

Correlation Complexity Under Variant Descending and Dead-End Avoiding Heuristics

Nadine Sonderegger <nad.sonderegger@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

03.09.2025

Table of Contents

Background

Correlation Complexity Hierarchy

Blocksworld

Other Results & Conclusion

Table of Contents

Background

Example Planning Task (SAS⁺): Blocksworld

Variables for each $A \in \mathcal{B}$.

$$\mathsf{dom}\left(igcap_\mathsf{A}\right) = \mathcal{B} \cup \{\mathsf{Table}\}$$

$$\mathsf{dom}\left(\begin{array}{c} \downarrow \\ \mathsf{A} \end{array}\right) = \left\{\begin{array}{c} \\ \end{array}\right\}$$

Example Planning Task (SAS+): Blocksworld

Variables for each $A \in \mathcal{B}$:

$$\mathsf{dom}\left(igcup_\mathsf{A}\right) = \mathcal{B} \cup \{\mathsf{Table}\}$$

$$\mathsf{dom}\left(egin{array}{c} \mathsf{I} \\ \mathsf{A} \end{array}
ight) = \{ egin{array}{c} \mathsf{I} \end{array}, \ egin{array}{c} \mathsf{I} \end{array}$$

Operators:

e.g. *move-A-from-B-to-C*:

$$pre\left(\begin{array}{c} A \\ B \end{array}\right) = \left\{\begin{array}{c} A \\ B \end{array}\right\}, \begin{array}{c} \downarrow \\ A \end{array}\right\}$$

$$eff\left(\begin{array}{c} A \\ B \end{array}\right) = \left\{\begin{array}{c} A \\ C \end{array}\right\}$$

Potential Heuristic

A potential heuristic estimates the distance to the goal of a state by summing the weights of all features it contains:

$$h_{\mathsf{pot}}(s) = \sum_{F \in \mathcal{F}} w(F)[F \subseteq s]$$

The **dimension** of h_{pot} is the size of the most complex feature (i.e., how many variables it involves).

Descending and Dead-End Avoiding (DDA) Heuristics

Goal: Guide search towards the goal while avoiding dead ends.

Descending: For every alive non-goal state s, there exists a successor s' with:

Dead-End Avoiding: Improving successors are always solvable:

s is alive and
$$h(s') < h(s) \implies s'$$
 solvable

Correlation Complexity

The **correlation complexity** is defined as the smallest dimension d such that there exists a DDA potential heuristic of dimension d for the planning task.

Correlation Complexity

The **correlation complexity** is defined as the smallest dimension d such that there exists a DDA potential heuristic of dimension d for the planning task.

Unsolvable task \Rightarrow Every potential heuristic fullfills DDA property.

DDA

Every **alive** non-goal state s has at least one improving successor s'.

DDA

Every **alive** non-goal state s has at least one improving successor s'.

Unrestricted DDA (UDDA)

Every alive non-goal state s has at least one improving successor s'.

DDA

Every **alive** non-goal state s has at least one improving successor s'.

∞ -DDA

- Every alive non-goal state s with a finite heuristic value has at least one improving successor s'.
- ii) The initial state must be finite.

Unrestricted DDA (UDDA)

Every alive non-goal state s has at least one improving successor s'.

DDA

Every **alive** non-goal state s has at least one improving successor s'.

∞ -DDA

- i) Every alive non-goal state s with a finite heuristic value has at least one improving successor s'.
- ii) The initial state must be finite.

Unrestricted DDA (UDDA)

Every alive non-goal state s has at least one improving successor s'.

Predicate-Based Pruning DDA (PDDA)

$$h_{
m pot}(s) = egin{cases} \infty & ext{if } h_{
m pot2}(s) > 0 \ h_{
m pot1}(s) & ext{otherwise} \end{cases}$$

plus ∞ -DDA conditions on h.

Correlation Complexity

The correlation complexity is defined as the smallest dimension d such that there exists a DDA potential heuristic of dimension d for the planning task.

We can extend this definition to each DDA variant (UDDA, ∞ -DDA, and PDDA).

Table of Contents

Background

Correlation Complexity Hierarchy

Blocksworld

Other Results & Conclusion

Motivation

- Question: Do correlation complexity variants form a hierarchy?
- > Answer: Sometimes.
 - > For some pairs of variants, a clear hierarchy exists
 - > For other pairs, no hierarchy is possible

Notation: A < B means that there exist problems for which the correlation complexity of A is strictly smaller than that of B.

Proof idea: Will be shown in Bocksworld.

$DDA > \infty$ -DDA

Proof idea: In the Blocksworld domain, a shortcut allows ∞-DDA to bypass the longer plan required by DDA.

Proof idea: Will be shown in Bocksworld.

∞-DDA ≮ PDDA

Proof idea: Every ∞-DDA heuristic can be transformed into a PDDA heuristic:

 ∞ -DDA heuristic with weight function $w: \mathcal{F} \to \mathbb{R} \cup \infty$

- i) $\mathcal{F}_{\mathbb{R}}=\{F\in\mathcal{F}|w(F)\in\mathbb{R}\}$ ii) $w_1(F)=w(F)$ for all $F\in\mathcal{F}_{\mathbb{R}}$

i)
$$\mathcal{F}_{\infty} = \{ F \in \mathcal{F} | w(F) = \infty \}$$

ii) $w_2(F) = 1$ for all $F \in \mathcal{F}_{\infty}$

PDDA heuristic with weight functions w_1 and w_2 $h_{\mathsf{pot}}(s) = egin{cases} \infty & \text{if } h_{\mathsf{pot2}}(s) > 0 \\ h_{\mathsf{pot1}}(s) & \text{otherwise} \end{cases}$

Correlation Complexity Hierarchy

Table of Contents

Background

Correlation Complexity Hierarchy

Blocksworld

Other Results & Conclusion

Blocksworld

From previous work: DDA correlation complexity is 2.

Our contribution:

- > There exists no UDDA heuristic
- $> \infty$ -DDA correlation complexity is 3
- PDDA correlation complexity is 2

∄ UDDA Heuristic

Proof idea: Show that a dead-end state exists (i.e., no operator is applicable).

2 < PDDA Correlation Complexity

Proof idea: The operators o = move-to-T(A, B) and o' = move-to-B(A, T) are both action landmarks, yet they cannot both decrease the heuristic value.

$3 \leq \infty$ -DDA Correlation Complexity

Proof idea: To avoid the unsolvable state, at least one singleton or pair of atoms must be assigned **infinity**. However, no feature can be chosen as the infinite one, because then the ∞ -DDA property would be violated.

PDDA Correlation Complexity < 2

Proof idea: Construct a PDDA heuristic of dimension 2 with w_2 :

Weights that directly assign an infinite value:

$$\uparrow \downarrow \not \in I$$
 and $\uparrow \downarrow \not \in g$

PDDA Correlation Complexity ≤ 2

Proof idea: Construct a PDDA heuristic of dimension 2 with w_2 :

> Weights for blocks marked as not clear but actually clear:

Proof idea: Construct an ∞ -DDA heuristic of dimension 3 with w:

> Same features as for PDDA heuristic:

∞ -DDA Correlation Complexity ≤ 3

Proof idea: Construct an ∞ -DDA heuristic of dimension 3 with w:

> Changes in contrast to the PDDA heuristic:

Blocksworld

We have shown:

- > There exists no UDDA heuristic
- ∞ -DDA correlation complexity is 3
- PDDA correlation complexity is 2

Table of Contents

Background

Correlation Complexity Hierarchy

Blocksworld

Other Results & Conclusion

Domains

Results

Domain	DDA	UDDA	∞-DDA	PDDA
Blocksworld	2	-	3	2
Spanner	2	-	2	2
Logistics	2	2	2	2
Linear Termes	?	-	2 or 3	2 or 3

Experiments - Empirical Validation

Goal

Confirm UDDA, ∞-DDA, PDDA heuristics behave as predicted

Setup

> Modified Fast Downward with multi-dimensional domain-specific heuristics

Validation Strategy

- 1. **Search behaviour:** Expanded states = plan length +1
- 2. **State-space verification:** Exhaustively check UDDA $/ \infty$ -DDA property

Conclusion

- Compared DDA variants (DDA, UDDA, ∞-DDA, PDDA)
- > Analyzed their relationships and showed when a hierarchy exists
- Proved lower and upper bounds in Blocksworld and other domains
- > Confirmed results through empirical validation with Fast Downward

