟨package, truck⟩, ⟨truck, loc⟩}) = 2

for all package ∈ P, truck ∈ T, loc ∈ L

with city(loc) = city(dest(package)), loc ̸= dest(package)

3. The package is on the ground in the correct city with the preferred truck available:

w({⟨package, loc⟩, ⟨the truck(city(loc)), loc⟩}) = 3

for all package ∈ P, loc ∈ L

with city(loc) = city(dest(package)), loc ̸= dest(package)

4. The package is on the ground in the correct city, but without the preferred truck available:

w({⟨package, loca⟩, ⟨the truck(city(loca)), locb⟩}) = 4

for all package ∈ P, loca, locb ∈ L

with loca ̸= locb, city(loca) = city(locb) = city(dest(package)), loca ̸= dest(package)

5. The package is in an airplane at the correct city’s airport:

w({⟨package, airplane⟩, ⟨airplane, airport(city(dest(package)))⟩}) = 5

for all package ∈ P, airplane ∈ A

6. The package is in an airplane in the wrong city:

w({⟨package, airplane⟩, ⟨airplane, airport(c)⟩}) = 6

for all package ∈ P, airplane ∈ A, c ∈ C

with c ̸= city(dest(package))

7. The package is on the ground at an airport in the wrong city, with the preferred airplane

present:

w({⟨package, airport(c)⟩, ⟨the airplane, airport(c)⟩}) = 7

for all package ∈ P, airplane ∈ A, c ∈ C

with c ̸= city(dest(package))

8. The package is on the ground at an airport in the wrong city, without the preferred

airplane:

w({⟨package, airport(c1)⟩, ⟨the airplane, airport(c2)⟩}) = 8

for all package ∈ P, c1, c2 ∈ C

with c1 ̸= c2, c1 ̸= city(dest(package))

9. The package is in a truck at the wrong city’s airport:

w({⟨package, truck⟩, ⟨truck, airport(c)⟩}) = 9

for all package ∈ P, truck ∈ T, c ∈ C

with c ̸= city(dest(package))

Logistics 41

10. The package is in a truck at a non-airport location in the wrong city:

w({⟨package, truck⟩, ⟨truck, loc⟩}) = 10

for all package ∈ P, truck ∈ T, loc ∈ L

with city(loc) ̸= city(dest(package)), loc ̸= airport(city(loc))

11. The package is on the ground in a non-airport location in the wrong city, with the preferred

truck there:

w({⟨package, loc⟩, ⟨the truck(city(loc)), loc⟩}) = 11

for all package ∈ P, loc ∈ L

with city(loc) ̸= city(dest(package)), loc ̸= airport(city(loc))

12. The package is on the ground at a non-airport location in the wrong city and no truck

available:

w({⟨package, loca⟩, ⟨the truck(city(loca)), locb⟩}) = 12

for all package ∈ P, loca, locb ∈ L

with loca ̸= locb, city(loca) = city(locb) ̸= city(dest(package)), loca ̸= airport(city(loc))

By construction, any arbitrary package package ∈ P is either delivered to its goal location or

belongs to exactly one of the previously defined cases 1) to 12). We now proceed to verify the

descending condition of UDDA, which requires that for all non-goal states s ∈ (S \ G), there

exists a successor t ∈ succ(s) such that h(t) < h(s). To establish this property, we make a case

distinction over s:

Since s is not a goal state, there must be at least one package that has not yet reached its

target location.We will now consider the possible actions in a specific order, where each step is

only considered if none of the previous conditions apply. That is, we first attempt (a); if (a)

is not possible, then we attempt (b); if (b) is not possible, then (c), and so on. We begin by

examining cases where unloading a vehicle is possible.

(a) If a package is currently in case 1, unloading it places the package directly at its goal

location, reducing the heuristic value by 1.

(b) In the situation where a package is in case 5, unloading it places the package on the ground.

If the preferred truck is present, this action transitions the package to case 3, resulting in

a heuristic reduction of 2. If the preferred truck is not present, the package transitions

instead to case 4, reducing the heuristic by 1.

(c) When a package is in case 9, unloading changes its state based on the presence of the

preferred airplane. If the airplane is available, the package moves to case 7, decreasing the

heuristic by 2. If the airplane is absent, it transitions to case 8, which reduces the heuristic

by 1.

Next, we consider all cases where loading a package into a vehicle is possible:

(d) If a package is currently in case 3, loading it into the preferred truck moves it to case 2,

reducing the heuristic value by 1.

Logistics 42

(e) Similarly, if a package is in case 7, loading it into the airplane transitions it to case 6,

decreasing the heuristic value by 1.

(f) Finally, if a package is in case 11, loading it into the truck moves it to case 10, which also

reduces the heuristic value by 1.

Since all potential load and unload actions have been addressed, we can safely assume that no

further such operations are possible. Consequently, any further progress towards the goal state

must involve moving a vehicle to enable further improvements.

(g) In the case where a package is in case 2, driving the truck to the package’s goal destination

moves it to case 1, resulting in a heuristic reduction of 1. This action can also cause

packages in case 4 to transition to case 3, in case 10 to transition to case 9, and in case

12 to transition to case 11, each reducing the heuristic by an additional 1, guaranteeing a

total reduction of at least 1.

(h) If a package is in case 4, driving the preferred truck to its location moves it to case 3,

reducing the heuristic by 1. Additionally, this action may cause packages from case 10 to

move to case 9 and from case 12 to move to case 11, each reducing the heuristic value by 1.

(i) When a package is in case 6, flying the airplane to the airport in the correct city for the

package moves it to case 5, decreasing the heuristic value by 1. This action can also shift

packages from case 8 to case 7, further reducing the heuristic by 1.

(j) If a package is in case 8, flying the preferred airplane to the package’s current location

moves it to case 7, reducing the heuristic by 1.

(k) For a package in case 10, driving the truck to the airport moves it to case 9, again decreasing

the heuristic by 1.

(l) Finally, if a package is in case 12, driving the preferred truck to the package’s location

transitions it to case 11, reducing the heuristic by 1.

This analysis covers all possible transitions and demonstrates that for every non-goal state s,

there is always a successor state t such that h(t) < h(s), thereby satisfying the descending

condition of UDDA. With this, we conclude that the UDDA correlation complexity of Logistics

is at most 2.

The previous lemma demonstrates that the UDDA correlation complexity of Logistics is at most

2. According to the structure illustrated in Figure 4.4, the correlation complexities of DDA,

∞-DDA, and PDDA are never greater than that of UDDA. Therefore, the upper bound of 2

established for UDDA also holds for these variants, ensuring that their correlation complexities

do not exceed this limit.

We now formalize this result in the following corollaries.

Corollary 17.1. The DDA correlation complexity of Logistics is at most 2.

Corollary 17.2. The ∞-DDA correlation complexity of Logistics is at most 2.

Corollary 17.3. The PDDA correlation complexity of Logistics is at most 2.

Logistics 43

7.3 Exact Correlation Complexities

Building on the lower and upper bounds established in the previous lemmas and corollaries,

we can now draw the key conclusion of this chapter: the DDA, UDDA, ∞-DDA and PDDA

correlation complexity of Logistics are 2.

Theorem 8. The DDA, UDDA, ∞-DDA and PDDA correlation complexity of Logistics is 2.

Proof. By Lemma 15 and 16 and Corollary 16.1 and 16.2, we establish that the correlation

complexity of Logistics for each DDA variant, specifically, the DDA, UDDA, ∞-DDA, and

PDDA, is bounded below by 2. Furthermore, the corresponding upper bounds are confirmed

by Lemma 17 and Corollary 17.1 to 17.3, each demonstrating that the correlation complexity

does not exceed 2. Since the lower and upper bounds are both precisely 2, it follows that the

correlation complexity of Logistics for all considered DDA variants is exactly 2.

8
Linear Termes

The Termes domain is inspired by the Harvard TERMES project [11], which explores how

robot swarms, modeled after termites, can build complex structures by carrying and stacking

blocks. Termites are known for constructing large mounds cooperatively, and the TERMES

robots emulate this behavior to build three-dimensional structures. These robots can climb on

structures and must often build ramps to reach higher areas, introducing significant planning

complexity.

The domain, originally introduced by Koenig and Kumar [7] as a benchmark for cooperative

multi-agent planning, captures key challenges such as limited workspace, long sequences of

actions, and the necessity for precise coordination. While the full domain involves multiple

agents handing off blocks and avoiding collisions, the IPC 2018 benchmark version1 simplifies

this to a single robot that moves, picks up blocks, and places them while respecting structural

constraints.

In this work, we focus on a simplified linear variant of the Termes domain. The environment

is a one-dimensional grid of m + 1 fields arranged in a straight line. A single robot starts at

position 0 (the depot), where it picks up blocks, and it must build a tower of height n ≤ m at

position m (the final field). Each field i has an associated height variable fieldi ∈ 0, . . . , n.

The domain is formally defined using the following variables:

- robot: the robot’s current position, dom(robot) = {0, . . . ,m}

- fieldi: height of field i, dom(fieldi) = {0, . . . , n}

- hand: whether the robot is carrying a block, dom(hand) = {clear, block}

All fields are initially at height zero, and the robot starts at field 0 with an empty hand. The

goal is to construct a tower of fixed height n at the final field, with all other fields remaining

1 https://ipc2018-classical.bitbucket.io/domains.html

https://ipc2018-classical.bitbucket.io/domains.html

Linear Termes 45

at height zero and the robot ending at field 0 with empty hands.

In the Linear Termes domain, the robot performs three fundamental actions: moving, picking

up blocks, and placing blocks. Movement is restricted to adjacent fields where the height dif-

ference between the current position and the target field does not exceed one block. To place

a block, the robot must be carrying one and can only place it on a neighbouring field whose

height matches the robot’s current field height exactly. Conversely, picking up a block requires

the robot’s hand to be empty and the neighbouring field to be precisely one block higher than

its current position. Additionally, the depot, located at the first field in the line, serves as a

special point for block exchange. When standing on the depot, the robot can pick up a block

directly from it, loading blocks for transport. Similarly, if carrying a block, the robot can place

it back onto the depot, effectively returning blocks to the source. This simpler version still

keeps the main challenges of the original domain, like building step-by-step and carrying only

one block at a time. Because of this, it works well for testing single-robot planning methods.

In this chapter, we show that no UDDA heuristic exists for the Linear Termes domain. Fur-

thermore, we prove that both the ∞-DDA and PDDA correlation complexities have a lower

bound of 2 and an upper bound of 3 in this domain.

8.1 Non-Existence of UDDA

In this section, we show that no heuristic function can satisfy the UDDA property in the Linear

Termes domain. The key insight lies in the presence of dead-end states, states from which no

sequence of actions can reach the goal. Such states violate the fundamental UDDA requirement

that every non-goal state must have at least one successor with a strictly lower heuristic value.

We formalize this argument in the following theorem.

Theorem 9. There exists no UDDA heuristic for Linear Termes.

Proof. Consider a Linear Termes instance Π with m = 3 fields. Let the robot be at position 2

(the last field), which has height 0. Assume the middle field (field 1) has height 2, forming a

tall tower between the depot (field 0) and field 2. The robot is not carrying any block.

In this configuration, the robot cannot move left from field 2 to field 1, as the height difference (2

blocks) exceeds the maximum climbable threshold. It also cannot move right, since it is already

at the last field. Furthermore, the robot cannot pick up a block because both neighbouring

fields (in front and behind) are either inaccessible due to height constraints or do not exist. It

also cannot place a block, as its hand is empty. Therefore, no heuristic function can satisfy the

UDDA condition in the Linear Termes domain.

8.2 Lower Bound Results

In the following, we establish a lower bound on the PDDA correlation complexity and use the

result to derive a corresponding lower bound for the ∞-DDA correlation complexity.

Linear Termes 46

Lemmas 18. The PDDA correlation complexity of Linear Termes is at least 2.

Proof. We assume for contradiction that the PDDA correlation complexity of Linear Termes is

less than 2. Then there exists a potential heuristic function hpot of dimension 1 that satisfies

the PDDA properties.

Consider a Linear Termes planning task Π with m + 1 = 3 fields and a goal height of n = 2.

Initially all fields are at height 0, and the robot is located at field 0 with an empty hand. The

goal is that the last field (field 2) is height 2, all other fields are height 0, and the robot is

located at field 0 with an empty hand.

To achieve this goal, the robot must pick up at least three blocks from the depot at field 0: two

to build the tower at field 2 and one to use as a ramp at field 1. After the tower is constructed,

the robot must remove the ramp, which involves handing at least one block back to the depot.

Therefore, the plan necessarily includes at least two pickup actions and at least one hand over

action at the depot.

Now consider the effect of a pickup action at the depot. Regardless of the current configuration,

picking up a block only changes the value of the variable hand from free to block, with no other

variables affected. Let s be the state before the action and s′ the state after. Since hpot satisfies

the PDDA property, the following inequality must hold:

h(s)− h(s′) = w({⟨hand, block⟩})− w({⟨hand, free⟩}) < 0,

which implies:

w({⟨hand, block⟩}) < w({⟨hand, free⟩}).

Now consider the reverse operation, handing over a block to the depot. This action changes the

variable hand from block to free, again affecting no other variables. Let s be the state before

the action and s′ the state after. Applying the PDDA property again, we obtain:

h(s)− h(s′) = w({⟨hand, free⟩})− w({⟨hand, block⟩}) < 0,

which implies:

w({⟨hand, free⟩}) < w({⟨hand, block⟩}).

Combining both inequalities yields:

w({⟨hand, free⟩}) < w({⟨hand, block⟩}) < w({⟨hand, free⟩}),

which is a contradiction.

Therefore, our initial assumption must be false. No one-dimensional potential heuristic function

satisfying the PDDA property can exist for this task. Hence, the PDDA correlation complexity

of Linear Termes is at least 2.

The previous lemmas show that the PDDA correlation complexity of Linear Termes is at least

2. According to the structure illustrated in Figure 4.4, the ∞-DDA correlation complexity is

Linear Termes 47

never smaller than those of PDDA. This means that the lower bound of 2 established for PDDA

must also apply to ∞-DDA, as its complexity is always at least as high.

Corollary 18.1. The ∞-DDA correlation complexity of Linear Termes is at least 2.

MiniZinc-Based Exploration of the ∞-DDA Property

While we have proven that the correlation complexity is at least 2, establishing a lower bound of

3 remains an open challenge. To explore this, we implemented a MiniZinc [10] model encoding

the constraints that any two-dimensional potential heuristic satisfying the ∞-DDA property

must fulfil for a given planning task. By formalizing these constraints, the MiniZinc model

effectively characterizes the space of all heuristics of correlation complexity 2 that comply with

∞-DDA for a particular planning problem. If the model finds no solution, this indicates that

no such heuristic exists for that task, thus serving as a counterexample that demonstrates the

insufficiency of correlation complexity 2 heuristics. Since the existence of a single counterexam-

ple is enough to prove that a lower bound of 3 is necessary, this approach provides a practical

and rigorous way to investigate the problem. In the next subsections, we detail the MiniZ-

inc encoding and present the results of our computational experiments conducted on specific

planning tasks.

Formal Model

The core goal is to find integer weights wa,b that define a quadratic heuristic function h over

features of states, such that the heuristic satisfies the ∞-DDA property. These weights are

variables in our MiniZinc constraint model.

Formally, let S be the set of all possible states of a specific Linear Termes planning task Π with

m + 1 fields and a goal height of n. Let A be the set of atomic features. The full feature set,

including both atomic features and their pairwise conjunctions, is defined as:

F = A ∪ (A×A).

We define G ⊆ S as the set of goal states. The transition relation succ ⊆ S × S encodes which

states can be reached from others via a valid action. For each feature f ∈ F , an indicator func-

tion ϕf : S → {0, 1} specifies whether a feature f is present in a given state. All of these, G,

succ, and the collection of functions {ϕf}f∈F , are given as constants within our MiniZinc model.

For each state s ∈ S, we introduce a variable h(s) representing the heuristic value at s. These

variables are constrained by the following relation in our model:

h(s) =
∑
a∈A

wa,a ϕa(s) +
∑

a,b∈A
a<b

wa,b ϕa(s)ϕb(s),

where the coefficients wa,b ∈ R are also variables.

Additionally, for each pair (a, b) ∈ A×A, we introduce a binary variable w∞[a, b] ∈ {0, 1} that

indicates whether the combination of atomic features a and b causes the heuristic value to be

Linear Termes 48

infinite. Using these variables, we define an auxiliary variable h(s) ∈ Z for each state s ∈ S,

constrained as:

h∞(s) =
∑

(a,b)∈A×A

ϕa(s) · ϕb(s) · w∞[a, b].

Furthermore, h∞ ≥ 1 if any such infinite feature pair is present in state s.

To satisfy the ∞-DDA property, the model enforces the following constraint for every state

s ∈ S:

h∞(s) ≥ 1 or s ∈ G or ∃s′ ∈ S such that (s, s′) ∈ succ, h∞(s′) = 0, and h(s′) < h(s).

Finally, the initial state s1 ∈ S is constrained to have a finite heuristic value:

h∞(s1) = 0.

These constraints formally capture the ∞-DDA property: the initial state is finite, and every

non-goal, finite-valued state must have a strictly improving successor.

Dataset Generation

We generated the input data for our MiniZinc model using a Python script that enumerates

all possible states of a Linear Termes planning task Π with m+1 fields and a goal height of n.

Each state is defined by the vector of stack heights, robot position, and hand status. For each

state, the script computes a Boolean feature vector capturing these details, identifies goal states

based on the configuration of the blocks and the robot’s status, and constructs the successor

relation by simulating valid robot actions such as moving, picking up, and placing blocks. The

resulting data, including feature vectors, successor relations, and goal indicators, is exported in

.dzn format for use within the MiniZinc solver.

Computational Results

The rapid growth of the state space |S| significantly limits the size of problem instances we can

analyse computationally. In our experiments, the largest instance tested consisted of 5 fields

with a goal height of 3 (see Table 8.1). As shown in the table, the computational time increases

substantially with larger state spaces corresponding to higher field counts and goal heights.

Despite this limitation, our experiments found no violations of the ∞-DDA property under

quadratic heuristics. This supports the hypothesis that correlation complexity 2 heuristics may

be sufficient, leaving a formal lower bound of 3 an open question for further research.

8.3 Upper Bound Results

To derive an upper bound on the ∞-DDA correlation complexity, we have to introduce several

partial heuristics. For that, we will divide the Linear Termes problem into 3 subproblems: (1)

fundamental structural constraints, (2) the construction of a ramp, and (3) the destruction of a

ramp. Each of these subproblems can be further divided into smaller components, each giving

rise to its own sub-heuristic.

Linear Termes 49

H
e
ig
h
t 3 10m 9s 2h 20m 39s

2 5s 340ms 46s 227ms 15m 1s

1 679ms 2s 537ms 5s 457ms 32s 881ms

2 3 4 5

Fields

Table 8.1: Time taken to solve the MiniZinc model for different numbers of fields
and tower goal heights. Each cell reports the computational time corresponding
to the specified height and field count.

Later, we will combine these sub-heuristics in two different ways. The first approach involves

assigning a scalar weight to each heuristic and summing them to form a composite heuristic.

The second approach introduces a new operation on feature sets, called feature multiplication,

that modifies heuristics based on additional features before combining them. Details on these

methods will be explained later.

Figure 8.1: Illustration of a Linear Termes task consisting of five fields. The
first field (left) serves as the depot, and the final field (right) has a goal
height of three blocks. The robot is not depicted, as the figure represents
only the final configuration of the completed ramp. Numbers on the blocks
indicate the intended construction order of the ramp.

8.3.1 General Constraints

The first partial heuristic, denoted h1, encodes fundamental structural constraints of the task.

It ensures that fields become progressively higher as their distance from the depot increases,

preserving the ramp-like structure. Building is only allowed layer by layer, as illustrated in

Figure 8.1, meaning the next layer can only be started once the previous one is complete,

except when the tower at the end is already finished, in which case it is allowed to stand

independently. Furthermore, the height difference between adjacent fields must not exceed one

block, again with the exception of a completed tower. Finally, the robot is never allowed to

move onto the last field. If the tower there is more than one block higher than the previous

field, the robot would be unable to take any further actions when positioned on it, resulting in

a dead-end. Moreover, standing on the last field is never required, as placing a block on it can

always be done from the second-to-last field.

These constraints are encoded in the following weight function w1, which defines the heuristic

h1.

Linear Termes 50

1. Each field has a maximum allowed height:

w1({⟨fieldi, hi⟩}) = ∞
for all i ∈ {0, . . . ,m}, hi ∈ {0, . . . , n} with hi > i

2. Only the last field (field m) is allowed to reach the goal height n, all other fields must

remain strictly below it:

w1({⟨fieldi, n⟩}) = ∞
for all i ∈ {0, . . . ,m− 1}.

3. Fields further away from the depot must not be lower than fields that are near the depot:

w1({⟨fieldi, hi⟩, ⟨fieldj , hj⟩}) = ∞
for all i, j ∈ {0, . . . ,m}, hi, hj ∈ {0, . . . , n} with i < j and hi > hj

4. The robot must never stand on the last field:

w1({⟨robot,m⟩}) = ∞

5. A neighbouring field (except the last field) may be at most one block higher:

w1({⟨fieldi, hi⟩, ⟨fieldi+1, hi+1⟩}) = ∞
for all i ∈ {0, . . . ,m− 2}, hi, hi+1 ∈ {0, . . . , n} with hi+1 ≥ hi + 2.

6. A new layer cannot be started until the current one is completed (except the last field):

w1({⟨fieldi, hi⟩, ⟨fieldj , hj⟩}) = ∞
for all i, j ∈ {0, . . . ,m− 1}, hi, hj ∈ {0, . . . , n} with i < j, hi < i, and hj ≥ hi + 2.

7. The last field may be at most one block higher than the second-last, unless the goal height

is reached:

w1({⟨fieldm−1, hm−1⟩, ⟨fieldm, hm⟩}) = ∞
for all hm−1, hm ∈ {0, . . . , n} with hm−1 + 2 ≤ hm < n.

8. The last field is treated as part of a layer and must not exceed earlier incomplete fields

by more than one block, unless the goal height is reached:

w1({⟨fieldi, hi⟩, ⟨fieldm, hm⟩}) = ∞
for all i ∈ {0, . . . ,m− 1}, hi, hm ∈ {0, . . . , n} with hi < i, and hi + 2 ≤ hm < n.

We now establish two key properties of the heuristic function h1: for states with a finite heuristic

value, (i) walking to any neighbouring field, excluding the last field, is always possible, and (ii)

picking up or handing over a block at the depot is always possible when the robot is positioned

on field 1. Both actions preserve the finiteness of the heuristic value.

Lemmas 19. Let s be a non-goal state such that h1(s) is finite. Then the following actions

are always possible and preserve the finiteness of the heuristic value:

(i) Walking to any neighbouring field, excluding the final field.

(ii) Picking up or handing over a block at the depot when the robot is positioned on field 0.

Proof. We consider each action in turn.

Linear Termes 51

(i) Walking:

In states where h1 is finite, none of the features listed in Item 5 of w1 are active. This im-

plies that the height difference between any two adjacent fields, excluding those involving

the last field, is at most one. Furthermore, since s ∈ Sfin, the weight function w1 ensures

that the robot is not positioned on the last field. As a result, the robot can move left or

right, provided a neighbouring field exists that is not the last field.

Additionally, since walking only changes the robot’s position, it can activate at most one

feature with infinite weight, specifically, the one associated with stepping onto the final

field. However, such cases are excluded in the lemma. Therefore, every other walking

action contributes only finite terms to the heuristic value.

(ii) Depot interaction:

The variable hand does not occur in any feature with infinite weight. Additionally, the

depot is always located at field 0 and remains at height 0. Therefore, whenever the

robot is positioned on field 0, it can safely pick up or hand over a block without causing

the heuristic value to become infinite. Hence, the action preserves the finiteness of the

heuristic value.

In both cases, the permitted actions preserve the finiteness of the heuristic value.

8.3.2 Construction Phase

The second subproblem addresses the construction of the ramp, specifically focusing on how

the robot moves and where it places blocks. The core idea is to define a building sequence such

that each field, depending on its current height, influences the robot by pulling it towards a

specific target position that supports ongoing ramp construction. This behaviour is modelled

using a moving weight function defined over pairs of robot positions and field heights. The goal

is to steer the robot to the most effective position for placing the next block.

For that, we define a sequence of ramp construction steps, as illustrated in Figure 8.1. The ramp

is built layer by layer, and within each layer, from back to front, resulting in a well-defined,

sequential order of building steps.

We formalize this by defining the set of planned building steps as

B = {(i, h) | i ∈ {0, . . . ,m}, h ∈ {1, . . . , i}}

which reflects the assumption that each field i must ultimately reach height i. We then define

a bijective function

f : B → {0, . . . , |B|}

that maps each field–height pair to a unique building step index b. The function f encodes

our desired build sequence: progressing layer by layer, and within each layer, from the back

towards the depot. Since f is bijective, we can also recover the corresponding field–height pair

using its inverse f−1(b).

Linear Termes 52

The interpretation is that when the ramp at field i has reached height h, it means that the

f(i, h)-th construction step has been completed. This completion then triggers the robot’s at-

tention to move on to the next step, f(i, h) + 1, ensuring sequential progress.

Moving Heuristic

To guide the robot effectively during construction, we break down the global movement objec-

tive into localized components. Each field, based on its current state, defines its own heuristic

that pulls the robot towards a position that would enable progress at that specific location.

These local moving heuristics form the foundation of the robot’s movement logic and are later

combined into a global guidance function.

Local Moving Heuristic

To formalize this, let F be a set of state features, and let F ∈ F be a single state feature such

that ⟨robot, i⟩ /∈ F for all i ∈ {0, . . . ,m}. We define a local moving heuristic ht,F via the weight

function:

wt,F (F ∪ {⟨robot, i⟩}) = |t− i|, for all i ∈ {0, . . . ,m},

where t ∈ N is a fixed target position and i denotes the robot’s current position.

Each of these heuristics, when considered individually, changes by ±1 depending on whether

the robot moves towards or away from the preferred target. This behaviour arises directly from

the structure of the weight functions, which is defined as absolute distances. We specify this in

the following lemma:

Lemmas 20. Let F be a set of state features, let F ∈ F be a single state feature such that

⟨robot, i⟩ /∈ F for all i ∈ {0, . . . ,m}, and let ht,F be a local moving heuristic with preferred field

t ∈ {0, . . . ,m− 1}.
Assume that:

- s and s′ are two states such that the robot moves from field i to i′ = i± 1,

- The feature F ∈ F is present in both s and s′ (i.e. F ∈ s and F ∈ s′).

Then the heuristic difference satisfies:

ht,F (s′)− ht,F (s) =

−1 if the robot moves towards the target t

1 otherwise

Proof. Let s be a state in which the robot is positioned at field i, and let s′ be its successor

state where the robot has moved to i′ = i± 1. By the definition of the heuristic ht,F , we have

ht,F (s′)− ht,F (s) = w(F ∪ {⟨robot, i′⟩})− w(F ∪ {⟨robot, i⟩})

= |t− i′| − |t− i|.

Linear Termes 53

It follows from a simple case distinction that a move bringing the robot one step closer to the

target decreases the heuristic value by 1, while a move away from the target increases it by

1.

(a) Case 1: Field 2 has not yet reached its
target height of 2. Regardless of the state of
other fields, the robot is encouraged to move
to field 0 and place a block on field 1.

(b) Case 2: Field 2 has reached its target
height of 2. Again independent of the state
of other fields, the robot is now encouraged to
move to field 4 and place a block on field 5.

Figure 8.2: A Linear Termes planning task Π with 6 fields and a goal height of 5. The
system observes field 2 in two different states to illustrate how its height affects the local
moving heuristic. In both cases, the system considers only the state of field 2, which is
shaded to highlight its independence from the rest of the configuration. Dashed blocks
represent positions where blocks may or may not have been placed.

To guide the robot’s movement, we introduce a family of local moving heuristics {h↑
j,hj

}, defined
for each field index j = 0, . . . ,m and corresponding height hj = 0, . . . , n. Each h↑

j,hj
directs

the robot towards a target field based only on the height of field j, independent of other fields.

This behaviour is illustrated in Figure 8.2 and defined as follows:

- Case 1: Field j is below the target height, i.e. hj < j:

h↑
j,hj

= h(j−2),{⟨fieldj ,hj⟩}, meaning that for the next construction step, the robot needs to

place a block on field j − 1.

- Case 2: Field j has reached its target height, i.e. hj = j:

h↑
j,j = h(m−1),{⟨fieldj ,j⟩}, indicating that for the next construction step, the robot must

place a block on the final field m.

Returning to the depot

A similar principle applies when the robot is not carrying a block: it should return to the depot

located at field 0. This behaviour is captured by a local moving heuristic hdepot = h0,{⟨hand,free⟩}.

Global Weighted Moving Heuristic

The local moving heuristics described earlier allow each field to influence the robot’s movement

based on the field’s current construction state. However, these influences act simultaneously

and independently, which can lead to conflicting signals about where the robot should go next.

To resolve this and guide the robot decisively towards the most relevant part of the ramp, we

introduce a priority weighting scheme.

Linear Termes 54

Each field-height pair (i, h) ∈ B is assigned a weight of 2f(i,h). This assignment, together with

the statement from Lemma 20 that each local moving heuristic changes by at most ±1 when

the robot moves by one field, guarantees that the influence of the last construction step always

outweighs the combined influence of all previous steps. As a result, the robot’s moving heuristic

becomes unambiguous: when carrying a block, only a single field can dominate the decision,

providing a clear and consistent guide for movement.

When the robot is not holding a block, the depot return heuristic (introduced earlier) should

override any construction-related preferences. To enforce this behaviour, we define a special

parameter:

walking back = 2|B|+1

This value exceeds the total combined pull from all building step weights defined above, ensur-

ing that returning to the depot always dominates when the robot is empty-handed.

To formally define a weighted moving heuristic, we introduce two basic operations on potential

heuristics: addition and scalar multiplication. These allow us to compose multiple heuristic

components into a single unified potential heuristic.

Definition 10 (Addition of Potential Heuristics). Let h1 and h2 be potential heuristics with

respective feature sets F1 and F2, and corresponding weight functions w1 : F1 → R and

w2 : F2 → R. We define the sum hsum = h1 + h2 as a new potential heuristic over the unified

feature set Fsum = F1 ∪ F2, with the combined weight function wsum : Fsum → R given by:

wsum(F) =


w1(F), if F ∈ F1 \ F2,

w2(F), if F ∈ F2 \ F1,

w1(F) + w2(F), if F ∈ F1 ∩ F2.

In addition to combining heuristics additively, we may also want to control their relative influ-

ence. For this, we introduce scalar multiplication.

Definition 11 (Scalar Multiplication of Potential Heuristics). Let h be a potential heuristic

with feature set F and weight function w : F → R, and let a ∈ R be a scalar. The scaled

heuristic hscaled is defined by multiplying each weight by a, i.e.

wscaled(F) = a · w(F) for all F ∈ F .

Then the corresponding heuristic value for a state s is:

hscaled(s) =
∑
F∈F

wscaled(F)[F ⊆ s] = a ·
∑
F∈F

w(F)[F ⊆ s] = a · h(s).

With these operations in place, we can now define the global weighted moving heuristic as a

linear combination of the depot return signal and the sequence-guided construction heuristics:

h↑
walk = walking back · h↑

depot +

m∑
i=0

n∑
h=0

2f(i,h) · h↑
i,h (1)

Linear Termes 55

To illustrate the effect of this global weighted moving heuristic in practice, we now consider a

concrete example. The following scenario demonstrates how the exponential weighting guides

the robot’s behaviour on a small ramp, showing how each field–height pair contributes to the

movement decision depending on the current state of construction.

Example 2 (Construction Guidance on a 4-Field Ramp). Consider a ramp with m + 1 = 4

fields and a goal height of n = 3. The resulting exponential weights assigned to each field–height

pair are:

h = 3 0 0 0 64

h = 2 0 0 32 16

h = 1 0 8 4 2

ai,h i = 0 i = 1 i = 2 i = 3

The entry in each cell represents the weight 2f(i,h) for the field–height pair (i, h). For example,

the weight for field 1 having height 1 is 23 = 8.

Now assume the current ramp state is:

(h0, h1, h2, h3) = (0, 1, 1, 2).

The next valid construction step, according to the desired build order (layer by layer, back

to front), is to place the second block on field 2 (i.e., complete height 2 at i = 2). From the

weight matrix, the field–height pair (3, 2) has a weight of 24 = 16, which is currently the highest

relevant active weight in the construction sequence. The robot’s global moving heuristic will

therefore, when carrying a block, be dominated by the local moving heuristic for this next step,

h3,2, pulling it towards field 1 to place a block on field 2.

This example illustrates how the exponential weighting guides the robot towards the next con-

struction step. The following lemma formalizes this intuition by showing that moving towards

the field where construction will continue is always feasible and results in a decreased heuristic

value.

Lemmas 21. Let s be a non-goal state with a finite h1 heuristic value. Let h↑
walk be the weighted

moving heuristic defined by the weight function in Eq. (1).

Assume the robot is currently carrying a block. Then there exists a field p such that the next

construction step is to place a block onto field p + 1. When not already positioned on field p,

then moving towards field p is a feasible action that does not incur an infinite penalty from h1.

Moreover, this movement results in a strictly decreased heuristic value h↑
walk in the resulting

state s′.

Proof. By Lemma 19, walking to a neighbouring field, excluding the final field, is always feasible

in states with finite h1, and such a move does not introduce an infinite penalty in the heuristic.

Since s is not a goal state, at least one field is incomplete. Because h1(s) < ∞, it follows

from the construction of h1 that all building steps up to some j are complete. Let this j be

the index of the last completed building step. By definition, the next step is to place a block

Linear Termes 56

onto the field associated with building step j. Let f−1(j) = (i, hi) denote the field–height pair

corresponding to the j-th building step. We define the field as

p =

m− 1, if hi = i,

i− 1, otherwise.

In either case, the next placement is at field p + 1. Note that the term walking back · w↑
depot

does not contribute to the heuristic difference here because the robot is carrying a block, so

the depot-related weight remains constant during this move. From Lemma 20, we know that

taking a single step changes each local moving heuristic by -1 when walking towards its target

field and +1 when walking away from it. In the worst-case scenario, moving towards p increases

the heuristic values for all k < j by +1 and decreases the heuristic value for index j by −1.

The total change in the weighted moving heuristic is then:

h↑
walk(s

′)− h↑
walk(s) = −2j +

j−1∑
k=0

2k = −2j + (2j − 1) = −1 < 0.

Therefore, the weighted moving heuristic strictly decreases after moving towards p, completing

the proof.

Having shown the benefit of moving towards the next construction site, we now investigate the

implications of completing the construction step by placing the block.

Lemmas 22. Let s be a non-goal state with a finite h1 heuristic value. Let h↑
walk be the weighted

moving heuristic defined by the weight function in Eq. (1).

Assume the robot is currently carrying a block and is positioned on field p such that placing a

block onto field p + 1 is a feasible action that preserves the finiteness of h1, and the resulting

state s′ satisfies

h↑
walk(s

′)− h↑
walk(s) < walking back ·m.

Proof. By Lemma 21, there exists a field p such that placing a block onto p+1 corresponds to

the next valid construction step. Let q := p + 1. Since h1 assigns infinite cost only to states

that violate the intended construction sequence, performing this step ensures that h1 remains

finite.

Placing the block onto field q modifies two variable assignments. Specifically, it changes the

assignment of the variable hand from block to free and updates fieldq from hq to hq +1. These

changes affect the heuristic value hwalk as follows:

h↑
walk(s

′)− h↑
walk(s) = w↑

walk({⟨robot, p⟩, ⟨hand, clear⟩})

+ w↑
walk({⟨robot, p⟩, ⟨fieldq, hq + 1⟩})

− w↑
walk({⟨robot, p⟩, ⟨fieldq, hq⟩})

= walking back · p+ 2f(q,hq+1) · |t1 − p| − 2f(q,hq) · |(q − 2)− p|

< walking back · p+ 2f(q,hq+1) · |t1 − p|

where t1 ∈ {q − 2,m− 1} depends on the updated construction target.

We consider two cases:

Linear Termes 57

1) hq + 1 = q:

Then the construction step is complete, and the next target field becomes t1 = m−1. Since

p ≤ m− 1, we have |m− 1− p| = m− 1− p. Also, by definition,

walking back = 2|B|+1, and f(q, hq + 1) ≤ |B|,

so 2f(q,hq+1) < walking back. Hence:

h↑
walk(s

′)− h↑
walk(s) < walking back · p+ 2f(q,hq+1) · (m− 1− p)

< walking back · p+ walking back · (m− 1− p)

= walking back · (m− 1)

2) hq + 1 < q:

Then the target field remains t1 = q − 2, and |q − 2− p| = |p− 1− p| = 1 (since q = p+ 1).

Thus:

h↑
walk(s

′)− h↑
walk(s) < walking back · p+ 2f(q,hq+1)

< walking back · p+ walking back

= walking back · (p+ 1)

Since p ≤ m− 1, it follows that p+ 1 ≤ m, and hence in both cases:

h↑
walk(s

′)− h↑
walk(s) < walking back ·m.

Block Placing Heuristic

To explicitly encourage the agent to place blocks and thereby make measurable progress towards

the goal, we define a block placement heuristic h↑
block that rewards state transitions which

increase the height of any field.

Let hj denote the current height of field j, and recall that the goal height of field j is j. The

number of blocks still required to complete field j is thus j−hj . Based on this observation, we

define h↑
block with the block placement weight function:

w↑
block({⟨fieldj , hj⟩}) = j − hj

for all j = 0, . . . ,m and hj = 0, . . . , j. This heuristic captures the value of having placed a

block and reflects progress towards completing the desired ramp profile. We now analyse how

this heuristic behaves under different actions by the robot. We begin by establishing that robot

movement alone does not affect the heuristic value hblock.

Lemmas 23. Let s be a non-goal state with a finite h1 heuristic value. Let h↑
block be the block

placing heuristic. Then any action in which the robot moves between fields does not change the

heuristic value of h↑
block.

Proof. When the robot moves, the only variable that changes is the robot’s position. Since the

weight function w↑
block depends solely on the field heights hj , and not on the robot’s location,

such a move does not change the value of h↑
block.

Linear Termes 58

Next, we show that placing a block reduces the heuristic value h↑
block, thus making measurable

progress towards the goal state.

Lemmas 24. Let s be a non-goal state with a finite h1 heuristic value. Let h↑
block be the weighted

block placing heuristic.

Suppose the robot is carrying a block. Then placing the block on any field that has not yet

reached its goal height decreases the value of h↑
block by exactly 1.

Proof. Placing a block affects only the height of a single field. Let this field be field j, and

suppose its height increases from hj to hj + 1 after the block is placed. Let s′ denote the

resulting state. Then the change in the heuristic value is:

h↑
block(s

′)− h↑
block(s) = w↑

block({⟨fieldj , hj + 1⟩})− w↑
block({⟨fieldj , hj⟩})

= (j − (hj + 1))− (j − hj)

= −1.

Hence, the heuristic value h↑
block decreases by exactly 1.

Placing a block transitions the agent to a state where its hand is empty. As a result, the walking-

back heuristic (which encourages returning to the depot to pick up a new block) may increase

the overall heuristic value. To ensure that placing a block is always an overall favourable action,

we scale the block placement heuristic by a sufficiently large constant such that the gain from

placing a block outweighs any penalty incurred by being empty-handed.

Specifically, we define:

placing-block = walking-back · (m+ 1)

where m + 1 is the number of fields. This guarantees that placing a block is always more

rewarding than walking back to the depot, regardless of the robot’s position.

We now define the complete weighted block placing heuristic:

hplacing = placing block · hblock (2)

This scaled heuristic guides the agent to prioritize placing blocks in a way that guarantees

consistent progress towards the goal configuration.

Construction Heuristic

We can now introduce the main heuristic

h2 = h↑
placing + h↑

walk

= placing block · h↑
block + walking back · h↑

depot +

m∑
i=0

n∑
h=0

2f(i,h) · h↑
i,h

for constructing a ramp.

Linear Termes 59

Analysis of Successor States

We now analyse the behaviour of the heuristic h↑ = h1 + h2 in states where the robot is either

carrying a block or not. For every possible configuration, we prove that there exists a successor

state whose heuristic value is strictly lower than that of the current state. Our approach involves

a thorough case-by-case analysis, distinguishing scenarios based on the robot’s position as well

as whether it is carrying a block. Note that, by Lemma 21, when the robot is carrying a block,

there is exactly one preferred field it should move towards to reduce the heuristic. We denote

this field as field p.

Case 1: The robot is carrying a block and is on the target field p

First, we show that when the robot is positioned on the designated target field p, placing the

block directly continues the ramp construction. Due to the construction of the weight matrix,

this placement is encouraged, and no infinite weights are introduced in the process.

Lemmas 25. Let s be a state in which the robot is carrying a block and is located at field p.

Then, there exists a successor state s′ of s such that hc(s
′) < hc(s).

Proof. By Lemma 21, there exists a field p such that placing a block at q := p+ 1 constitutes

the next valid construction step. Since h1 assigns infinite cost only to states violating the

construction sequence, placing the block at position q results in a successor state s′ for which

h1(s
′) remains finite, i.e., h1(s

′) < ∞.

We now analyse the change in the h2 component of the heuristic. By Lemma 24, placing a

block decreases hblock by 1. Additionally, by Lemma 22, the act of placing a block increases

hwalk by at most m · walking back . Thus, the net change in h2 is:

h2(s
′)− h2(s) = h↑

placing(s
′) + h↑

walk(s
′)− (h↑

placing(s) + h↑
walk(s))

= (h↑
placing(s

′)− h↑
placing(s)) + (h↑

walk(s
′)− h↑

walk(s))

< −placing block+m · walking back

Recall the definition

placing block = walking back · (m+ 1),

we substitute:

h2(s
′)− h2(s) < −walking back · (m+ 1) +m · walking back

= −walking back < 0

Hence, h2(s
′) < h2(s), and since hc is composed of h1 and h2 (with h1 finite and unchanged),

it follows that:

hc(s
′) < hc(s)

as required.

Linear Termes 60

Case 2: The robot is carrying a block but is at a different field field i, such that

i ̸= p

Next, we handle the situation where the robot is not yet at the target field p. In this case,

walking towards field p reduces the distance to the next placement site. We show that this

movement leads to a successor state with strictly lower heuristic value.

Lemmas 26. Let s be a state in which the robot is carrying a block and is located at field i

with i ∈ {0, . . . ,m− 1} such that fieldi ̸= field p. Then there exists a successor state s′ of s for

which hc(s
′) < hc(s).

Proof. By Lemma 19, taking a walking step to a neighbouring field (excluding the final one) is

always feasible in any state where h1 < ∞, and this step does not introduce an infinite penalty.

Thus, we focus on the change in the h2 component, specifically the weighted moving heuristic

h↑
walk, which depends on the robot’s position.

Since fieldi ̸= fieldp, the robot is not yet at its preferred destination field p. According to

Lemma 21, taking a step towards field p decreases the heuristic value by at least 1. Therefore,

by executing such a move, the robot reaches a successor state s′ with hc(s
′) < hc(s).

Case 3: The robot is not carrying a block and is located at fieldi with

i ∈ {1, . . . ,m− 1}
In this case, the robot is returning to the depot without a block. We show that stepping one

field back (from field i to field i+ 1) leads to a strictly lower heuristic value.

Lemmas 27. Let s be a state in which the robot is not carrying a block and is located at field

i with i ∈ {1, . . . ,m− 1}. Then, there exists a successor state s′ of s such that hc(s
′) < hc(s).

Proof. By Lemma 19, taking a walking step to a neighbouring field (excluding the final one) is

always feasible in any state where h1 < ∞, and this step does not introduce an infinite penalty.

Thus, we focus on the change in the h2 component, specifically the weighted moving heuristic

h↑
walk, which depends on the robot’s position.

Since s is not a goal state, at least one field is incomplete. Moreover, h1(s) < ∞ implies that

all building steps up to some j ≤ |B| are complete. Let this j be the index of the last completed

building step.

When the robot takes a single step, the only variable that changes is its position. According

to Lemma 20, each local moving heuristic can change by at most ±1. Consider the worst case:

moving towards the depot increases the heuristic values for all k ≤ j by +1, while the value for

h↑
depot decreases by −1. The resulting change in the weighted heuristic is then:

hc(s
′)− hc(s) = −walking back+

j∑
k=0

2k

By definition, walking back = 2|B|+1, and since j < |B|+ 1, we have:

hc(s
′)− hc(s) = −2|B|+1 +

j∑
k=0

2k = −2|B|+1 + (2j+1 − 1) < 0

Linear Termes 61

Therefore, the weighted moving heuristic strictly decreases when the robot takes one step

towards the depot with a free hand, completing the proof

Case 4: The robot is not carrying a block and is located at the depot (field 0)

Finally, we consider the case where the robot has returned to the depot and is ready to pick

up a new block. We show that this action strictly decreases the heuristic value.

Lemmas 28. Let s be a state in which the robot is not carrying a block and is located at field

0. Then, there exists a successor state s′ of s such that hc(s
′) < hc(s).

Proof. Since the depot is always at height 0, the robot can always pick up a block at this

location. This action updates the variable hand from empty to block. Because the variable hand

does not appear in any feature of the weight function w1, we can focus solely on the weights

from w2. The only weight in w2 involving the hand variable is w↑
depot, which becomes inactive

because the atom ⟨hand, empty⟩ is no longer part of the successor state s′. As a result, the

heuristic value decreases by walking back and, importantly, remains finite.

8.3.3 Destruction Phase

The third subproblem addresses the deconstruction of the ramp. The destruction phase reverses

the construction process by removing blocks in reverse order. Key differences in the heuristic

framework include:

- Each local moving heuristic h↓
j,hj

encourages the robot to move to field j − 1 (instead of

j + 1 or m− 1 during construction).

- The depot heuristic h↓
depot applies when the robot carries a block, directing it back to

field 0 (whereas in construction it applied when the robot’s hands were empty).

- Higher fields incur greater penalties than lower ones, reversing the block placing heuristic

used in construction.

The combined heuristic

h3 = h↓
picking + h↓

walk = picking block · h↓
block + walking back · h↓

depot +

m∑
i=0

n∑
h=0

2f(i,h) · h↓
i,h

guides the robot’s movements and block pickups to guarantee progress during deconstruction.

For full formal definitions, lemmas, and proofs, see Appendix B.

8.3.4 Linear Termes Heuristic

To derive an upper bound on the ∞-DDA correlation complexity, we introduce a new opera-

tion on potential heuristics, called feature multiplication. This operation augments an existing

feature set F by conjoining each feature in F with an additional feature F̃ . Intuitively, this

corresponds to creating a new heuristic that evaluates each original feature in the context of

F̃ . We denote this operation by F̃ ⊛ hpot.

Linear Termes 62

Definition 12 (Feature Multiplication). Let Π be a planning task, F be a set of state features

of Π, F̃ be a single feature of Π, w : F → R∪{∞}, and let hpot be the potential heuristic with

features F and weight function w.

The feature-multiplied heuristic F̃ ⊛ hpot is defined as the potential heuristic over the set of

atoms F̃ = {F ∪ F̃ | F ∈ F} with weight function w′(F ∪ F̃) = w(F). Then for any state s:

F̃ ⊛ hpot(s) =
∑
F∈F

w(F) · [(F ∪ F̃) ⊆ s].

where [·] denotes the indicator function. If F ∪ F̃ contains contradictory assignments to the

same variable, then no state s can satisfy it, i.e. (F ∪ F̃) ⊆ s is false for all s. In such cases,

the corresponding weight can be safely treated as zero without affecting the heuristic value.

Lemmas 29. Let hpot be a potential heuristic defined over a feature set F of dimension d,

and let F̃ be a feature over a single variable. Then the feature-multiplied heuristic F̃ ⊛hpot has

dimension of at most d + 1. If the variable in F̃ does not already occur in a feature F ∈ F ,

then the dimension is exactly d+ 1.

Proof. By definition, the feature-multiplied heuristic F̃ ⊛ hpot is constructed by forming new

set of atoms F ′ = F ∪ F̃ for each F ∈ F . The dimension of a feature is defined as the number

of distinct variables it includes.

If the variable in F̃ does not occur in F , then F ′ contains d+1 variables. Therefore, the result-

ing heuristic includes features of dimension d + 1, and the heuristic as a whole has dimension

d+ 1.

On the other hand, if the variable in F̃ already occurs in F , then F ′ may contain contradictory

assignments. In such cases, the set of atoms F ′ is no more consistent, therefore no state can

satisfy both variable assignments, and hence it contributes nothing to the heuristic value. These

sets can be omitted or assigned weight zero without changing the heuristic.

Thus, all consistent features F ′ have dimension of at most d + 1, and only those contribute

to the heuristic. The upper bound is reached exactly when F̃ introduces a new variable not

present in any F ∈ F .

To ensure that the heuristic values remain positive throughout the whole plan, we introduce

an offset heuristic, called hoffset, while the tower has not yet reached its goal height. Once the

tower is complete, this value is removed, effectively resetting the scale and guiding the agent

towards deconstructing the ramp. It is defined over the weight function

woffset({⟨fieldm, hm⟩} = offset

for all hm < n. The offset accounts for the maximum possible cost incurred during the transi-

tion from the construction phase to the required deconstruction phase. This transition models

a worst-case configuration in which the heuristic must overestimate any potential gain from

placing the final block on the tower, thereby completing the construction phase. By doing so,

Linear Termes 63

it ensures that the heuristic continues to guide the agent correctly into the necessary decon-

struction phase.

To conservatively estimate this transition cost, we assume the following worst-case configura-

tion:

- All fields j ∈ {0, . . . ,m} are at the height hj = n − 1, with each local moving heuristic

pulling the robot towards the first field weighted like the last building step,

- The robot is positioned at field m− 1 with empty hands.

Under this assumptions, the offset is defined as:

offset = 1 + walking back · (m− 1)

+m · placing block · (n− 1)

+m · 2|B| · (m− 1)

Combining the components introduced above, we define the final heuristic h as a composition

of several potential heuristics modulated by feature multiplication. Formally, the heuristic is

given by

h = h1 + ⟨fieldm, n⟩⊛ h3 + hoffset +

n−1∑
hm=0

⟨fieldm, hm⟩⊛ h2

We can now establish an upper bound on the ∞-DDA correlation complexity for Linear Termes.

Lemmas 30. The ∞-DDA correlation complexity of Linear Termes is at most 3.

Proof. We prove that the heuristic function h satisfies the ∞-DDA properties and that its

maximum feature dimension is bounded by 3.

The heuristic is defined as

h = h1 + ⟨fieldm, n⟩⊛ h3 + hoffset +

n−1∑
hm=0

⟨fieldm, hm⟩⊛ h2.

The component h1, encoding hard constraints, is defined over features of at most two variables

and therefore has dimension 2. hoffset is defined over just the last fields height, it therefore has

dimension 1. Both h2 and h3 are potential heuristics composed of local movement features,

each defined over exactly two variables: the robot’s position and the height of a field. For

example, h3 includes weights of the form

w↓
j,hj

(
{⟨robot, i⟩, ⟨fieldj , hj⟩}

)
= |(j − 1)− i|,

defined for all j ∈ {0, . . . ,m−1}. These features do not involve the final field m. When feature

multiplication is applied with ⟨fieldm, hm⟩, the resulting conjunctions introduce a third variable,

the height of field m, which was not previously present in any feature.

By Lemma 29, multiplying a heuristic of dimension 2 with a feature over a new variable

yields a heuristic of dimension exactly 3. Consequently, both feature-multiplied components

Linear Termes 64

(⟨fieldm, n⟩⊛ h3 and ⟨fieldm, hm⟩⊛ h2) have dimension 3. Since h1 remains of dimension 2 and

hoffset remains of dimension 1, the overall heuristic h has maximum feature dimension 3.

We now proceed to show that h satisfies the ∞-DDA property.

The initial state has a finite value, i.e. I ∈ Sfin:

Let I denote the initial state, where all fields have height zero, the robot is on field 0, and its

hand is empty. We must show that h(I) < ∞. Since all features in hoffset, h2 and h3 have

finite weights by definition, it suffices to verify that no features from h1, which can contribute

an infinite value, are present in the initial state.

The weights in w1 represent structural constraints. These include conditions such as preventing

field heights from exceeding their position index, ensuring that field heights do not decrease

from left to right, and prohibiting the robot from standing on the final field, height differences

between neighbouring fields of more than one, and placing blocks on a layer, when the layer

beneath is not completed yet. All of these constraints are trivially satisfied in the initial state:

all field heights are zero, and the robot is located at the first field. Therefore, no feature from

h1 applies, and h(I) < ∞.

For all non-goal states with a finite heuristic value there exists a successor with a

lower heuristic value, i.e. ∀s ∈ (Sfin \G)∃t ∈ succ(s) : h(t) < h(s):

Due to the feature multiplication in the heuristic definition, and the way woffset is defined for

all hm < n, only the components h1, h2, and hoffset contribute to the overall heuristic value h

during the construction phase (i.e. when hm < n). Consequently, to verify the descending and

dead-end-avoiding properties, it suffices to consider these components. In the deconstruction

phase (when hm = n), the heuristic value of h depends solely on h1 and h3.

As established in Lemma 25 to 28, for every non-goal state in the construction phase (i.e., for

all hm < n with finite h1), there exists a successor state in which h2 strictly decreases. Likewise,

Lemma 34 to 37 demonstrate that in the deconstruction phase, for every non-goal state with

finite h1, there exists a successor in which h3 strictly decreases.

It remains to show that placing the final block on field m results in a decrease of the heuristic

value:

h(s′)− h(s) = ⟨fieldm, n⟩⊛ h3(s
′)− ⟨fieldm, n− 1⟩⊛ h2(s)− hoffset(s)

By construction, offset is chosen such that

⟨fieldm, n⟩⊛ h3(s
′) < offset

i.e. the heuristic value in the deconstruction phase is strictly smaller than the contribution

from the offset alone.

Moreover, since h2(s) ≥ 0 by non-negativity of the potential heuristic components, we conclude:

h(s′) < h(s)

Linear Termes 65

Hence, placing the final block results in a strict decrease in the heuristic value.

This completes the proof that the heuristic satisfies the ∞-DDA property.

The previous lemma demonstrates that the ∞-DDA correlation complexity of Linear Termes is

at most 3. According to the structure illustrated in Figure 4.4, the PDDA correlation complexity

is never greater than that of ∞-DDA. Therefore, the upper bound of 3 established for ∞-DDA

also holds for the PDDA correlation complexity.

Corollary 30.1. The PDDA correlation complexity of Linear Termes is at most 3.

8.4 Discussion and Extensions

This section presents two developments that refine and extend the original framework. First, we

replace the exponential weight function with a recursive alternative that preserves the heuristic’s

intended prioritization while reducing numerical growth. Second, we reconnect the Linear

Termes approach with the original two-dimensional Termes system by introducing a fixed build

path that linearizes the 2D workspace. In doing so, the 1D heuristic retains its structural

properties even when applied in a richer two-dimensional context.

Recursive Weight Matrix

Since the weights 2f(j,hj) grow too quickly for practical computation, we have instead worked

with alternative weights defined recursively. This substitution provides a more manageable

growth rate while preserving the desired prioritization of tasks in the construction sequence.

We achieve this behaviour with the following recursive definition:

ai,h =


1 if i = 0 and h = 0∑
j>i

aj,h +
∑
j<i

aj,h−1 +
∑

j<h−1

aj,j + 1 if i ≥ h and h > 0

0 otherwise

This recursion strategically prioritizes the current entry ai,h over three distinct groups of other

entries, ensuring the robot consistently follows the intended construction logic:

- The first sum ensures that fields to the right with the same height are outweighed by ai,h,

encouraging the robot to complete the current layer from back to front.

- The second sum ensures that fields to the left at height h − 1 are outweighed by ai,h,

reflecting that the lower layer has already been completed and construction should now

proceed upward.

- The third sum ensures that diagonal entries from previously completed layers, those that

guide the robot towards initiating the next layer, are also surpassed by ai,h, so that higher

layers are only prioritized after the current one is fully built.

To illustrate the difference in growth, consider the following example:

Linear Termes 66

Example 3 (Grow rate of different weights). Consider a Linear Termes planning task Π with

m+ 1 = 10 fields and a goal height of n = 9.

Using the exponential weighting scheme it becomes:

2f(9,9) = 3.52× 1013

By contrast, under our recursively defined weights, the final weight value is:

a9,9 = 1.04× 1013

The difference between these two values is:

2f(9,9) − a9,9 = 2.48× 1013

This substantial gap shows that the recursive weights grow more slowly and are therefore more

manageable numerically.

We show in Appendix C that these recursively defined weights still fulfil the necessary heuristic

descent properties. The adapted proof follows the same core ideas as the one used for the

exponential weights, confirming that the robot continues to make progress towards the goal.

The required adjustments to parameters such as walking back, placing block and offset are

redefined analogously using the recursive weights as follows:

walking back = 1 +

n∑
i=0

ai,i, placing block = walking back ·m

To conservatively estimate offset, we assume the following worst-case configuration:

- All fields j ∈ {0, . . . ,m− 1} are at their maximum possible height hj = max(j, n),

- The robot is positioned at field m− 1 with empty hands.

Under this assumptions, the offset is defined as:

offset = 1 + walking back · (m− 1)

+

m−1∑
j=0

placing block · [j < n] · j

+

m−1∑
j=0

placing block · [j ≥ n] · (n− 1)

+

m−1∑
j=0

2f(j,j) · [j < n] · |(j − 1)− (m− 1)|

+

m−1∑
j=0

2f(j,n−1) · [j ≥ n] · |(j − 1)− (m− 1)|

These updated definitions ensure that the intended behaviour, returning to the depot when

empty-handed and preferring to place blocks over walking, remains intact under the new weight-

ing scheme.

Linear Termes 67

Generalization to 2D

The Linear Termes approach can be naturally extended from 1D to 2D environments where a

single tower must be built at a designated goal field. In this setting, the 2D construction area is

represented as an m× k grid, with a fixed path predefined from the depot to the target tower.

This path captures the desired construction sequence and serves as a linearization of the 2D

problem. Each field along the path is assigned a unique index from 1 to n, where n < m · k is

the maximum tower height. These indices then replace the role of the 1D field positions in the

original heuristic framework. This approach enables the same layer of control over build order

and path planning in two dimensions, while preserving the simplicity and provable properties

of the 1D method. Moreover, this approach generalizes to environments of arbitrary shape,

provided there exists a path of length n that defines the build order.

9
Experiments

This chapter presents an empirical validation of the theoretical properties of the heuristics de-

veloped in this work, specifically those satisfying the UDDA, ∞-DDA, and PDDA conditions.

The goal is not to evaluate the heuristics performance or compare them to alternative methods,

but to verify that their practical behaviour aligns with theoretical guarantees. Because these

heuristics are designed to be strictly descending, ensuring that each state has a successor with

a lower heuristic value, solution discovery becomes trivial when a solution exists. Consequently,

conventional performance metrics such as search time or plan optimality are not informative in

this context.

All experiments were performed using a modified version of Fast Downward [5], extended to

support domain-specific multi-dimensional potential heuristics. The modifications affected both

the heuristic evaluation and the search infrastructure. Experiments were run on a machine with

an Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, under Ubuntu 24.04. The

hardware and software setup was kept constant throughout.

Our validation strategy consisted of two components:

a) Search behaviour along the solution path: We ran an eager greedy best-first search

using our heuristics as the evaluation function. For each problem instance, we recorded

two key metrics: the number of expanded states and the length of the plan. According to

our theoretical results, if a heuristic satisfies the desired properties and correctly guides the

search, the number of expanded states should match the plan length plus one, accounting

for the initial state and each action along the path.

b) Property verification over the full state space: We implemented an exhaustive algo-

rithm to verify whether the heuristic satisfies the formal criteria for UDDA and ∞-DDA.

This algorithm systematically explores the state space by enumerating all possible variable

assignments, visiting all reachable and unreachable states. To test the UDDA property, we

check whether every state has at least one successor with a strictly lower heuristic value.

For verifying the ∞-DDA property, we restrict this condition to states with finite heuristic

Experiments 69

values. If this condition is met for all such states, the corresponding property is considered

satisfied.

Note that in cases where the ∞-DDA and PDDA correlation complexities were the same,

we only tested the ∞-DDA heuristic. This is because the PDDA heuristic can be directly

transformed from the ∞-DDA heuristic without altering its behaviour. For domains where the

correlation complexities differed, we tested both heuristics independently.

Blocksworld (IPC 2000):

For our experiments in the Blocksworld domain, we used the version provided in the AI-Basel

Downward benchmark collection2. To simplify the structure and reduce potential ambiguity,

we adapted the domain by removing the robotic hand component, resulting in a single-arm

variant where blocks can be picked up and placed without intermediate holding actions. In all

tested instances, both the ∞-DDA and PDDA heuristics resulted in search behaviour consis-

tent with theoretical expectations: the number of expanded states exactly matched the plan

length plus one, indicating strictly descending progress along the solution path with no detours.

For full state space verification, we selected small instances from the Blocksworld domain to

allow for exhaustive analysis. In every tested instance, the heuristic satisfied the ∞-DDA

property. For the PDDA heuristic, the verification was not completed due to insufficient time.

Spanner (IPC 2011 Learning Dataset):

To evaluate search behaviour in the Spanner domain, we selected problem instances from the

IPC 2011 learning track. In all tested instances, the number of expanded states matched the

plan length plus one, exactly as predicted by our theoretical analysis, confirming that the search

followed the path without unnecessary exploration.

For full state space verification, we generated custom Spanner instances with reduced state

space sizes, allowing exhaustive analysis. In every tested instance, the heuristic satisfied the

∞-DDA property. This confirms that the heuristic maintained the required descending be-

haviour across the entire space.

Logistics (IPC 1998):

To evaluate our approach in the Logistics domain, we used problem instances from the IPC

1998 benchmark set provided in the AI-Basel Downward benchmark collection2. In all tested

instances, the number of expanded states exactly matched the plan length plus one, demonstrat-

ing that the heuristic consistently guided search along a path without detours or backtracking.

To enable complete state space verification, we tested on a custom small Logistics instance.

In this reduced setting, the heuristic satisfied the UDDA property. This confirms that the

2 https://github.com/aibasel/downward-benchmarks

https://github.com/aibasel/downward-benchmarks

Experiments 70

heuristic consistently guided progress towards the goal and avoided dead ends across the entire

domain.

Termes (IPC 2018):

In the Termes domain, we evaluated our heuristic on custom instances of the linear variant

introduced earlier. Because the heuristic assigns rapidly increasing weights, the state space size

grows with the grid size, even in relatively small instances. This growth restricts exhaustive

analysis to only the smaller problem configurations.

Despite this limitation, in all tractable instances we tested, the heuristic satisfied the ∞-DDA

property. This confirms that the heuristic maintained the desired descending behaviour across

the finite space. Moreover, the number of expanded states during the search matched the plan

length plus one, indicating that the search followed a path without detours or unnecessary

exploration.

10
Conclusion

In this thesis, we have analysed the hierarchy and correlation complexities of four DDA heuris-

tic variants, DDA, ∞-DDA, UDDA, and PDDA, across several planning domains: Blocksworld,

Spanner, Logistics, and a modified version of Termes. Our results demonstrate that the rela-

tionship between these heuristics varies depending on domain structure.

Among the heuristic variants studied, UDDA is the most general: every UDDA heuristic can

be transformed into an equivalent DDA, ∞-DDA, or PDDA heuristic, implying that their cor-

relation complexities are always bounded above by that of UDDA. Notably, through concrete

examples such as the modified Gray code, we demonstrated that the more specialized variants

(DDA, ∞-DDA, and PDDA) can achieve strictly lower correlation complexity than UDDA in

certain planning tasks. Furthermore, every ∞-DDA heuristic can be transformed into a PDDA

heuristic. However, DDA is incomparable with both ∞-DDA and PDDA, reflecting fundamen-

tal structural differences between these variants.

These theoretical insights were then supported by empirical evaluations across domains. In

Blocksworld, we observed that ∞-DDA requires a correlation complexity of 3, while DDA and

PDDA achieve a lower complexity of 2. This provides a concrete, practical example where

one heuristic variant (∞-DDA) relies on strictly more information than the others (DDA and

PDDA) to resolve the same planning problem. This distinction highlights a meaningful differ-

ence in how these heuristics interpret and utilize structural information in a domain.

In the Spanner domain, we showed that no UDDA heuristic exists. Nevertheless, DDA,∞-DDA,

and PDDA all attain the same correlation complexity of 2, consistent with previous results for

DDA [14]. For the Logistics domain, all four variants yield a correlation complexity of 2, in-

dicating that the choice among these DDA heuristics becomes inconsequential in structurally

simpler domains.

In the modified Termes domain, we established a lower bound of 2 and an upper bound of 3 for

both ∞-DDA and PDDA, with no exact value yet determined. Preliminary attempts to prove

a strict lower bound of 3 using MiniZinc were inconclusive due to time constraints and will be

Conclusion 72

pursued as future work. The open nature of this result suggests potential for further insight

into the complexity behaviour of these heuristics in spatial and construction-based domains.

Finally, we implemented each of the heuristic variants across the studied domains and verified

their satisfaction of the different DDA properties. These implementations served to validate our

theoretical hierarchy and complexity results. For all variants except PDDA, we conducted both

a search-based evaluation and a full verification of the corresponding property over the entire

state space. For PDDA, due to time constraints, we limited our evaluation to search-based

behaviour along solution paths.

Future Work

There are several directions in which this work could be extended. One important aspect is

the investigation of the lower bound of the correlation complexity in the linear Termes domain.

While we have established an upper bound, determining whether this bound is tight would

provide a more complete understanding of the informational requirements in this domain.

Additionally, it would be valuable to generalize the heuristic developed for the linear version of

Termes to the full Termes domain. Such a generalization would enable a more comprehensive

evaluation of the heuristic’s applicability, and could offer insights into how increasing structural

complexity within the domain affects the correlation complexity required by different heuristic

variants.

Finally, investigating a wider range of planning domains could clarify whether the observed

differences in correlation complexity among DDA variants are specific to certain domain prop-

erties or occur more broadly. Such an expanded study would enhance our understanding of the

relationship between domain structure and heuristic behaviour.

Bibliography

[1] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Compu-

tational Intelligence, 11:625–656, 1995.

[2] Simon Dold and Malte Helmert. Higher-dimensional potential heuristics: lower bound

criterion and connection to correlation complexity. In Proceedings of the International

Conference on Automated Planning and Scheduling, volume 34, pages 151–161, 2024.

[3] Guillem Francès Medina, Augusto B Corrêa, Cedric Geissmann, and Florian Pommerening.

Generalized potential heuristics for classical planning. In International Joint Conferences

on Artificial Intelligence, 2019.

[4] Frank Gray. Pulse code communication. US Patent 2632058, March 1953.

[5] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[6] Malte Helmert, Silvan Sievers, Alexander Rovner, and Augusto B. Corrêa. On the complex-

ity of heuristic synthesis for satisficing classical planning: Potential heuristics and beyond.

In Proceedings of the Thirty-Second International Conference on Automated Planning and

Scheduling, pages 124–133, 2022.

[7] Sven Koenig and T.K. Satish Kumar. A case for collaborative construction as testbed

for cooperative multi-agent planning. In Scheduling and Planning Applications woRKshop

(SPARK), page 10, 2017.

[8] Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram,

Manuela M. Veloso, Daniel S. Weld, and David E. Wilkins. PDDL - the planning do-

main definition language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center

for Computational Vision and Control, 1998.

[9] Drew M McDermott. The 1998 AI planning systems competition. AI magazine, 21(2):

35–35, 2000.

[10] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck,

and Guido Tack. Minizinc: Towards a standard CP modelling language. In Interna-

tional Conference on Principles and Practice of Constraint Programming, pages 529–543.

Springer, 2007.

[11] Kirstin Petersen, Radhika Nagpal, and Justin Werfel. Termes: An autonomous robotic

system for three-dimensional collective construction. In Robotics: science and systems VII,

volume 27, pages 257–265. MIT press Cambridge, CA, USA, 2011.

Bibliography 74

[12] Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-

negative to general operator cost partitioning. In Proceedings of the 29th AAAI Conference

on Artificial Intelligence, pages 3335 – 3341, 2015.

[13] Julie Porteous, Laura Sebastia, and Jörg Hoffmann. On the extraction, ordering, and usage

of landmarks in planning. In Proceedings of the Sixth European Conference on Planning,

pages 174–182, 2001.

[14] Jendrik Seipp, Florian Pommerening, Gabriele Röger, and Malte Helmert. Correlation

complexity of classical planning domains. In Proceedings of the 25th International Joint

Conference on Artificial Intelligence (IJCAI 2016), pages 3242–3250, 2016.

[15] John Slaney and Sylvie Thiébaux. Blocks world revisited. In Artificial Intelligence, volume

125, pages 119–153, 2001.

[16] Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In

ICAPS Doctoral Consortium, pages 156–160, 2003.

A
MiniZinc Model Code

i n c lude ” s t a t e da t a . dzn ” ;

i n t : num f i e ld s = 5 ;

i n t : max height = 3 ;

s e t o f i n t : FIELDS = 1 . . num f i e ld s ;

s e t o f i n t : HEIGHTS = 0 . . max height ;

s e t o f i n t : HAND = 0 . . 1 ;

array [FIELDS] o f var HEIGHTS: he i gh t s ;

var FIELDS : robot pos ;

var HAND: ca r ry ing ;

i n t : num vars = num f i e ld s + 2 ;

i n t : num states = (max height+1)ˆ num f i e ld s ∗ num f i e ld s ∗ 2 ;

i n t : num atoms = num f i e ld s ∗(max height+1) + num f i e ld s + 2 ;

s e t o f i n t : ATOMS = 1 . . num atoms ;

s e t o f i n t : STATES = 1 . . num states ;

i n t : MAXW = 10 ;

array [ATOMS,ATOMS] o f var 0 . 0 . .MAXW: w;

array [ATOMS, ATOMS] o f var 0 . . 1 : w in f ;

array [STATES,ATOMS] o f i n t : f e a t u r e s ;

array [STATES] o f var f l o a t : h ;

array [STATES] o f var i n t : h i n f ;

array [STATES] o f i n t : goa l ;

array [STATES, STATES] o f i n t : succ ;

MiniZinc Model Code 76

% h e u r i s t i c c on s t r a i n t

c on s t r a i n t

f o r a l l (s in STATES) (

h [s] =

sum(a in ATOMS) (w[a , a] ∗ f e a t u r e s [s , a]) +

sum(a , b in ATOMS where a < b)

(w[a , b] ∗ f e a t u r e s [s , a] ∗ f e a t u r e s [s , b])

) ;

% i n f propagat ion : i f any pa i r with i n f i n i t e weight

% i s a c t i v e in s t a t e s , then i n f [s] > 0

c on s t r a i n t

f o r a l l (s in STATES) (

h i n f [s] =

sum(a in ATOMS) (w in f [a , a] ∗ f e a t u r e s [s , a]) +

sum(a , b in ATOMS where a < b)

(w in f [a , b] ∗ f e a t u r e s [s , a] ∗ f e a t u r e s [s , b])

) ;

c on s t r a i n t

f o r a l l (a , b in ATOMS) (

w in f [a , b] == 1 −> w[a , b] == 0

) ;

% i n i t i a l s t a t e

c on s t r a i n t h i n f [1]==0;

% i n f i n i t y dda property

c on s t r a i n t

f o r a l l (s in STATES) (

h i n f [s]>=1 \/
goa l [s]==1 \/
e x i s t s (s2 in STATES) (

succ [s , s2]==1 /\
h i n f [s2]==0 /\
h [s2] < h [s]

)) ;

s o l v e s a t i s f y ;

B
Linear Termes: Destruction Phase

The third subproblem addresses the deconstruction of the ramp. The destruction phase mirrors

the construction phase but proceeds in reverse: blocks are removed rather than placed. Each

field i (except the last) encourages the robot to move to field i− 1, from where it can pick up

a block at i. The same parameters and heuristic structures are reused, with only directional

logic inverted.

Moving Heuristic

As before, we break down the global objective into local goals.

Local Moving Heuristic

We define a family of local heuristics {h↓
j,hj

} for all j = 0, . . . ,m−1 and hj = 0, . . . , n, just as in

construction. The key difference is that each field j now encourages the robot to move to j − 1

(rather than j + 1), enabling the robot to pick up blocks in reverse order. The corresponding

weight function is:

w↓
j,hj

(
{⟨robot, i⟩, ⟨fieldj , hj⟩}

)
= |(j − 1)− i|.

As in the construction phase, these weights satisfy the property from Lemma 20.

Returning to the depot

The behaviour when carrying a block remains the same: the robot should return to the depot

at field 0. We reuse the same depot-directed heuristic h↓
depot, which is now defined over:

w↓
depot({⟨robot, i⟩, ⟨hand, block⟩}) = i.

This again satisfies the conditions in Lemma 20 since i = |0 − i| reflects the distance to the

depot.

Linear Termes: Destruction Phase 78

Global Weighted Moving Heuristic

Since the ramp is deconstructed in exactly the reverse order of its construction, we can reuse

the same weight structure for the local movement heuristics. This leads to the global moving

heuristic:

h↓
walk = walking back · h↓

depot +

m∑
i=0

n∑
h=0

2f(i,h) · h↓
i,h (1)

To ensure progress during deconstruction, we first show that the robot can always move towards

the next field where a block should be picked up, and that this move strictly decreases the

weighted moving heuristic without violating any constraints.

Lemmas 31. Let s be a non-goal state with a finite h1 heuristic value. Let h↓
walk be the weighted

moving heuristic defined by the weight function in Eq. (1).

Assume the robot is not carrying a block. Then there exists a field p such that the next decon-

struction step is to pick up a block from field p + 1, and moving towards field p is a feasible

action that does not incur an infinite penalty from h1. Moreover, this movement results in a

strictly decreased heuristic value h↓
walk in the resulting state s′.

Proof. Since s is not a goal state and h1(s) < ∞, some portion of the ramp remains to be

deconstructed. Let j denote the index of the last completed construction step. Then all steps

with index j′ > j have already been undone. By definition, the next block to remove corre-

sponds to construction step j. Let f−1(j) = (i, hi), and set p := j − 1. Then the next pickup

is from field p+ 1.

Because the robot is not carrying a block, the depot term in h↓
walk is unchanged. By Lemma 19,

moving to p is feasible and does not violate the constraints of h1. By Lemma 20, this move

decreases the j-th local term by 1 and may increase all earlier ones by 1. Thus:

h↓
walk(s

′)− h↓
walk(s) = −2j +

j−1∑
k=0

2k = −2j + (2j − 1) = −1 < 0.

Therefore, the heuristic strictly decreases after moving towards p, as required.

Building on the guaranteed progress from moving towards the pickup field, we now establish

an upper bound on the heuristic increase caused by actually picking up the block.

Lemmas 32. Let s be a non-goal state with a finite h1 heuristic value. Let h↓
walk be the weighted

moving heuristic.

If the robot is empty-handed, it is positioned on field p, then picking up a block from field p+1

is a valid action that preserves the finiteness of h1, and the resulting state s′ satisfies:

h↓
walk(s

′)− h↓
walk(s) < walking back ·m.

Proof. By Lemma 31, there exists a field p such that picking up a block from p+1 corresponds

to the next valid deconstruction step. Let q := p + 1. Since h1 assigns infinite cost only to

states that violate the intended deconstruction sequence, performing this step ensures that h1

Linear Termes: Destruction Phase 79

remains finite.

Picking the block from field q modifies two variable assignments. Specifically, it changes the

assignment of the variable hand from free to block, and updates fieldq from hq to hq −1. These

changes affect the heuristic value h↓
walk as follows:

h↓
walk(s

′)− h↓
walk(s) = w↓

walk({⟨robot, p⟩, ⟨hand, block⟩})

+ w↓
walk({⟨robot, p⟩, ⟨fieldq, hq − 1⟩})

− w↓
walk({⟨robot, p⟩, ⟨fieldq, hq⟩})

= walking back · p+ 2f(q,hq−1) · |p− 1− p| − 2f(q,hq) · |p− p|

= walking back · p+ 2f(q,hq−1).

Since by definition

walking back = 2|B|+1, and f(q, hq − 1) ≤ |B|,

we conclude that 2f(q,hq−1) < walking back. Thus:

h↓
walk(s

′)− h↓
walk(s) < walking back · (p+ 1).

Since p ≤ m− 1, we have:

h↓
walk(s

′)− h↓
walk(s) < walking back ·m.

Block Pickup Heuristic

To mirror the construction phase, we define a block pickup heuristic that measures remaining

deconstruction work. Since the goal height for each field is 0, each field j contributes hj to the

heuristic:

w↓
block({⟨fieldj , hj⟩}) = hj

for all j = 0, . . . ,m− 1 and hj = 0, . . . , j.

As with construction, we now show that robot movement alone does not affect this heuristic,

while picking up a block decreases it.

Lemmas 33. Let s be a non-goal state with a finite h1 heuristic value. Then:

(i) Any action in which the robot moves between fields does not change the value of h↓
block.

(ii) Picking up a block reduces the heuristic value by exactly 1.

Proof. (i) The weight function depends only on field heights, not on the robot’s position.

Therefore, pure movement does not affect h↓
block.

(ii) Picking up a block reduces hj by 1. The resulting change in the heuristic is:

h↓
block(s

′)− h↓
block(s) = (hj − 1)− hj = −1.

Linear Termes: Destruction Phase 80

As in the construction phase, to ensure that picking up a block remains favourable despite an

increase in movement cost, we scale the heuristic:

picking block = walking back · (m+ 1)

Finally, we define the weighted block pickup heuristic:

h↓
picking = picking block · h↓

block

Destruction Heuristic

We can now introduce the main destruction heuristic

h3 = h↓
picking + h↓

walk = picking block · h↓
block + walking back · h↓

depot +

m∑
i=0

n∑
h=0

2f(i,h) · h↓
i,h.

Analysis of Successor States

We now analyse the behaviour of the heuristic in states where the robot is either carrying a

block or not. For every possible configuration, we prove that there exists a successor state

whose heuristic value is strictly lower than that of the current state. Our approach involves a

thorough case-by-case analysis, distinguishing scenarios based on the robot’s position as well

as whether it is carrying a block or not.

Before delving into these cases, we first establish the existence of a particular field p that

the robot is always encouraged to move towards when not carrying a block. When the robot

occupies field p, it is guaranteed that grabbing a block from the adjacent field p+1 is possible.

Importantly, both moving towards p and grabbing a block from p+ 1 avoid adding an infinite

weight to the heuristic value.

Case 1: The robot is carrying a block and is positioned at field i with

i ∈ {1, . . . ,m− 1}
First, we show that when the robot is carrying a block and is positioned on a field other than

the depot, the robot is encouraged to move to the depot to hand over the block.

Lemmas 34. Let s be a state in which the robot is carrying a block and is located at field i

with i ∈ {2, . . . ,m− 1}. Then, there exists a successor state s′ of s such that h3(s
′) < h3(s).

Proof. By Lemma 19, walking to a neighbouring field, excluding the final field, is always feasible

in states with finite h1, and such a move does not introduce an infinite penalty in the heuristic.

Since s is not a goal state, at least one field is incomplete. Moreover, h1(s) < ∞ implies that

all building steps up to some j ≤ |B| are complete. Let this j be the index of the last completed

building step.

Consider the worst case where moving towards the depot increases the heuristic values for all

k ≤ j by +1 and decreases the heuristic value corresponding to ⟨hand, block⟩ by −1. The change

Linear Termes: Destruction Phase 81

in the heuristic is then:

h3(s
′)− h3(s) = −walking back+

j∑
k=0

2k

Recall the definition of walking back:

walking back = 2|B|+1

By definition j < |B|+ 1, this concludes

h3(s
′)− h3(s) = −2|B|+1 +

j∑
k=0

2k = −2|B|+1 + 2j+1 − 1 < 0

That is, the heuristic strictly decreases when the robot walks one step towards the depot

carrying a block.

Case 2: The robot is carrying a block and is positioned at field 0

Next, we handle the situation where the robot is carrying a block and is positioned at field 0.

We show that handing over the block leads to a successor state with a strictly lower heuristic

value.

Lemmas 35. Let s be a state in which the robot is carrying a block and is located at field 0.

Then, there exists a successor state s′ of s such that h(s′) < h(s).

Proof. The robot can always hand over a block at the depot, since its height remains 0. This

action updates the variable hand from block to empty. As hand does not occur in any feature

of w1, we focus on w3. The only weight in w3 involving hand is w↓
depot, which becomes inactive

because the atom ⟨hand, block⟩ is removed from the successor state s′. As a result, the heuristic

value decreases by walking back.

Case 3: The robot is not carrying a block and is on the target field p

Next, we handle the situation where the robot is not carrying a block and is positioned at field

p.

Lemmas 36. Let s be a state in which the robot is not carrying a block and is located at field

p. Then, there exists a successor state s′ of s such that h(s′) < h(s).

Proof. By Lemma 31, there is a field p such that picking up a block at q := p + 1 is the next

valid deconstruction step, ensuring h1(s
′) < ∞.

Picking up a block decreases hblock by 1 (Lemma 33) and increases h↓
walk by less than m ·

walking back (Lemma 32), so:

h3(s
′)− h3(s) < −picking block+m · walking back.

Since picking block = walking back · (m+ 1), this yields

h3(s
′)− h3(s) < −walking back < 0.

Linear Termes: Destruction Phase 82

With h1 unchanged and finite, we conclude

h3(s
′) < h3(s),

as required.

Case 4: The robot is not carrying a block but is at a different field field i, with

i ̸= p

Next, we handle the situation where the robot is not carrying a block and is positioned at field

i, with i ̸= p.

Lemmas 37. Let s be a state in which the robot is not carrying a block and is located at field

i with i ∈ {0, . . . ,m− 1}. Then, there exists a successor state s′ of s such that h3(s
′) < h3(s).

Proof. By Lemma 19, taking a walking step to a neighbouring field (excluding the final one) is

always feasible in any state where h1 < ∞, and this step does not introduce an infinite penalty.

Thus, we focus on the change in the h2 component, specifically the weighted moving heuristic

h↓
walk, which depends on the robot’s position.

Since fieldi ̸= fieldp, the robot is not yet at its preferred destination field p. According to

Lemma 31, taking a step towards field p decreases the heuristic value. Therefore, by executing

such a move, the robot reaches a successor state s′ with h3(s
′) < h3(s).

C
Linear Termes: Refined Proof Using Recursive

Weights

In this appendix, we outline the necessary modifications to Lemma 21 to incorporate the re-

cursive definition of the weights ai,h.

First, we replace the statement on the weighted walking heuristic in the lemma by:

Let h↑
walk be the weighted walking heuristic defined using the recursive weights ai,h.

Next, update the argument about the heuristic difference in the proof as follows:

Moving one step towards field p decreases the walking distance for (i, h) by 1, which reduces

the heuristic by exactly ai,h. Simultaneously, this move may increase the walking distances for

earlier building steps. However, only those building steps, whose associated field–height pair

feature is active in s, contribute to the heuristic.

Given the recursive definition of ai,h,

ai,h =
∑
j>i

aj,h +
∑
j<i

aj,h−1 +
∑

j<h−1

aj,j + 1

we know that ai,h is strictly larger than the total weight of all unfinished building steps from

previous layers that could possibly increase during this move. That is, it outweighs every earlier

term in the heuristic whose associated field–height pair feature is active in s.

Therefore, the net change in the heuristic is strictly negative:

h↑
walk(s

′)− h↑
walk(s) < 0

These adjustments ensure that the proof correctly reflects the weighting scheme described by

the recursive definition.

	Acknowledgments
	Table of Contents
	1 Introduction
	2 Background
	2.1 Planning Tasks
	2.2 Potential Heuristics
	2.3 Descending and Dead-End Avoiding Heuristics (DDA)
	2.4 Landmarks

	3 Previous Work
	3.1 DDA Variants
	3.2 Correlation Complexity

	4 Comparison of DDA Variants
	4.1 UDDA vs. DDA, Infinity-DDA and PDDA
	4.2 Infinity-DDA vs. PDDA
	4.3 DDA vs. Infinity-DDA
	4.4 DDA vs. PDDA
	4.5 Correlation Complexity Hierarchy

	5 Blocksworld
	5.1 Non-Existence of UDDA
	5.2 Lower Bound Results
	5.3 Upper Bound Results
	5.4 Exact Correlation Complexities

	6 Spanner
	6.1 Non-Existence of UDDA
	6.2 Lower Bound Results
	6.3 Upper Bound Results
	6.4 Exact Correlation Complexities

	7 Logistics
	7.1 Lower Bound Results
	7.2 Upper Bound Results
	7.3 Exact Correlation Complexities

	8 Linear Termes
	8.1 Non-Existence of UDDA
	8.2 Lower Bound Results
	8.3 Upper Bound Results
	8.3.1 General Constraints
	8.3.2 Construction Phase
	8.3.3 Destruction Phase
	8.3.4 Linear Termes Heuristic

	8.4 Discussion and Extensions

	9 Experiments
	10 Conclusion
	Bibliography
	A MiniZinc Model Code
	B Linear Termes: Destruction Phase
	C Linear Termes: Refined Proof Using Recursive Weights

