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Abstract

Sudoku has become one of the world’s most popular logic puzzles, arousing interest in the

general public and the science community. Although the rules of Sudoku may seem simple,

they allow for nearly countless puzzle instances, some of which are very hard to solve. SAT-

solvers have proven to be a suitable option to solve Sudokus automatically. However, they

demand the puzzles to be encoded as logical formulae in Conjunctive Normal Form. In earlier

work, such encodings have been successfully demonstrated for original Sudoku Puzzles. In

this thesis, we present encodings for rather unconventional Sudoku Variants, developed by

the puzzle community to create even more challenging solving experiences. Furthermore, we

demonstrate how Pseudo-Boolean Constraints can be utilized to encode Sudoku Variants

that follow rules involving sums. To implement an encoding of Pseudo-Boolean Constraints,

we use Binary Decision Diagrams and Adder Networks and study how they compare to each

other.
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1
Introduction

Sudoku Puzzles excite, as the rather simple task of filling out a grid with numbers becomes

a demanding challenge just by stating a small set of rules that must be followed. For a 9×9

grid of cells which may already contain numbers, the original Sudoku rules every puzzle

solver must follow are: A number with a value from 1 to 9 must be placed in each cell, and

every number may appear only once per column, row and marked 3 × 3 box. An example

of a normal Sudoku Puzzle and its solution is shown in Figures 1.1 and 1.2.

Figure 1.1: Normal Sudoku Puzzle
[10]

Figure 1.2: Solution to Puzzle
in Figure 1.1

Using these rules, the puzzle in its original form was first seen in the early 80s and established

itself as one of the most popular logic puzzles in the last few decades. Since the mid-2000s,

Sudokus also became an inherent part of the puzzle section in many newspapers and gained

a fan community of puzzlers eager to develop and solve more challenging riddles. Around

this time, researchers also started publishing first papers analysing Sudokus. For example,

in 2006, it was shown by [6] that there are 6.671 × 1021 valid 9 × 9 Sudoku grids. In the

same year, Lynce and Ouaknine published a paper [13] showing how Sudoku Puzzles can be

encoded into logical formulas in a way that SAT-solvers can be used to find their solutions.

SAT-solvers are suitable for solving Sudokus because most of the puzzles are “well-formed”,

which means they only have one solution that is deducible without ambitions. Or, as [13]

states, “Such puzzles are meant to be solved without search, i.e., merely with reasoning.”
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In this thesis, we aim to go one step further and find encoding methods for Sudoku Variants

that are based on original Sudoku but augment the rules with additional requirements that

solutions must fulfil. Our source of choice for such rather unconventional Sudoku Variants

and rules will be the book “Cracking The Cryptic Greatest Hits” (CTCGH ) [10], which

presents a collection of the most unique, entertaining but also demanding Sudoku Variants

the puzzle community came up with until today. The book was published after a successful

Kickstarter campaign by Mark Goodliffe and Simon Anthon, which run one of the most

famous Youtube channels focused on Sudokus: “Cracking The Cryptic”[8]. In their videos,

they present and solve puzzles sent to them from people all around the world, allowing them

to create this phenomenal assortment of diverse Sudoku Variants.

To get a foretaste of the variants we will work with, one may solve the Sudoku depicted in

Figure 1.3. The normal Sudoku rules apply, but instead of already filled out cells, seven

so-called Thermometers are placed on the grid. For each thermometer, it must hold that

starting from the bulb, the cell values along the thermometer can only strictly increase. As

one will see, this already suffices to guarantee the uniqueness of the solution.

As we intend to make the encodings of different rules compatible with each other, it will

be possible to encode and solve new Sudoku Variants formed by arbitrarily combining said

rules. To test our encodings, though, we will use puzzle instances from CTCGH and state

of the art SAT-solvers like MiniSat. Comparing the encodings and the performance of the

SAT-solvers working on them, we will show that for most puzzle instances from CTCGH,

SAT-solvers can find a solution within seconds. However, we will also find exceptions to this,

with Sudoku Variants that require extensive encodings and comparably high solving times

by the SAT-solvers, revealing that the task of encoding and solving these special Sudoku

Variants is by no means a trivial one.

Because we will examine many Sudoku Variants with rules involving sums, we also want to

further elaborate on the encoding of Pseudo-Boolean Constraints. Following the ideas of

[5], we will show how Binary Decision Diagrams and Adder Networks can be used to encode

Pseudo-Boolean Constraints and how the two methods compare to each other.
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Figure 1.3: Example of a Sudoku Puzzle using Thermometers,
puzzle by Akash Doulani, CTCGH page 15 [10],

this is a corrected version, available at [9]



2
Background

Before we dive into how we can translate Sudokus into a language such that a computer can

work on them, we first elaborate on some background knowledge and definitions needed to

understand the used tools and formalisms.

2.1 Propositional Logic
Propositional logic is a language that provides a formal way of writing statements that can

either be true or false. It is used in this thesis to describe and encode the specific rules of

the different Sudoku Variants. This section will shortly introduce the common syntax and

semantics.

Atoms (also called atomic propositions) are the smallest units used in propositional logic,

and must have a truth value of true or false (often noted as digits 0 and 1).

Literals are atoms or their negation, so if x1 is an atom, then x1 and ¬x1 are literals.

Literals are said to be positive or negative respectively.

Formulas are compositions of one or multiple atoms and can be defined recursively:

Every atom is also a formula. If φ is a formula, then so is its negation ¬φ. If φ and ψ are

formulas, then so is the conjunction φ∧ψ. If φ and ψ are formulas, then so is the disjunction

φ ∨ ψ.

Interpretations (also called truth assignments) are functions that assigns truth values to

a set A of atoms I : A→ {0, 1}. A formula φ over A holds (is true) under an interpretation

I (written I |= φ) following the semantical rules:

I |= x1 iff I(x1) = 1

I |= ¬x1 iff not I |= x1

I |= (ψ ∧ ϱ) iff I |= ψ and I |= ϱ

I |= (ψ ∨ ϱ) iff I |= ψ or I |= ϱ
Where ψ and ϱ are formulas and x1 is an atom.
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An interpretation for which a formula φ hold is called a model of φ.

Equivalence of two formulas φ and ψ is given if it holds for all interpretations I that,

φ holds under I if and only if ψ holds under I. The formulas are then called logically

equivalent (φ ≡ ψ).

Implications / Biconditionals As one might have noticed, implication (→) and bicon-

ditional (↔) have not been mentioned in the definition of formulas as they are abbreviations

for more extended formulas that use ∨, ∧ and ¬.

(φ→ ψ) ≡ (¬φ ∨ ψ)
(φ↔ ψ) ≡ (¬φ ∨ ψ) ∧ (¬ψ ∨ φ)

Clauses are disjunctions of literals (atoms and/or their negations). A formula that is a

clause is true under interpretation I if one of its literals is true.

Conjunctive Normal Form (CNF) A formula is said to be in conjunctive normal form

if it is a conjunction of clauses. For example, given the atoms a, b, c and d, the formulas φ,

ψ and ϱ are in CNF:

φ ≡ (a)

ψ ≡ (a ∧ b)
ϱ ≡ ((a ∨ b) ∧ (c ∨ d))

Also, it holds that every formula can be brought into CNF [19], and a formula in CNF can

be noted as a set of sets of literals, for example, ϱ ≡ {{a, b}, {c, d}}.

2.2 SAT-Problems and SAT-Solvers
SAT-Problems (also called Satisfiability Problems or Boolean Satisfiability Problems) de-

scribe the problem of deciding if a formula of propositional logic is satisfiable (if there exists

a model for it) or not. SAT-solvers are programs or algorithms that try to solve instances

of this problem. They take a formula as input and return a boolean value (true or false)

to indicate if a model exists or not. Most SAT-solvers also directly provide a model if they

can find one. In the experiments of this thesis, multiple SAT-solvers are used, which are

described in further detail in 2.2.3. As we will later see, the time to find solutions for par-

ticular problem instances varies between them. However, when it comes to computational

complexity, it holds that SAT-Problems are in NP and that they are NP-Hard[1][12], so

the runtime of the solvers may scale exponentially with the number of clauses and variables

given to them as input.

2.2.1 DIMACS CNF File Format
The used SAT-solvers require the input formula to be in CNF. Further, they expect them to

be described in the DIMACS CNF File Format, often just called DIMACS. The abbreviation

DIMACS stands for Center for “Discrete Mathematics and Theoretical Computer Science”,



Background 6

which is a collaboration between Rutgers and Princeton University and research firms. The

file format was utilised in the DIMACS Implementation Challenge 1993 and since then has

become the common file format for SAT-Problems.

DIMACS CNF Files have the following Format:

• Atoms are represented as positive integers.

• Negative literals are represented as negative integers.

• The first line starts with the letter “p” and holds the problem description. It states

the problem type, the highest integer used to describe an atom and the number of

clauses.

• Clauses are represented as lists of their literals and are terminated by the number 0.

White spaces or line breaks separate all literals and the ending 0s.

• Lines are interpreted as comments (ignored by the solver) if they start with the letter

“c”. Comments can be added everywhere in the file except inside the definition of a

clause.

A DIMACS file describing the formula φ ≡ (x1∨¬x2)∧(x2∨x3)∧(¬x1∨¬x3)∧(¬x1∨¬x2∨x3)
could look like this:

c some comment describing the problem

p cnf 3 4

1 -2 0

2 3 0

-1 -3 0

-1 -2 3 0

2.2.2 How SAT-Solvers solve
Given a formula, a SAT-solver must decide if it is satisfiable or not (We assume the formula

is in CNF so it can be handled as a set of clauses). To do so, the solver tries to find a model

by assigning truth values to atoms one by one. In a standard SAT-solver, this is not done

randomly but by using the inference mechanism of unit propagation. A famous algorithm

using this mechanism is the DPLL algorithm [2] which can be directly implemented into a

SAT-solver. DPLL applies three rules:

1. If a clause contains only one literal (or multiple literals, but only one is still unbound

and all the others do not make the clause true), the value that makes the literal true

must be assigned. Otherwise, the clause and the formula would become false. If a value

gets assigned, all clauses containing the corresponding true literal can be removed from

the set of clauses. The corresponding false literals can be removed from all remaining

clauses since they can not make them true.
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2. If there is a literal that only appears in one polarity in all clauses (consistently posi-

tive/negative), its atom value can also be assigned to make the literals true.

3. If the set of clauses becomes empty, the formula is “satisfiable”. If an empty clause is

derived, the formula is “unsatisfiable”. If no further assignments can be inferred and

no decision can be made about satisfiability yet, a literal gets chosen. The algorithm

would then continue in two branches, one where the chosen literal gets set to be true

and one where it is set to be false. The formula is then satisfiable if and only if it is

satisfiable under one of the two assumptions. Repeating this procedure of assigning

values creates a Search-Tree of exponential size.

SAT-solvers can strongly differentiate in how they choose the next atom to assign a value

to and how they learn from entering unsatisfiable branches in the search tree.

2.2.3 MiniSat and Sat4j
MiniSat is a lightweight SAT-solver that is based on “the ideas for conflict-driven backtrack-

ing, together with watched literals and dynamic variable ordering” as the original paper [4]

states. Its original source code in C++ used less than 600 lines. The solver was further

refined up to its current version 2.2, but for the experiments in this thesis we use version

1.4 for which precompiled binaries can be found at [3].

Sat4j is a Java library that provides a SAT-solver that can be directly called and run in

Java. It does not provide the best performance, but because it is easy to use and integrate,

it is well suited for early experimenting and testing. The used version is 2.3.4. The library

itself and further details can be found at [18].

MiniSat+ (a particular version of MiniSat) and Sat4j provide native support for Pseudo-

Boolean Constraints. However, this feature will not be used because this thesis aims to

translate Sudoku Puzzles into a form that can be solved with arbitrary SAT-solvers.

2.3 Constraint Networks (CN)
Puzzles like Sudoku can be broken down into multiple constraints that must all hold for

a solution to be correct. Problems like this can be described using constraint networks.

The issue of finding a solution to a constraint network is called Constraint Satisfaction

Problem or short CSP. Solutions for constraint networks can be found using Backtracking

Search ([15], page 175).However, this thesis aims to find such solutions by first encoding the

Constraints into SAT-Problems that arbitrary SAT-solvers can then solve. This section will

shortly discuss how constraint networks are defined and how they can be translated directly

to general SAT-Problems.

Constraint Networks can be described as a tuple of three components: CN := ⟨X ,D, C⟩. X
is a set of variables, D is a set of finite domains (one corresponding to each variable), and C
is a set of constraints that describe the allowed values for variable subsets.
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2.3.1 Unary Constraints
Constraints that only consider one variable are called unary constraints. They do not have

to be explicitly written as part of C because they can also be seen as a domain restriction

for a variable that can be represented by reducing the corresponding domain. Examples for

a variable x1 could be: “x1 must be smaller than 10”, “x1 must be larger than 0”, or “x1

must be even”.

2.3.2 Binary Constraints
Constraints that include two variables are called binary constraints. They get defined ex-

tensively as part of C by listing all allowed value pairs that the two variables could take.

Examples for CSP variables x1 and x2 could be: “x1 must be smaller than x2”, “x1 or x2

must be 9”, or “x1 + x2 ≤ 12”.

2.3.3 N-ary Constraints
Constraints that include more than two variables are called N-nary constraints and get

defined similarly to binary constraints in a CSP. Examples for variables x1 to x9 could be:

“At most one CSP variable from x1 to x9 may be 5” or “The sum of the CSP variables x1

to x9 must be 45”.

2.3.4 Common Encodings
There are many different ways to transform a CSP into a set of clauses that a SAT-solver

can work on, two of the most common ones we want to elaborate on here.

Direct Encoding [20][7] We assign a SAT variable xi,j to all possible variable values j

for all CSP variables i. At-least-one clauses ensure that a CSP variable i has at least one

out of the d values assigned from its domain.

xi,1 ∨ xi,2 ∨ ... ∨ xi,d

At-most-one clauses ensure that a CSP variable i has at most one value assigned from its

domain.

¬xi,j ∨ ¬xi,k
∀xi,j , xi,k ∈ Di s.t. j ̸= k

Conflict clauses ensure that no CSP variable value combinations are allowed that do not

comply with the CSP’s constraints. For example, The N-ary constraint “at most one CSP

variable of x1, x2 and x3 has value 5” would be transformed into the following conjunction

of clauses:

(¬x1,5 ∨ ¬x2,5) ∧ (¬x1,5 ∨ ¬x3,5) ∧ (¬x2,5 ∨ ¬x3,5).

Assuming the CSP has n variables that have a domain of size di, the transformation would

in total lead to n at-least-one clauses and per variable to
∑di

m=1(m−1) at-most-one clauses.
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For the constraints, however, we can only give an upper bound for the number of needed

clauses per constraint equal to the product of the domain sizes of the contained variables.

Support Encoding [11][7] The same at-least-one and at-most-one clauses are used as

in the direct encoding, but instead of conflict clauses, we add so-called support clauses. For

all pairs of variables xi and xj in a constraint, we add a clause for all domain values of

xj . These clauses define the allowed values of the other variables of the constraint.However,

not all these clauses must be necessary. They can be left away if the CSP variable value

corresponding to xj,d is allowed with all values of CSP variable xi. This is best shown in

an example, assume all CSP variables have a domain of {1, 2, 3, 4, 5}, the N-ary constraint

“at most one CSP variable of x1, x2 and x3 has value 5” could then be transformed to the

clauses:

¬x1,5 ∨ x2,1 ∨ x2,2 ∨ x2,3 ∨ x2,4
¬x2,5 ∨ x1,1 ∨ x1,2 ∨ x1,3 ∨ x1,4
¬x1,5 ∨ x3,1 ∨ x3,2 ∨ x3,3 ∨ x3,4
¬x3,5 ∨ x1,1 ∨ x1,2 ∨ x1,3 ∨ x1,4
¬x2,5 ∨ x3,1 ∨ x3,2 ∨ x3,3 ∨ x3,4
¬x3,5 ∨ x2,1 ∨ x2,2 ∨ x2,3 ∨ x2,4

In this case further clauses like ¬x1,1 ∨ x2,1 ∨ x2,2 ∨ x2,3 ∨ x2,4 ∨ x2,5 can be added, but they

are redundant because if the CSP variable x1 takes the value 1 the constraint does allow

all possible values for x2. Generally, the support encoding requires more clauses than the

direct encoding, but this does not make it inferior or necessarily slower for SAT-solvers [7].

2.3.5 Pseudo-Boolean Constraints (PBCs)
Constraints that describe equations like w1x1 + w2x2 + ... + wnxn ≤ K are called Pseudo-

Boolean Constraints. The variables x1 to xn have boolean domains, the wis are called

weights, and K is called bound (or RHS). Both the weights and the bound must have

integer values. If a variable xi gets assigned a truth value of true/false, it gets valued 1/0

in the equation. PBCs can be transformed into clauses by first converting them to Binary

Decision Diagrams (BDD), Adder Networks or Sorter Networks. Within this thesis, we will

use the former two variants following the ideas of [5], which we will elaborate on further in

section 4.1.

2.4 Sudoku
The family of logic puzzles called Sudoku is based on the Latin Squares Problem. In its

current form, it was first published in the US in 1979 by Howard Garns as “Number Place”.

In 1984 the puzzle became popular in Japan, where it got the name “Sudoku” (translated:

“digit-single”) which is the name under which it later became famous around the world. A

normal Sudoku Puzzle consists of a 9 × 9 grid, partially already filled with numbers from

1 to 9 named clues. Additionally, the grid is divided into smaller sub-areas called boxes,

consisting of 3× 3 cells. To solve the puzzle, one has to assign a value from 1 to 9 to each
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free cell so that each number is present in each row, column, and box. For most Sudoku

instances, there is the additional property that they only have one solution. There must

be at least 17 clues for this to hold, as McGuire et al. [14] show. An example of a Normal

Sudoku Puzzle can be seen in Figure 2.1. For a more accessible annotation, we define a co-

ordinate system on the Sudoku grid, which can be seen in Figure 2.2. With this coordinate

system, a grid cell can be specified using a tuple of two numbers (x, y) which is how we refer-

ence specific cells from now on. Countless variations and rules can be added to the original

Sudoku Puzzle to create new (and eventually harder) solving experiences. The book “Crack-

ing The Cryptic Greatest Hits” [10] contains an extensive collection of Sudoku Variants, a

few of which are introduced in the next chapter (3) and further elaborated during this thesis.

Figure 2.1: Example of a Sudoku Puzzle with 17 clues by McGuire et al. [14].

Figure 2.2: Coordinate system for grid cells.



3
Sudoku Variants and Rules

This chapter introduces the most common Sudoku Variants and rules used in CTCGH [10],

which are all based on the normal Sudoku rules introduced in Section 2.4. Meaning the

normal Sudoku rules still apply, in addition to the rules of the variants introduced in this

chapter. The aim here is to give an overview, so the descriptions are on a high level and

relatively informal. A formal definition and further details on how the constraints and types

are encoded to CNF can be found in chapter 4.

3.1 Killer Sudoku
In a Killer Sudoku, the normal Sudoku rules apply. Additionally, some (not necessarily all)

orthogonally adjacent cells are grouped in so-called cages. Each cell can be part of at most

one cage. For each cage, two constraints must hold, firstly, the values of all its cells must

have a certain sum (target sum), and within a cage, each value may only appear once. The

cages are often marked on the grid with dashed lines or by colouring their cells, and a small

number is placed in the top-left cell of a cage to specify its targeted sum. See Figure 3.1 for

an example.

Figure 3.1: Section of a Killer Sudoku showing 4 cages, from CTCGH [10] page 36.
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3.2 Thermometers
Thermometers placed on the Sudoku grid connect multiple adjacent cells sequentially (with-

out branching). Each thermometer has a bulb cell marked with a filled circle, and its other

cells are marked with a line outgoing from this circle. For a thermometer, it must hold

that starting from the bulb, the cell values along the thermometer can only strictly increase.

CTCGH [10] also contains a version called “Frozen Thermometers” that allows cell values

along a thermometer to stay the same. Additionally, it differs from puzzle to puzzle instance,

whether thermometers are allowed to overlap each other or not.

Thermometers are also part of the unique puzzle on page 52 of CTCGH [10]. In this puzzle,

only three hint digits and the shape and orientation of 8 thermometers are given. It is then

up to the solver to deduce the position of the thermometers, which can not overlap.

3.3 Sandwich Sums
Sandwich Sums are constraints that can be applied to rows, columns or cages. They require

certain cells to have a particular sum, which is specified for each row and column at the

grid’s edge or inside an affected cage. To fulfill a Sandwich Sum Constraint, it must hold

that the sum of all cells lying between the cells containing the values 1 and 9 is equal to the

specified target sum. The cells containing 1 and 9 are not included in the sum. Example:

a row containing the numbers [2, 4, 8, 9, 6, 5, 1, 7, 9] has a sandwich sum of 6 + 5 =

11. CTCGH [10] also includes a variation “Sandwich Sums - 1 to X”, where a target sum

must be hit, but the second value that defines the sums border is not defined and must be

deduced to a value of 2 to 9.

3.4 Secret Direction
The Secret Direction constraints is used in a unique Sudoku Puzzle described on page 41 of

CTCGH [10]. Following an adventure’s backstory to find a buried treasure, the constraint

requires a solution with a “secret path” from a shaded starting cell to the only cell with

value 9, which is also the centre of a 3x3 box. The hidden path must be reconstructed in the

following way, starting with the shaded cell; the current cell’s value describes the length of

the next step, and the position of the 9 in the current 3x3 box defines the direction. Once

a step in the path is found, one must apply the same rules to find the next one until the

treasure is discovered.

3.5 Arrowheads
Arrowheads placed on the Sudoku grid specify the partial or total order that must be

respected between two adjacent cell values.
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3.6 Chess Moves
Some Sudoku Variants use constraints named after chess figures to describe the relationship

between two different cells. In CTCGH [10], three of these constraints are introduced, which

share the idea that if another cell can be reached from a cell by one chess move of a particular

chess figure, these cells may not have the same value. The three constraints differ in the

chess figure they use, as listed below.

• Anti-Knight: Cells that are one knight move away from each other may not contain

the same value. A knight move consists either of one or two steps in one direction on

the current column or row followed by either one or two steps in the then-current row

or column. In total, the length must be three steps, and a column and row must be

used.

• Anti-King: Cells that are one king move away from each other may not contain the

same value. The set of cells that are one king move away from a cell is equal to the

set of cells that are directly orthogonally and diagonally adjacent to it.

• Anti-Queen: Cells that are one queen move away from each other may not contain the

same value. Cells that are one queen move away from a cell are the cells that lie on

the same row, column or diagonal as a cell.

3.7 Fawlty Towers
This Sudoku Variant combines Killer Sudoku with the rules of Thermometers and is pre-

sented on page 49 of CTCGH [10]. A tower describes a group of cells which is always based

at the lowest row (nr. 9) and rises to a certain height. The different towers are marked

by the differently shaded cells. Furthermore, below each tower at the grid’s edge stands

a number representing its target sum. There are two types of towers, normal and faulty

ones. In a normal tower, the cell values are strictly increasing starting from the base and

adding all its cell values together results in the target sum. Differently, the numbers are not

strictly increasing, or the sums do not match in a faulty tower, but not both at once. As an

additional help, it is stated how many towers have non-increasing values and for how many

towers the sums will not match. However, it is then up to the solver to deduce which towers

belong to which type.
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3.8 Nurikabe Sudoku
This Sudoku Variant is the most complex we will be looking at. To solve the Nurikabe

Sudoku (page 85 in CTCGH [10]), one not only has to fill in all the numbers but also needs

to define for each grid cell if it belongs to an island or the ocean. Islands are composed

of multiple orthogonally adjacent grid cells, and within an island, the cell values may not

repeat. Further, different islands cannot touch each other orthogonally, and an island must

be built from at least three cells. All cells not part of an island belong to the ocean, a

continuous area of orthogonally connected cells where value repetitions are allowed. There

may be only one ocean, but no square of 2×2 cells may only contain ocean cells. In Nurikabe

Sudoku, there are no hints in the form of already given numbers. Instead, some cells contain

arrows which can face up, down, left and right. The value within a cell that contains an

arrow must be equal to the number of cell types in the arrow’s direction that are equal to

the arrow cells type. This number does not include the arrow cell itself but includes cells

separated from the arrow cell by the other cell type.



4
Encoding

As introduced in 2.2.1, the SAT-solvers expect a DIMACS file as input that describes a set

of clauses. This chapter details how the different Sudoku Variants and their rules can be

encoded into these clause sets. We elaborate on the different variants separately, but as long

as there are no direct contradictions, the different variants and rules could be freely combined

(which can be done by creating the union of the corresponding clause sets). In the following

formulae, we use the notation sxn,...,x0
to describe boolean variables, the corresponding

integer numbers in the DIMACS files have the values xn ∗ 10n + ...+ x0 ∗ 100. For example,

the literal ¬s1,2,3 would be transformed to −123. There are two ways how we choose the

name (number) for a variable during the encoding process:

1. We use increasing values starting from 1. These dynamically chosen values are, by

example, used for variables necessary to encode PBCs. We use sv, for v ∈ N, to

describe them in the formulae as we do not know the corresponding integers in advance.

2. We use fixed intervals of numbers to encode certain constraints. Here every digit of

a number has a semantic meaning. The dynamically generated variables skip these

fixed intervals. For example, a fixed interval is used for the boolean variables that

describe the cell values of the Sudoku grid. The variable sx,y,z is true if and only if

cell (x,y) has the value z assigned (as proposed in [13]). The other used fixed intervals

are indicated in the corresponding sections of this chapter.

It is important to note that the numbers used as variable names are not “continuous”.

There are “gaps”. For example, not all integers from 1 to 1000 are used. This is because

the dynamic variables skip the entire interval from 111 to 999, and the fixed variables used

to encode cell values will not use numbers like 400 because we start to count rows at 1,

and the grid cells can only hold values from 1 to 9. The needed fixed intervals grow larger

when encoding more complicated variants, and with them often also the “gaps”. These gaps

have no effect logically, but they can have a non-negligible effect on the time needed by the

solvers, which is affected by the highest integer value used to describe a variable. However,

as the “gaps” are the same when encoding Sudokus with the same rules, they should not

make a difference when comparing solver-times.
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4.1 Encoding of PBCs
In the following two subsections (4.1.1 and 4.1.2), we will elaborate on how PBCs can be

encoded into clauses. As teased earlier, we will follow the ideas of [5] and use Binary Decision

Diagrams and Adder Networks to perform this translation. The two methods approach their

task rather differently, so we will compare their results and performance in chapter 5.

4.1.1 Encoding of PBCs using Binary Decision Diagrams
A binary decision diagram (BDD) is a directed graph that can be used to represent logical

formulae and PBCs. Variables are considered in a fixed order. As discussed in [5], ordering

them by decreasing weight values is generally reasonable. Every graph node corresponds to

a sum and a subset of variables of the formula. The BDD has a root node corresponding

to the empty variable set and sum 0. If a node is n edges away from the root, its variable

set contains the n first variables, and such a node is said to be at depth n. An edge from

a node u at depth k to a node v at depth k + 1 corresponds to assigning a truth value to

the (k + 1)-th variable. Every node has at most two successors, one reachable via the edge

that corresponds to assigning true and one via the edge that corresponds to assigning false

to the next variable. Nodes store references to their successors as truechild and falsechild,

respectively. Paths from the root to a node correspond to variable assignments to the vari-

ables in a node´s variable set and define the node’s sum, which is equal to the sum of PBC

weights that are multiplied by variables that are set to true by the assignment.

Terminal nodes however have no children. Terminal nodes are either nodes at depth l (with

l equal to the total number of different variables in the formula) or nodes with a too high

or too low sum regarding the variables already assigned in the paths to them.

An integer number is assigned to each node which can later be used to describe a boolean

variable (called extendable). The extendable variable of a node is true if and only if the

partial assignments that correspond to the paths from the root to it can be further extended

to total assignments that respect the PBC the BDD represents.

The BDD can be built using a Breadth-First-Search starting in the root, shown as pseu-

docode in 4.1. The version we use for encoding PBCs differs from the one introduced in [5]

because it is written to encode equations rather than inequations. Further, the used queue

has additional functionalities: Given a node, it can check if it already contains a node with

the same attribute values and can return said equal node. The updated sums of successor

nodes either are the same as their predecessors (false was assigned) or are equal to the sum

of their predecessor plus the weight value corresponding to the edge that led to them (true

was assigned).
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BuildBDD(PBC) :

queue = empty queue

queue . append ( createRoot ( ) )

While not queue i s empty :

Node cur rent = queue . f i r s t ( )

I f a s s i gn i ng next va r i ab l e l e ad s to a t o t a l ass ignment :

Node cT = Create true s u c c e s s o r node with updated sum

Node cF = Create true s u c c e s s o r node with updated sum

Else :

Node cT = Create true s u c c e s s o r node with updated sum

I f cT . sum >= RHS:

# true s u c c e s s o r i s a te rmina l node

Else :

# true s u c c e s s o r i s not a te rmina l node

I f cT not in queue :

queue . append (cT)

Else :

cT = queue . get (cT)

Node cF = Create false s u c c e s s o r node with updated sum

I f cF . sum + sum of remaining weights < RHS:

# false s u c c e s s o r i s a te rmina l node

Else :

# false s u c c e s s o r i s not a te rmina l node

I f cF not in queue :

queue . append ( cF)

Else :

cF = queue . get ( cF )

cur rent . t r u e c h i l d = cT

cur rent . f a l s e c h i l d = cF

Return root

Algorithm 4.1: Pseudo Code of BDD construction
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Once the BDD is built, we can transform it into clauses. In [5], it is explained how this can

be achieved by treating the BDD network as a circuit of ITEs (if-then-else gates). However,

it suffices to know that the BDD can be transformed by doing a second Breadth-First-

Search starting from the root and that for each visited node that is not a terminal node,

the following six implications must be added to the set of formulas [5]:

1. If the extendable variable of the current node is true and the variable corresponding

to the leaving edges from this node is true, then it follows that the extendable variable

of the truechild node is true.

2. If the extendable variable of the current node is true and the variable corresponding to

the leaving edges from this node is false, then it follows that the extendable variable

of the falsechild node is true.

3. If the extendable variable of the current node is false and the variable corresponding

to the leaving edges from this node is true, then it follows that the extendable variable

of the truechild node is false.

4. If the extendable variable of the current node is false and the variable corresponding

to the leaving edges from this node is false, then it follows that the extendable variable

of the falsechild node is false.

5. If the extendable variable of the truechild node is true and the extendable variable of

the falsechild node is true, then it follows that the extendable variable of the current

node is true.

6. If the extendable variable of the truechild node is false and the extendable variable of

the falsechild node is false, then it follows that extendable variable of the current node

is false.

Additionally, we add a clause that only contains the positive literal corresponding to the

extendable variable of the root node. Also, when visiting a node during this second Breadth-

First-Search, we only append its children that are not terminal nodes. For children that are

terminal nodes, we add a clause to the set of clauses:

• If the child’s sum is equal to the RHS, a clause containing a positive literal correspond-

ing to the extendable variable of the child is added.

• If the child’s sum is unequal the RHS, a clause containing a negative literal corre-

sponding to the extendable variable of the child is added.

An example is shown in Figure 4.1 where the BDD and the clauses are depicted that are

used to encode the PBC 6 ∗ v1 + 4 ∗ v2 + 2 ∗ v3 = 6. Sums are written inside the nodes, and

extendable variables are denoted as ai for i ∈ {1, 2, ..., 10}. Edges with a circle correspond

to assigning false. Edges with a line correspond to assigning true.
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Figure 4.1: BDD and clauses to encode 6 ∗ v1 + 4 ∗ v2 + 2 ∗ v3 = 6
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4.1.2 Encoding of PBCs using Adder Networks
Adder Networks are built from Full and Half Adder nodes. A Full Adder (FA) is a node

with three inputs and two outputs. A Half Adder (HA) is a node with two inputs and two

outputs. The input and output values are binary (true/false). The outputs are name sum

and carry, and their values are computed as follows. If at least two inputs are true, the carry

output is true. Otherwise, it is false. So the carry value is already determined if two of three

possible inputs are given. If one or three inputs are true, the sum output is true. Otherwise,

it is false. This behaviour can be encoded into clauses, and as the name implies, it allows

Adder Networks to compute sums over binary numbers. Binary numbers are Strings of bits,

where each bit is either 1 (true) or 0 (false). The bit at position k represents a value of 2k

and is called k-bit (This notation differs from the one used in [5]).

An Adder Network used to sum numbers is explained best layer by layer. When adding

binary numbers, the summand k-bits get fed into layer k. Layer k then also takes the carry

values from the previous layer (k − 1) as input for its nodes except if k is 0. A layer’s sum

outputs are fed as input to adder nodes in the same layer (potentially requiring additional

nodes) until only one input value remains. The remaining value of layer k then corresponds

to the value of the k-bit of the overall addition result. The carry outputs of a layer are

“carried over” to the next layer, where they become inputs to the adder nodes. The last

layer has only one input, and its value gets directly treated as the output of this layer.

Figure 4.2 shows an example network that can add three numbers, A, B and C, with values

from 0 to 7 (3 bit long numbers).

Figure 4.2: Adder Network computing 6 + 4 + 2 = 12
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As shown in [5], Adder Networks can be used to encode PBC. The weights of the PBC are

taken as inputs for the network. Every input bit gets associated with the boolean variable

that is multiplied by the weight they encode in the PBC. In practice, this is accomplished

by feeding the boolean variable into the network directly (in the case of a true bit) or by

feeding nothing into the network (in the case of a false bit). So if a boolean variable on the

LHS of a PBC is false, all the input bits of the corresponding weights are interpreted as 0 by

the network. The outputs of the adder nodes also get boolean variables assigned, including

those outputs corresponding to the bit values of the overall result. These values should be

equal to the corresponding bit values of the PBC’s RHS as the PBCs we want to encode

are equations. To enforce this, the values get compared, and corresponding unit clauses are

added to the result set of clauses.

The encoding procedure (an adapted version of the algorithm originally proposed in [5])

is depicted as pseudocode in Figure 4.2. What makes the algorithm presented in [5] so

efficient is that only the needed adder nodes are created, depending on how many true

inputs there are in a layer. This dynamic generation keeps the number of adder nodes that

actually get transformed into clauses as small as possible. For example, to encode the PBC

6 ∗ v1 + 4 ∗ v2 + 2 ∗ v3 = 6, only two adder nodes (One Half Adder in Layer-1 and one Full

Adder in Layer-2) must be transformed into clauses even though seven adders are needed

to add up the numbers 6, 4 and 2 (see Figure 4.2).

AdderNetworkEncoder(PBC) :

c l au s eSe t = empty Set

Trans late PBC weights to binary

Trans late RHS to binary

bucket = Create empty map, i n t e g e r −−> s e t

For every PBC weight :

For every k−b i t o f the weight :

I f the b i t i s true :

I f bucket has no key == k :

bucket [ k ] = new s e t

Add va r i ab l e that i s mu l t i p l i e d with cur rent weigth

in the PBC to bucket [ k ]

networkOut = empty l i s t

k = 0

While bucket has keys >= k :

While bucket has no key == k :

Append false−va r i ab l e to networkOut

k++

While bucket [ k ] conta in s at l e a s t 3 v a r i a b l e s :

Create Fu l l Adder with 3 v a r i a b l e s o f the k−bucket as input

Add Ful l Adder c l a u s e s to c l au s eSe t

Create (k+1)−bucket i f not pre sent

Put the Fu l l Adders car ry va r i ab l e in bucket [ k+1]

Put the Fu l l Adders sum va r i ab l e in bucket [ k ]

While bucket [ k ] conta in s at l e a s t 2 v a r i a b l e s :

Create Hal f Adder with 2 v a r i a b l e s o f the k−bucket as input

Add Hal f Adder c l a u s e s to c l au s eSe t

Create (k+1)−bucket i f not pre sent

Put the Hal f Adders car ry va r i ab l e in bucket [ k+1]
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Put the Hal f Adders sum va r i ab l e in bucket [ k ]

Append the one remaining va r i ab l e o f bucket [ k ] to networkOut

k++

While networkOut . l ength < RHS. l ength :

Append false−va r i ab l e to networkOut

While networkOut . l ength > RHS. l ength :

Append false−va r i ab l e to RHS

For every RHS b i t :

I f b i t i s true :

Add a c l au s e that conta in s a p o s i t i v e l i t e r a l

o f the cor re spond ing networkOut va r i ab l e to c l au s eSe t

Else :

Add a c l au s e that conta in s a negat ive l i t e r a l

o f the cor re spond ing networkOut va r i ab l e to c l au s eSe t

Return c l au s eSe t

Algorithm 4.2: Pseudocode of PBC encoding using an Adder Network

During algorithm 4.2, Half and Full Adders are transformed into clauses, which can then be

added to the result set of clauses that the procedure returns. Assuming the input variables

of an adder are x, y and z, the corresponding output variables are s for the sum and c for

the carry. Then the needed implications (as presented in [5] for Full Adders) to logically

describe the adder nodes are as shown in Figure 4.3.

Full Adder clauses:
{ x, y, z,¬s} from (¬x ∧ ¬y ∧ ¬z)→ ¬s
{ x,¬y,¬z,¬s} from (¬x ∧ y ∧ z)→ ¬s
{¬x, y,¬z,¬s} from ( x ∧ ¬y ∧ z)→ ¬s
{¬x,¬y, z,¬s} from ( x ∧ y ∧ ¬z)→ ¬s
{¬x,¬y,¬z, s} from ( x ∧ y ∧ z)→ s
{¬x, y, z, s} from ( x ∧ ¬y ∧ ¬z)→ s
{ x,¬y, z, s} from (¬x ∧ y ∧ ¬z)→ s
{ x, y,¬z, s} from (¬x ∧ ¬y ∧ z)→ s
{¬x,¬y, c} from ( x ∧ y)→ c
{¬x,¬z, c} from ( x ∧ z)→ c
{¬y,¬z, c} from ( y ∧ z)→ c
{ x, y,¬c} from (¬x ∧ ¬y)→ ¬c
{ x, z,¬c} from (¬x ∧ ¬z)→ ¬c
{ y, z,¬c} from (¬y ∧ ¬z)→ ¬c

Half Adder clauses:
{ x, y,¬s} from (¬x ∧ ¬y)→ ¬s
{ x,¬y, s} from (¬x ∧ y)→ s
{¬x, y, s} from ( x ∧ ¬y)→ s
{¬x,¬y, s} from ( x ∧ y)→ ¬s
{ x, y,¬c} from (¬x ∧ ¬y)→ ¬c
{ x,¬y,¬c} from (¬x ∧ y)→ ¬c
{¬x, y,¬c} from ( x ∧ ¬y)→ ¬c
{¬x,¬y, c} from ( x ∧ y)→ c

Figure 4.3: Clauses for Full and Half Adders.
(Inputs: x,y,z Sum: s Carry: c)
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4.2 Normal Sudoku
The normal Sudoku rules as introduced in 2.4 can be broken down into the five constraints

shown in Table 4.1, which can be encoded into clauses using the variable sx,y,z, which is

true iff cell (x, y) has value z. The variable sx,y,z will be used further during the later shown

formulae of other Sudoku Variants as the cell values play an important role in all of them.

The encoding formulated in Table 4.2 can be seen as a direct encoding using at-least-one

and at-most-one clauses and was proposed by [13] where it is called the minimal encoding.

Constraint Formula #Clauses

At least one number from 1 to 9 appears in each grid cell. (S-i) 81

Every number appears at most once per row. (S-ii) 2916

Every number appears at most once per column. (S-iii) 2916

Every number appears at most once per box. (S-iv) and (S-v) 2916

Every cell that contains a hint can only have that value. (S-vi) 1/hint

Table 4.1: Constraints of Normal Sudoku.

9∧
x=1

9∧
y=1

9∨
z=1

sx,y,z (S-i)

9∧
y=1

9∧
z=1

9∧
x=1

9∧
i=x+1

¬sx,y,z ∨ ¬si,y,z (S-ii)

9∧
x=1

9∧
z=1

9∧
y=1

9∧
i=y+1

¬sx,y,z ∨ ¬sx,i,z (S-iii)

9∧
z=1

2∧
i=0

2∧
j=0

3∧
x=1

3∧
y=1

3∧
k=y+1

¬s(3∗i+x),(3∗j+y),z ∨ ¬s(3∗i+x),(3∗j+k),z (S-iv)

9∧
z=1

2∧
i=0

2∧
j=0

3∧
x=1

3∧
y=1

3∧
k=x+1

3∧
l=1

¬s(3∗i+x),(3∗j+y),z ∨ ¬s(3∗i+k),(3∗j+l),z (S-v)

sx,y,inputx,y
, for every (x, y) s.t. inputx,y ̸= 0 (S-vi)

Table 4.2: Formulae of clauses, Normal Sudoku.
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4.3 Anti-Knight
To encode the Anti-Knight rule, one must ensure that for each grid cell (x,y), it is forbidden

to have the same value as its Knight-Neighbours (cells that are a knights distance away).

The one constraint needed to formulate the Anti-Knight rule is stated in Table 4.3. The

corresponding formula to encode it into clauses is shown in Table 4.4. The set of Knight-

Neighbours to cell (x,y) can be defined as:

N(x, y) = {(i, j) | cell (i, j) one knight distance from cell (x, y)}.

Constraint Formula #Clauses

Cells that are one knight distance apart (neighbours)
must have different values.

(AK-i) 2016

Table 4.3: Constraints of Anti-Knight rule.

9∧
x=1

9∧
y=1

∧
(i,j)∈N(x,y)

9∧
z=1

¬sx,y,z ∨ ¬si,j,z (AK-i)

Table 4.4: Formulae of clause, Anti-Knight rule.
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4.4 Killer Sudoku
Using PBCs: For every killer cage of the input, we create a list of its cells. From every

list, a PBC is created as follows: For every cell (x,y) of a cage, we add
∑9

i=1(sx,y,i ∗ i) to

the left-hand side of the PBC. The right-hand side of the PBC is set to the target sum that

was given as input. The different PBCs (one for every killer cage) can then be encoded into

clauses, as explained in 4.1.1 and 4.1.2.

Using PBCs + Combinations: The PBC approach can be further optimized, because,

given a fixed number of summands, not all values from 1 to 9 can be used to achieve a

particular sum. For example, if a cage has a target sum of 8 and consists of three cells, the

number of possible value combinations to achieve the target sum is fairly limited. There

are only two possible value combinations 1 + 2 + 5 = 8 and 1 + 3 + 4 = 8, so the allowed

values the cells could take are 1, 2, 3, 4 and 5. When constructing the PBC, this knowledge

can be used to reduce the number of variable-value products on the left-hand side of the

equation. For every cell in a cage, we only add the variable times the corresponding value

(to the left-hand side) if the value is an allowed one.

Using Combinations: Another possibility is to completely abandon PBCs and exploit

that only certain value combinations are possible given a cage with a fixed target sum

and fixed number of cells that belong to it. To encode this every combination is given a

corresponding variable sv, for v ∈ Vg ⊂ N, which is true iff the corresponding combination

is used in a certain cage. The set of all cages is annotated as G, and the set of all possible

combinations to achieve the target sum of a cage g ∈ G is denoted as Cg. The constraints

needed to encode the Killer Sudoku rules without the use of PBCs are stated in Table 4.5,

further the formulae that encode these constraint to clauses are described in Table 4.6.

Constraint Formula

For every cage g ∈ G and possible combination c ∈ Cg it
holds that, either the cage’s target sum is not achieved using
combination c or every cage cell contains at least one value
of the combination c.

(K-i)

In every cage g ∈ G at least one combination c ∈ Cg is used. (K-ii)

In every cage g ∈ G at most one combination c ∈ Cg is used. (K-iii)

Every value from 1 to 9 appears at most once within the
cells of a cage g ∈ G. (K-iv)

Table 4.5: Constraints of Killer Sudoku rules.
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∧
g:G

∧
c:Cg

∧
(x,y):g

−sv ∨
∨
z:c

sx,y,z (K-i)

∧
g:G

∨
v:Vg

sv (K-ii)

∧
g:G

∧
v′:Vg

∧
v′′:Vg

¬sv′ ∨ ¬sv′′ with v′ < v′′ (K-iii)

∧
g:G

∧
(xi,yi):g

∧
(xj ,yj):g

9∧
z=1

¬xiyiz ∨ ¬xjyjz with (xi, yi) ̸= (xj , yj) (K-iv)

Table 4.6: Formulae of clauses, Killer Sudoku rules.
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4.5 Arrowheads
Arrowheads demand a total or partial order between two cells. The sets of all tuples of two

cells under total or partial order are respectively noted as TO and PO. The first cell (x1, y1)

of such a tuple ((x1, y1), (x2, y2)) ∈ TO ∪ PO shall have a smaller (or equal) value than the

second one (x2, y2). To enforce this, the constraints shown in 4.7 are encoded into clauses

using the support encoding (see Table 4.8). In formula AH-i, the values of z1 go from 1 to

9, which ensures that the first cell of a tuple can not have a value of 9. In formula AH-ii,

on the other hand, z1 iterates from 2 to 9 because if the first cell has a value of 1, all values

from 1 to 9 are allowed for the second cell.

Constraint Formula

For every ((x1, y1), (x2, y2)) ∈ TO, either cell (x1, y1) has not
value z1 ∈ {1, .., 9} or cell (x2, y2) has value z2 > z1, z2 ∈ {2, .., 9}.

(AH-i)

For every ((x1, y1), (x2, y2)) ∈ PO, either cell (x1, y1) has not
value z1 ∈ {2, .., 9} or cell (x2, y2) has value z2 ≥ z1, z2 ∈ {1, .., 9}.

(AH-ii)

Table 4.7: Constraints of Arrowhead rules.

∧
((x1,y1),(x2,y2)):TO

9∧
z1=1

¬sx1,y1,z1 ∨
9∨

z2=z1+1

sx2,y2,z2 (AH-i)

∧
((x1,y1),(x2,y2)):PO

9∧
z1=2

¬sx1,y1,z1 ∨
9∨

z2=z1

sx2,y2,z2 (AH-ii)

Table 4.8: Formulae of clauses, Arrowhead rules.
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4.6 Thermometers (Hidden)
As the Thermometer rule also demands a total (or partial) order between the cells of the

thermometers, one can reuse the rules and formulas shown for Arrowheads in 4.5. Starting

from a thermometers bulb, one can conceptually place arrowheads between every cell pair

along the thermometer, enforcing a total (or partial) order between all cells.

Further constraints and variables are needed for the more complicated puzzle, where the

solver must also deduce the thermometer positions. When encoding this puzzle, we distin-

guish two main cases: if the entire thermometer number t fits inside the 9 × 9 grid when

its bulb is placed at (x, y), the clauses of TH-iv, TH-v and TH-vi are added. Otherwise

the clauses of TH-vii are added. The corresponding constraints are defined in Table 4.10,

and the formulae in Table 4.11 show how to encode them into clauses. Details on the used

notation and variables within the formulae can be found in Table 4.9.

Notation and Variables:

T = List of given thermometers

T.size = Number of given thermometers

T [t] = Thermometer number t in list of all thermometers

T [t].size = Number of cells in thermometer number t

χ(t, x, y, d) = x-coordinate of the cell that is at depth d of the
thermometer number t if its bulb is placed in cell (x, y)

Υ(t, x, y, d) = y-coordinate of the cell that is at depth d of the
thermometer number t if its bulb is placed in cell (x, y)

Arrowhead(t, x, y, d) = Set of clauses needed to encode that the cell at depth
d of thermometer number t is smaller than the cell at
depth d+ 1, given the thermometer has its bulb in cell
(x, y).

st,d,x,y : Is true if and only if the cell at depth d of thermometer
number t is located in grid cell (x, y).
t ∈ {1, .., 81}
d,x,y ∈ {1, .., 9}
Digits : ttdxy
Range: : 01111 to 81999
In practice t has an offset of +10 to avoid the leading 0.
So the actual variable range is: 11111 to 91999.

Table 4.9: Notations and variables, Thermometers-Hidden rules.
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Constraint Formula

Every cell of every thermometer is located in at least one
grid cell.

(TH-i)

At most one thermometer cell is located in one grid cell. (TH-ii) and (TH-iii)

If the cell at depth d of thermometer number t is located
in grid cell (x, y), then the thermometer cell at depth
d+ 1 must be located next to it (corresponding to the
thermometer’s shape), except if d = T[t].size.

(TH-iv)

If the cell at depth d of thermometer number t is located
in grid cell (x, y), then the thermometer cell at depth
d− 1 must be located next to it (corresponding to the
thermometer’s shape), except if d = 0.

(TH-v)

If the cell at depth d of thermometer number t is located
in grid cell (x, y), then the cell value of (x, y) must be
lower than that of the thermometer cell at depth d+ 1.

(TH-vi)

If not the entire thermometer with number t is inside
the 9× 9 when its bulb is placed at cell (x, y), then the
cell at depth d of thermometer number t can not be
located at the cell it covers in this situation.

(TH-vii)

Table 4.10: Constraints of the Thermometers-Hidden rules.
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T.size∧
t=1

T [t].size∧
d=1

9∨
x=1

9∨
y=1

st,d,x,y (TH-i)

T.size∧
t=1

T [t].size∧
d=1

T [t].size∧
k=d+1

9∧
x=1

9∧
y=1

¬st,d,x,y ∨ ¬st,k,x,y (TH-ii)

T.size∧
t=1

T.size∧
k=t+1

T [t].size∧
d=1

T [t].size∧
l=1

9∧
x=1

9∧
y=1

¬st,d,x,y ∨ ¬sk,l,x,y (TH-iii)

T.size∧
t=1

9∧
x=1

9∧
y=1

T [t].size−1∧
d=1

¬st,d,χ(t,x,y,d),Υ(t,x,y,d) ∨ st,d+1,χ(t,x,y,d+1),Υ(t,x,y,d+1) (TH-iv)

T.size∧
t=1

9∧
x=1

9∧
y=1

T [t].size−1∧
d=1

st,d,χ(t,x,y,d),Υ(t,x,y,d) ∨ ¬st,d+1,χ(t,x,y,d+1),Υ(t,x,y,d+1) (TH-v)

T.size∧
t=1

9∧
x=1

9∧
y=1

T [t].size−1∧
d=1

¬st,d,χ(t,x,y,d),Υ(t,x,y,d) ∨Arrowhead(t, x, y, d) (TH-vi)

T.size∧
t=1

9∧
x=1

9∧
y=1

T [t].size∧
d=1

¬st,d,χ(t,x,y,d),Υ(t,x,y,d) with χ(·),Υ(·) ∈ [1, 9] (TH-vii)

Table 4.11: Formulae of clauses, Thermometers-Hidden rules.
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4.7 Sandwich Sum
Sandwich Sums can be given for rows and columns. We will elaborate on the row constraints

from which the formulas for the column constraints can be derived by swapping x and y, re-

spectively. Similar to the Killer Sudoku rules, multiple optimizations can be (incrementally)

made when encoding the Sandwich Sum rules.

Using PBCs: Assuming that all lengths of sandwiches are possible to achieve a certain

sum. We must encode all possible sandwich lengths (0 to 7) and all corresponding positions

for the cells with values 1 and 9. Also, we encode a PBC for every possible sandwich length

and position. The LHS of said PBC is
∑9

i=1(sx,y,i ∗ i), and the RHS is set to the current

rows sandwich sum. Since the sandwich can only be at one position in a row at once, only

one of all the PBC will be true. To ensure that a PBC’s clauses are satisfied if the sandwich

is not in its corresponding position, we add the negative literal of the corresponding sv

to each clause (see formulae SW-vii, SW-viii and SW-ix in Table 4.14). To encode the

Sandwich Sum rules for rows without the incorporation of further knowledge, the following

constraints/formulas are used: SW-i, SW-ii, SW-vii, SW-x and SW-xi.

Using PBCs + Combinations for Lengths: Given the sandwich sum of a row, one

can already make statements about the number of cells involved in the sum. For example,

given a sandwich sum of 8, one can conclude that the sandwich has either length 3, 2, or 1

(contains 3, 2 or 1 cells, not counting the border cells with values 1 and 9). This already

reduces the number of combinations of sandwich lengths and positions and can be utilized

to encode the rules using the constraints/formulas: SW-iii, SW-iv, SW-v, SW-vi, SW-viii,

SW-x and SW-xi.

Using Combinations for PBCs + Combinations for Lengths: Given the sandwich

sum of a row, one can not only make statements about the number of cells involved in the

sum but also about the possible values of these cells given a certain sandwich length (Similar

to the possible cell values in a killer cage given the cages sum and size). This reduces the

number of summands of the LHS of PBCs and can be combined with the knowledge about

possible sandwich lengths. To encode the Sandwich Sum rules using this additional knowl-

edge, the following constraints/formulas: are used: SW-iii, SW-iv, SW-v, SW-vi, SW-ix,

SW-x, SW-xi and SW-xii.

The different constraints and formulae used for these three encoding versions are listed in

Tables 4.12 and 4.14, respectively. Notation and variables used in the formulae are further

explained in Table 4.13.



Encoding 32

Constraint on rows Formula

If the sandwich of a row is at a certain position, the cells
with values 1 and 9 must be positioned at its left and right
end.

(SW-i) and (SW-ii)

If the sandwich of a row (with compatible length regarding
the sandwich sum) is at a certain position, the cells with
values 1 and 9 must be positioned at its left and right end.

(SW-iii) and (SW-iv)

The cells with values 1 and 9 can not have a certain
number of cells between them, if the values from these
number of cells can not add up to the rows sandwich sum.

(SW-v) and SW-vi)

If the sandwich of a row is at a certain position, then the
corresponding cells must add up to the row’s sandwich
sum.

(SW-vii)

If the sandwich of a row (with compatible length regarding
the sandwich sum) is at a certain position, then the
corresponding cells must add up to the row’s sandwich
sum.

(SW-viii)

If the sandwich of a row (with compatible length regarding
the sandwich sum) is at a certain position, then the
corresponding cells must add up to the row’s sandwich sum
using only compatible values regarding the sandwich sum.

(SW-ix)

The sandwich must be in at least one position. (SW-x)

The sandwich must be in at most one position. (SW-xi)

If the sandwich of a row is at a certain position, the cell
values of the cells that are added up to the sandwich sum
can not be incompatible regarding the sandwich sum.

(SW-xii)

Table 4.12: Constraints of Sandwich Sum rules.
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Notation and Variables:

PBC(x1, x2, y, sum) = Set of clauses needed to encode that the cells between
(x1, y) and (x2, y) have values ∈ {1, ..., 9} that add up
to sum.

PBC(x1, x2, y, sum, V al) = Set of clauses needed to encode that the cells between
(x1, y) and (x2, y) have values ∈ Val that add up to
sum.

L(y) = Set of numbers corresponding to the sizes of cell sets
for which it is possible to achieve the sandwich sum of
row y, given that each cell can only have values from
1 to 9.
L(y) ⊆ {0, 1, ..., 7}

L̄(y) = {0, ..., 7} \ L(y)

Z(y, l) = Set of integer values for which it is possible to achieve
the sandwich sum of row y if l different one of them
are added.
Z(y, l) ⊆ {1, ..., 9}

Z̄(y, l) = {1, ..., 9} \ Z(y, l)

S(x, y, l) = Dynamically assigned variable sv for each combination
of x, y and l that is true if the sandwich of row y has
its borders in cell (x, y) and cell (x+ 1 + l, y).
v ∈ Vy ⊂ N

Table 4.13: Notations and variables, Sandwich Sum rules.
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9∧
y=1

7∧
l=0

9∧
x=1

¬sx,y,1 ∨ ¬s(x+l+1),y,9 ∨ S(x, y, l) (SW-i)

9∧
y=1

7∧
l=0

9∧
x=1

¬sx,y,9 ∨ ¬s(x+l+1),y,1 ∨ S(x, y, l) (SW-ii)

9∧
y=1

∧
l:L(y)

9∧
x=1

¬sx,y,1 ∨ ¬s(x+l+1),y,9 ∨ S(x, y, l) (SW-iii)

9∧
y=1

∧
l:L(y)

9∧
x=1

¬sx,y,9 ∨ ¬s(x+l+1),y,1 ∨ S(x, y, l) (SW-iv)

9∧
y=1

∧
l:L̄(y)

9−l−1∧
x=1

¬sx,y,1 ∨ ¬s(x+l+1),y,9 (SW-v)

9∧
y=1

∧
l:L̄(y)

9−l−1∧
x=1

¬sx,y,9 ∨ ¬s(x+l+1),y,1 (SW-vi)

9∧
y=1

7∧
l=0

9∧
x=1

∧
φ∈PBC(x,x+l+1,y,sum)

φ ∨ ¬S(x, y, l) (SW-vii)

9∧
y=1

∧
l:L(y)

9∧
x=1

∧
φ∈PBC(x,x+l+1,y,sum)

φ ∨ ¬S(x, y, l) (SW-viii)

9∧
y=1

∧
l:L(y)

9∧
x=1

∧
φ∈PBC(x,x+l+1,y,sum,Z(y,l))

φ ∨ ¬S(x, y, l) (SW-ix)

9∧
y=1

∨
v:Vy

sv (SW-x)

9∧
y=1

∧
v′:Vy

∧
v′′:Vy

¬sv′ ∨ ¬sv′′ with v′ < v′′ (SW-xi)

9∧
y=1

∧
l:L(y)

9∧
x=1

∧
z:Z̄(y,l)

x+l∧
x′=x+1

¬sx′,y,z ∨ ¬S(x, y, l) (SW-xii)

Table 4.14: Formulae of clauses, Sandwich Sum rules.
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4.8 Secret Direction
To encode the secret direction rules, we introduce a variable that is true iff a cell (x, y) is

part of the hidden path at a certain depth d. We define the initial cell to have a depth of 0,

and its successors in the path have depths 1, 2, et cetera. The depth can be used to ensure

that every cell can only be in the path once, those prohibiting loops. That loops can not

be part of the solution path can be inferred from the definition of the next step in a path,

which is always determined by the position of the value 9 in the current (3 × 3)-box and

the value of the current path cell, making it impossible that one cell of the path has two

different successors. So loops cannot be part of the solution path because it would not be

possible to break out of them.

From the fact that the position of the value 9 is needed to determine the direction in which

the successor of a cell in the path lays, we can also derive that if the center of a (3× 3)-box

has value 9, all other cells of that box cannot be in the path, because for them no successor

direction would be defined.

Since the Sudoku grid has only a size of 9 × 9 and the cell value of a cell in the path

determines the distance to its successor, we can conclude that cells with a value of 9 can

not be part of the path (except as final cell) because after them the path would step outside

the grid.

Combining the previous two deductions, we can compute a sufficiently low upper bound

for the maximal path length of 81−8−8 = 65. Given these analyses, the constraints shown

in 4.15 can be formulated and encoded into clauses as shown in 4.17. Details about the used

notation and helping functions can be found in 4.16.
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Constraint Formula

At least one (3× 3)-box has a cell with value 9 as center. (SD-i)

At most (3× 3)-box has a cell with value 9 as center. (SD-ii) and (SD-iii)

A (3× 3)-box center cell that has value 9 is part of the
path in some depth.

(SD-iv)

A cell can be at most once in the path (can only be in
at most one depth).

(SD-v)

The path can have at most one cell in every depth. (SD-vi) and (SD-vii)

Cells that are in the path, and are center cells of a
(3× 3)-box, have not the value 9. (All cells with value 9,
that are in the path are center cells.)

(SD-viii)

The non center cells of the (3× 3)-box with a center cell
that has value 9, are not in the path.

(SD-vi) and (SD-ix)

If a cell (x, y) is not the center cell of a (3× 3)-box, has
value z, is in the path at depth d, and the the position of
the 9-valued cell in the same (3× 3)-box hints in a certain
direction. Then the cell (xs, ys) that is z steps in certain
direction away from (x, y) is also in the path, at layer
(d+ 1).

(SD-xi)

Table 4.15: Constraints of Secret Direction rules.
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Notation and Variables:

M = {(2,2), (2,5), (2,8), (5,2), (5,5), (5,8), (8,2), (8,5), (8,8)}

Ψ = {(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)}

G = {(a, b) | a, b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}}

F1(xb, yb, x
′, y′, d, xn, yn, z) =



(¬s1,(3∗xb+x′),(3∗yb+y′),d

∨¬s(3∗xb+xn),(3∗yb+yn),9

∨¬sx,y,z)
(xs, ys) /∈ G

(¬s1,(3∗xb+x′),(3∗yb+y′),d

∨¬s(3∗xb+xn),(3∗yb+yn),9

∨¬sx,y,z
∨s1,succx(xb,x′,xn,z),succy(yb,y′,yn,z),(d+1))

(xs, ys) ∈ G

succx(xb, x
′, xn, z) =


(3 ∗ xb + x′)− z xn = 1

(3 ∗ xb + x′) xn = 2

(3 ∗ xb + x′) + z xn = 3

succy(yb, y
′, yn, z) =


(3 ∗ yb + y′)− z yn = 1

(3 ∗ yb + y′) yn = 2

(3 ∗ yb + y′) + z yn = 3

s1,x,y,d : Is true if and only if the cell (x,y) is in the path,
at depth d.
d ∈ {0, .., 64}
x,y ∈ {1, .., 9}
Digits : 1xydd
Range : 11100 to 19964

Table 4.16: Notations and variables, Secret Direction rules.
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∨
x∈{2,3,8}

∨
y∈{2,3,8}

sx,y,9 (SD-i)

∧
x∈{2,3,8}

∧
y∈{2,3,8}

∧
k∈{3,8}
k>y

¬sx,y,9 ∨ ¬sx,k,9 (SD-ii)

∧
x∈{2,3,8}

∧
y∈{2,3,8}

∧
k∈{3,8}
k>x

∧
l∈{2,3,8}

¬sx,y,9 ∨ ¬sk,l,9 (SD-iii)

∧
x∈{2,3,8}

∧
y∈{2,3,8}

¬sx,y,9 ∨
64∨
d=0

s1,x,y,d (SD-iv)

9∧
x=1

9∧
y=1

63∧
d=0

64∧
k=d+1

¬s1,x,y,d ∨ ¬s1,x,y,k (SD-v)

64∧
d=0

9∧
x=1

9∧
y=1

9∧
k=y+1

¬s1,x,y,d ∨ ¬s1,x,k,d (SD-vi)

64∧
d=0

9∧
x=1

9∧
y=1

9∧
k=x+1

9∧
l=1

¬s1,x,y,d ∨ ¬s1,k,l,d (SD-vii)

64∧
d=0

9∧
x=1

9∧
y=1

¬s1,x,y,d ∨ ¬sx,y,9 s.t. (x, y) /∈M (SD-viii)

∧
x∈{2,3,8}

∧
y∈{2,3,8}

1∧
x′=−1

1∧
y′=−1

64∧
d=0

¬sx,y,9 ∨ ¬s1,(x+x′),(y+y′),d s.t. (x′, y′) ̸= (0, 0) (SD-ix)

s1,xr,yr,0 (SD-x)

2∧
xb=0

2∧
yb=0

3∧
x′=1

3∧
y′=1

63∧
d=0

∧
(xn,yn):Ψ

8∧
z=1

F1(xb, yb, x
′, y′, d, xn, yn, z) (SD-xi)

Table 4.17: Formulae of clauses, Secret Direction rules.
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4.9 Fawlty Towers
To encode the Fawlty Tower rules, we introduce three new variables for each tower, which

are true iff a tower is faulty, has increasing values or if the cell values of a tower add up to the

indicated sum, respectively. Details about these three variables can be found in Table 4.20.

We can encode the needed increasing values of a tower by placing arrowheads between each

neighbouring pair of its cells. Arrowheads can be encoded as shown in 4.5. To encode that

the cells of a tower must have values that add up to the indicated sum, we can place a killer

cage over them and set the cage’s sum to the indicated one. The killer cage can then be

encoded, as explained in 4.4. Further, we can use PBCs to ensure that the correct number

of towers is faulty, has increasing values or has cell values that add up to the indicated sum.

The three PBCs used for this are detailed in Table 4.19. The constraints derived from the

Fawlty Tower rules are shown in Table 4.18, and the formulae to encode these constraints

into clauses are displayed in Table 4.21.

Constraint Formula

A tower in column x is faulty if and only if either the
sum of its cell values is not equal to the indicated one
for column x or its cell values are not increasing (but
not both at once).

(FT-i) and (FT-ii)

If a tower has increasing cell values, all the clauses of
the corresponding arrowheads placed between its cells
must be true.

(FT-iii)

If the cells of a tower in column x have values that add
up to the sum indicated for column x, all the
clauses of the corresponding killer cage must be true.

(FT-iv)

The number of faulty towers must be equal to the one
given in the puzzle description.

(FT-v)

The number of towers with increasing cell values must
be equal to the one given in the puzzle description.

(FT-vi)

The number of towers with cell values that add up to
the sum indicated for the corresponding column must
be equal to the one given in the puzzle description.

(FT-vii)

Table 4.18: Constraints of Fawlty Tower rules.
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Notation:

Arrowhead(x, y, x′, y′) = Set of clauses needed to encode that the cell (x, y)
contains a smaller value than the cell (x′, y′) as if
there were an arrowhead placed between (x, y) and
(x′, y′). Arrowheads can be encoded as explained in
4.5.

Killer(x, y, x′, y′) = Set of clauses needed to encode that the cells between
(x, y) and (x′, y′) (including (x, y) and (x′, y′)) have
values that add up to the indicated sum for the tower
in column x. This encoding is similar to the one for
killer cages which is explained in 4.4.

PBCfaulty = Set of clauses needed to encode a PBC, which ensures
that the number of columns containing a faulty tower
matches the one stated in the puzzle description.

LHS =

9∑
x=1

1 ∗ faulty(x)

RHS = Number of faulty towers demanded in
puzzle description.

PBCinc = Set of clauses needed to encode a PBC, which ensures
that the number of columns containing a tower with
increasing cell values matches the one stated in the
puzzle description.

LHS =

9∑
x=1

1 ∗ inc(x)

RHS = Number of increasing towers demanded in
puzzle description.

PBCsum = Set of clauses needed to encode a PBC, which ensures
that the number of columns containing a tower with
cell values that add up to the correspondingly
indicated sum matches the one stated in the puzzle
description.

LHS =

9∑
x=1

1 ∗ sum(x)

RHS = Number of towers with a cell value sum
matching the indicated one.

h(x) = Height (number of contained cells) of tower in column
x.

Table 4.19: Notation, Fawlty Tower rules.
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Variables:

faulty(x) = s1,1,x,0
True iff the tower in column x is a faulty tower.
x ∈ {1, .., 9}
Digits : 11x0
Range : 1110 to 1190

inc(x) = s1,1,x,1
True iff the cells of the tower in column x is contain increasing values
from the bottom to the top.
x ∈ {1, .., 9}
Digits : 11x1
Range : 1111 to 1191

sum(x) = s1,1,x,2
True iff the cell values of the tower in column x add up to the
indicated value.
x ∈ {1, .., 9}
Digits : 11x2
Range : 1112 to 1192

Table 4.20: Variables, Fawlty Tower rules.

9∧
x=1

(¬faulty(x) ∨ sum(x) ∨ inc(x)) ∧ (¬faulty(x) ∨ ¬sum(x) ∨ ¬inc(x)) (FT-i)

9∧
x=1

(faulty(x) ∨ sum(x) ∨ ¬inc(x)) ∧ (faulty(x) ∨ ¬sum(x) ∨ inc(x)) (FT-ii)

9∧
x=1

9∧
y=11−h(x)

∧
φ∈Arrowhead(x,y,x,y−1)

¬inc(x) ∨ φ (FT-iii)

9∧
x=1

9∧
y=11−h(x)

∧
φ∈Killer(x,10−h(x),x,9)

¬sum(x) ∨ φ (FT-iv)

PBCfaulty (FT-v)

PBCinc (FT-vi)

PBCsum (FT-vii)

Table 4.21: Formulae of clauses, Fawlty Tower rules.
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4.10 Nurikabe Sudoku
As one part of the solution to a Nurikabe Sudoku is marking island and ocean cells, we

introduce corresponding variables that encode if a cell (x, y) is part of the ocean or part of

island n (further detailed in Table 4.25 as O(x, y) and I(n, x, y)). We note that there is only

one ocean but multiple islands. Since an island must consist of at least three orthogonally

adjacent cells and there are only 81 cells in the grid, a safe upper bound for the number

of islands can be calculated by 81/3 = 27. However, this number can be lowered because

of the additional rule that islands may not touch each other orthogonally and that there is

only one ocean. Considering this, the maximum number of islands found (by hand) to fit

in the grid is 13, but we will use an upper bound of 14 for the encoding just to be sure. An

example of how 13 islands can be placed in the grid that complies with the rules of Nurikabe

Sudoku can be seen in Figure 4.4.

The rule that an island must consist of at least three orthogonally adjacent cells can be

broken down to each individual cell of an island by stating that each cell that is part of

an island must be in a constellation (a set) with two other neighbouring cells that are part

of the same island. For such a constellation, it must hold that one of the three cells is

orthogonally adjacent to the other two cells. As shown in Figure 4.6, there are 18 different

possible constellations that one cell could be part of. To encode this rule, we introduce a

new variable which is further explained in Table 4.25 in the definition of N (c, n, x, y).

Figure 4.4: E.g. with 13 islands Figure 4.5: E.g. with max. flood depth 49

Further, we must enforce that islands are continuous. So from every cell that is part of an

island n it must be possible to reach any other cell of island n, without crossing an ocean

cell. This reachability can be enforced by constraints describing a Floodfill methodology.

However, we will call this walk as the word flood is better suited to describe the similar

idea used for the ocean cells. A walk is defined by its corresponding island n and its source

(xs, ys), which is said to be at depth 1 of the walk. Outgoing from the source, orthogonally

adjacent cells are walked with increasing depth numbers. As we model a Floodfill multiple

cells can be at the same depth of a walk. At depth 9, the walk will have covered all cells of

an island because the rules state that there are no value repetitions within an island which
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limits the size of an island to at most nine cells. The variable used to encode walks is further

described in Table 4.25 in the definition of W(d, n, xs, ys, x, y).

The rules also dictate that there may only be one continuous ocean, which can be enforced

with an approach similar to the one used for the continuousness of islands. However, as

value repetitions are allowed within the ocean, its size is not limited to nine cells.The depth

needed by a flood to cover all ocean cells is maximized if there are as few cells as possible

in every depth. With only one cell in each depth, an upper bound of 81 can be given as

the grid contains a total of 81 cells. But this number can be lowered as more than one cell

will be at the same depth in practice. After experimenting with possible island placements

by hand, we found an upper limit for the flood depth of 49. An Example for an island

placements that requires this flood depth can be seen in Figure 4.5. The variable used to

encode floods is further described in Table 4.25 in the definition of 𭟋(d, xs, ys, x, y).

The constraints to encode Nurikabe Sudoku are stated in the Figures 4.22, 4.23 and 4.24.

How the constraints are encoded into clauses is shown in the Figures 4.28, 4.29 and 4.30.

Constraint Formula

No (2× 2)-square can only consist of ocean cells. (NK-i)

Cells that are part of the same island can not have the
same value.

(NK-ii) and (NK-iii)

Island cells of different islands can not touch each
other orthogonally.

(NK-iv) and (NK-v)

Island cells must be in at least one constellation with
two neighbouring cells.

(NK-vi)

If cell (x, y) is part of island n and is in a constellation
that includes the two neighbouring cells (x′, y′) and
(x′′, y′′) then the two neighbouring cells must be part
of the same island n.

(NK-vii) and (NK-viii)

Cells must be part of the ocean or part of at least one
island.

(NK-ix)

Cells that are part of the ocean, are not part of any
island.

(NK-x)

Cells can be part of at most one island. (NK-xi)

Table 4.22: Constraints-1 of Nurikabe Sudoku rules.
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An ocean cell (x, y) must be in at least one depth of
any flood that has a source (xs, ys) which is also an
ocean cell.

(NK-xii)

Cells can be in at most one depth per flood with
source (xs, ys).

(NK-xiii)

Cells that are not part of the ocean are not flooded. (NK-xiv)

If cell (x,y) is part of the ocean, it is in depth 1 of the
flood with source (x,y).

(NK-xv)

Only the source cell of a flood can be in depth 1 of a
flood (where it is source).

(NK-xvi)

If a cell (x, y) is in depth d of a flood with source
(xs, ys), and (x, y) ̸= (xs, ys), and the cell (xs, ys) is
part of the ocean, then there must be an orthogonally
adjacent cell to (x, y) which is in depth d− 1 of the
flood with source (xs, ys).

(NK-xvii)

If a cell (x, y) is part of island n, then the cell (x,y) is
at depth 1 of the walk on island n with source (x,y).

(NK-xviii)

Only the source cell of a walk can be in depth 1 of a
walk (where it is source).

(NK-xix)

If a cell (x, y) is in depth d of a walk on island n with
source (xs, ys), and (x, y) ̸= (xs, ys), and the cell
(xs, ys) is part of island n, then there must be an
orthogonally adjacent cell to (x, y) which is in depth
d− 1 of the walk on island n with source (xs, ys).

(NK-xx)

If cell (x, y) is part of island n and cell (xs, ys) is part
of island n, then cell (x, y) must be in at least one
depth of the walk on island n that has source (xs, ys).

(NK-xxi)

A cell (x, y) can be in at most one depth of a walk on
an island n that has source (xs, ys).

(NK-xxii)

Cells that are not part of an island n can not be in
any depth of a walk on island n.

(NK-xxiii)

Table 4.23: Constraints-2 of Nurikabe Sudoku rules.



Encoding 45

If a cell that is part of the ocean contains an arrow,
and has value z, then there are z cells that are part
of the ocean in the direction the arrow points.

(NK-xxiv)

If a cell that is not part of the ocean contains an
arrow, and has value z, then there are z cells that are
not part of the ocean in the direction the arrow points.

(NK-xxv)

There is no solution, if a cell that is part of the grid’s
edge contains an arrow that points directly outside
the grid.

(NK-xxvi)

Table 4.24: Constraints-3 of Nurikabe Sudoku rules.

Figure 4.6: The 18 possible constellations, depicted for the center cell
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Variables:

O(x, y) = s1,5,0,0,0,x,y
True iff cell (x, y) is part of the ocean.
x, y ∈ {1, .., 9}
Digits : 15000xy
Range : 1500011 to 1500099

I(n, x, y) = s1,4,0,n,x,y
True iff cell (x, y) is part of island n.
x, y ∈ {1, .., 9}
n ∈ {1, .., 14}
Digits : 140nnxy
Range : 1400111 to 1401499

𭟋(d, xs, ys, x, y) = s2,d,xs,ys,x,y

True iff cell (x, y) is in flood-depth d
of the flood with source (xs, ys).
x, y ∈ {1, .., 9}
xs, ys ∈ {1, .., 9}
d ∈ {1, .., 49}
Digits : 2ddxsysxy
Range : 2011111 to 2499999

W(d, n, xs, ys, x, y) = s1,d,n,xs,ys,x,y

True iff cell (x, y) is in depth d of the
walk on island n with source (xs, ys).
x, y ∈ {1, .., 9}
xs, ys ∈ {1, .., 9}
d ∈ {1, .., 9}
n ∈ {1, .., 14}
Digits : 1dnnxsysxy
Range : 11011111 to 19149999

N (c, n, x, y) = s1,0,c,n,x,y
True iff cell (x, y) belongs to island n,
and has two adjacent neighbours that
also belong to island n, and that are
in constellation c with cell (x, y).
c ∈ {1, .., 18}
n ∈ {1, .., 14}
x, y ∈ {1, .., 9}
Digits : 1ccnnxy
Range : 1010111 to 1181499

Table 4.25: Variables, Nurikabe Sudoku rules.
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Notation:

A = {(x, y) | (x, y) is grid cell that contains an arrow}

B(x, y) = {(x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1)}

G = {(a, b) | a, b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}}

F2(d, x, y, xs, ys) = ¬O(xs, ys) ∨
∨

(x′,y′):B(x,y)

𭟋(d− 1, xs, ys, x
′, y′) s.t. (x′, y′) ∈ G

F3(d, n, x, y, xs, ys) = ¬I(n, xs, ys) ∨
∨

(x′,y′):B(x,y)

W(d− 1, n, xs, ys, x
′, y′) s.t. (x′, y′) ∈ G

η(c, x, y) =



((x, y − 1), (x, y − 2)) c = 1

((x, y − 1), (x+ 1, y − 1)) c = 2

((x+ 1, y), (x+ 1, y − 1)) c = 3

((x+ 1, y), (x+ 2, y)) c = 4

((x+ 1, y), (x+ 1, y + 1)) c = 5

((x, y + 1), (x+ 1, y + 1)) c = 6

((x, y + 1), (x, y + 2)) c = 7

((x, y + 1), (x− 1, y + 1)) c = 8

((x− 1, y), (x− 1, y + 1)) c = 9

((x− 1, y), (x− 2, y)) c = 10

((x− 1, y), (x− 1, y − 1)) c = 11

((x, y − 1), (x− 1, y − 1)) c = 12

((x, y − 1), (x+ 1, y)) c = 13

((x, y − 1), (x, y + 1)) c = 14

((x, y − 1), (x− 1, y)) c = 15

((x+ 1, y), (x, y + 1)) c = 16

((x− 1, y), (x+ 1, y)) c = 17

((x− 1, y), (x, y + 1)) c = 18

Table 4.26: Notations, Nurikabe Sudoku rules.
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PBCO(x, y, z) = Set of clauses needed to encode that in the direction where
the arrow of cell (x,y) points, there are z cells that are part
of the ocean.

LHS =



∑
k∈{1,...,8}

k<y

1 ∗ O(x, k) (x, y) contains ↑

9∑
k=y+1

1 ∗ O(x, k) (x, y) contains ↓

∑
k∈{1,...,8}

k<x

1 ∗ O(k, y) (x, y) contains←

9∑
k=x+1

1 ∗ O(k, y) (x, y) contains→

RHS = z

PBCI(x, y, z) = Set of clauses needed to encode that in the direction where
the arrow of cell (x,y) points, there are z cells that are not
part of the ocean.

LHS =



∑
k∈{1,...,8}

k<y

1 ∗ ¬O(x, k) (x, y) contains ↑

9∑
k=y+1

1 ∗ ¬O(x, k) (x, y) contains ↓

∑
k∈{1,...,8}

k<x

1 ∗ ¬O(k, y) (x, y) contains←

9∑
k=x+1

1 ∗ ¬O(k, y) (x, y) contains→

RHS = z
(As we only defined PBCs for positive literals, we must in
practice introduce an additional variable sv for each
¬O(x, y). The corresponding variable sv is defined to
be true iff ¬O(x, y) is true (iff O(x, y) is false).)

Table 4.27: PBCs, Nurikabe Sudoku rules.
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8∧
x=1

8∧
y=1

¬O(x, y) ∨ ¬O(x+ 1, y) ∨ ¬O(x, y + 1) ∨ ¬O(x+ 1, y + 1) (NK-i)

14∧
n=1

9∧
x=1

9∧
y=1

9∧
z=1

9∧
k=y+1

¬I(n, x, y) ∨ ¬I(n, x, k) ∨ ¬sx,y,z ∨ ¬sx,k,z (NK-ii)

14∧
n=1

9∧
x=1

9∧
y=1

9∧
z=1

9∧
k=x+1

9∧
l=1

¬I(n, x, y) ∨ ¬I(n, k, l) ∨ ¬sx,y,z ∨ ¬sk,l,z (NK-iii)

14∧
n=1

8∧
x=1

9∧
y=1

14∧
k=1
k ̸=n

¬I(n, x, y) ∨ ¬I(k, x+ 1, y) (NK-iv)

14∧
n=1

9∧
x=1

8∧
y=1

14∧
k=1
k ̸=n

¬I(n, x, y) ∨ ¬I(k, x, y + 1) (NK-v)

14∧
n=1

9∧
x=1

9∧
y=1

¬I(n, x, y) ∨
18∨
c=1

((x′,y′),(x′′,y′′))=η(c,x,y)

N (c, n, x, y) s.t.(x
′′,y′′)∈G

(x′,y′)∈G (NK-vi)

14∧
n=1

9∧
x=1

9∧
y=1

18∧
c=1

((x′,y′),(x′′,y′′))=η(c,x,y)

¬N (c, n, x, y) ∨ I(n, x′, y′) s.t.(x
′′,y′′)∈G

(x′,y′)∈G (NK-vii)

14∧
n=1

9∧
x=1

9∧
y=1

18∧
c=1

((x′,y′),(x′′,y′′))=η(c,x,y)

¬N (c, n, x, y) ∨ I(n, x′′, y′′) s.t.(x
′′,y′′)∈G

(x′,y′)∈G (NK-viii)

9∧
x=1

9∧
y=1

O(x, y) ∨
14∨

n=1

I(n, x, y) (NK-ix)

14∧
n=1

9∧
x=1

9∧
y=1

¬O(x, y) ∨ ¬I(n, x, y) (NK-x)

14∧
n=1

9∧
x=1

9∧
y=1

14∧
k=n+1

¬I(n, x, y) ∨ ¬I(k, x, y) (NK-xi)

Table 4.28: Formulae-1 of clauses, Nurikabe Sudoku rules.
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9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

¬O(n, xs, ys) ∨ ¬O(n, x, y) ∨
49∨
d=1

𭟋(d, xs, ys, x, y) (NK-xii)

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

49∧
d=1

49∧
k=d+1

¬𭟋(d, xs, ys, x, y) ∨ ¬𭟋(k, xs, ys, x, y) (NK-xiii)

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

49∧
d=1

O(x, y) ∨ ¬𭟋(d, xs, ys, x, y) (NK-xiv)

9∧
x=1

9∧
y=1

¬O(x, y) ∨𭟋(1, x, y, x, y) (NK-xv)

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

¬𭟋(1, xs, ys, x, y) with (x, y) ̸= (xs, ys) (NK-xvi)

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

(x,y) ̸=(xs,ys)

49∧
d=2

¬𭟋(d, xs, ys, x, y) ∨ F2(d, x, y, xs, ys) (NK-xvii)

14∧
n=1

9∧
x=1

9∧
y=1

¬I(n, x, y) ∨W(1, n, x, y, x, y) (NK-xviii)

14∧
n=1

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

(x,y)̸=(xs,ys)

¬W(1, n, xs, ys, x, y) (NK-xix)

14∧
n=1

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

(x,y)̸=(xs,ys)

9∧
d=2

¬W(d, n, xs, ys, x, y) ∨ F3(d, n, x, y, xs, ys) (NK-xx)

14∧
n=1

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

¬I(n, xs, ys) ∨ ¬I(n, x, y) ∨
9∨

d=1

W(d, n, xs, ys, x, y) (NK-xxi)

14∧
n=1

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

9∧
d=1

9∧
k=d+1

¬W(d, n, xs, ys, x, y) ∨ ¬W(k, n, xs, ys, x, y) (NK-xxii)

14∧
n=1

9∧
x=1

9∧
y=1

9∧
xs=1

9∧
ys=1

9∧
d=1

I(n, x, y) ∨ ¬W(d, n, xs, ys, x, y) (NK-xxiii)

Table 4.29: Formulae-2 of clauses, Nurikabe Sudoku rules.
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∧
(x,y):A

9∧
z=1

∧
φ∈PBCO(x,y,z)

¬O(x, y) ∨ ¬sx,y,z ∨ φ (NK-xxiv)

∧
(x,y):A

9∧
z=1

∧
φ∈PBCI(x,y,z)

O(x, y) ∨ ¬sx,y,z ∨ φ (NK-xxv)

□ if the grid contains an arrow that points directly outside the grid. (NK-xxvi)

Table 4.30: Formulae-3 of clauses, Nurikabe Sudoku rules.
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Experiments

This chapter elaborates on how the different encodings perform and how the different Su-

doku Variants compare. The program to encode the various puzzle instances is written in

Java. We also use Java to call the different solvers (introduced in 2.2.3) and to log the

resulting data. All experiments are run on a personal computer using Windows 10. The PC

has an AMD Ryzen 7 5800X 8-Core Processor (3.80 GHz) and 32 GB of RAM (from which

the Java Virtual Machine (JVM) is allowed to use 28GB).

The configurations we test for each puzzle instance differ by:

• The used Solver: Sat4j or MiniSat

• The used PBC-Encoding: Binary Decision Diagrams or Adder Networks

• The used optimization level: what is encoded as PBC (only for Killer Sudoku)

Conducting runtime experiments on a personal computer using Java comes with the caveat

that the reported times all include some noise because their executions may be affected by

other processes running in the background or by JVM events like garbage collections. To

mediate that, we run 60 instances for every experiment configuration and report the average

runtime and corresponding standard deviations.

Early testing showed that the solving times depend heavily on the order in which clauses

and literals are given to the solvers. This is critical because we store clauses in sets and

treat them as sets themselves. So the order of clauses (and literals) is not strictly defined

and can vary from run to run. To still obtain comparable results, we order the clauses by

length and the literals by the absolute values that encode them. We arbitrarily decided to

pass the clauses containing the most literals first and to sort the literals within a clause by

increasing absolute values. This way, the solvers get the same encoding as input if a problem

is encoded and solved multiple times. However, eliminating this additional noise comes at

the cost of having to sort all the clauses after they are created.
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Because we use a relatively small test set of different puzzle instances, it is important to

note that assumptions made based on insights from the conducted experiments may not be

applied to a general case. The reason for the limited size of the test set is that in the case of

puzzles from CTCGH, they are very exotic and often unique. For Killer Sudokus Puzzles,

many instances can be found, but writing the puzzle down into a format that the program

can work on is very time-consuming as it has to be done manually.

5.1 Adder Networks vs. Binary Decision Diagrams
To analyze the Encoding of PBCs, we conducted further experiments using Killer Sudoku

instances from the books “The Times Ultimate Killer Su Doku Book 14”[17] and “The

Times Killer Su Doku (Book 18)”[16] both of which are the latest collections of Killer Su-

doku Puzzles arranged by “The Times”. In these books, puzzles are further categorized into

categories of hardness, which reach from the easiest, “Moderate”, to “Extra Deadly”, the

hardest. With ten instances from each of the categories, “Moderate” and “Extra Deadly”,

we can compare how Binary Decision Diagrams and Adder Networks perform when encod-

ing PBCs.

As Plot 5.1 shows, there is a strong correlation between the number of clauses and the

time needed to encode if BDDs are used. In the case of Adder Networks (Plot 5.2), it is

harder to make such a statement, as some instances with few clauses require more time to

encode compared to instances with fewer clauses. Furthermore, in this case, the variance

in clauses needed by the instances is relatively low. So to reliably analyze the relation,

additional samples with higher clause numbers would be necessary.

Looking at the ratio of solving time per clause (shown in Plots 5.3 and 5.4), it seems that

in both cases, the variance in solving time between the different instances seems to increase

the more clauses are needed to encode them.

Finally, when comparing the solving times (Plot 5.6), one can see that neither encoding

with BDDs nor encoding with Adder Networks gives a clear advantage, as it depends on

the puzzle instance, which method leads to a faster solving process. However, using Adder

Networks has the advantage of being much faster in the encoding part itself, which can be

seen in Plot 5.5.

Additionally, as one can see in the corresponding plots of this section, there also seems

to be a clear trend that the Sudoku instances of the harder “Extra Deadly” category de-

mand more clauses to encode them. However, this does not necessarily mean that they take

longer to encode, or at least not if Adder Networks are used (see 5.2). If it comes to the time

needed by the solver, it may seem intuitive that puzzles that are hard to solve for humans

also take longer to be solved by a SAT-solver. Surprisingly this assumption which is by no

means trivially given seems to be correct, as Plot 5.6 shows.
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5.2 Optimization of Killer Sudoku Encoding
Using the same Killer Sudoku Instances as explained in the previous section and Adder

Networks to encode PBCs, we can compare the encoding and solving times of the two

optimization ideas introduced in 4.4 to the standard approach of using PBCs. Plots 5.7 and

5.9 show that only generating the PBC for possible value combinations given the cages size

and target sum leads to a measurable but neglectable performance gain. However, encoding

Killer Sudokus completely without using PBCs can result in large savings, especially in

solving time (see 5.8 and 5.10).

5.3 CTCGH Sudoku Variants compared using Sat4j and MiniSat
Table 5.1 shows the outcome of encoding and solving thirteen different Sudoku instances

with Sat4j and MiniSat. For puzzles where PBCs were needed, Adder Networks were used to

encode them. The shown puzzle instances are from CTCGH and combine different variants

and rules, except for “Sudoku Man Of Mystery” and “The Road To Genius”, where only

the normal Sudoku rules apply. An overview of which rules are present in each instance is

given in Table 5.2.

Studying Table 5.1, one can see that in most cases the solving times using MiniSat are

significantly higher than the ones of Sat4j. This may have to do with the fact that the

Sat4j library and its functions can be accessed directly by the Java program, whereas the

MiniSat-Solver is called as an external executable. For all further experiments, we are only

using Sat4j (which internally also contains a version of MiniSat). There are two exceptions

to Sat4j always being faster. “The Original Sandwich” and “Nurikabe Sudoku” seem to

perform much better with MiniSat, which we have no direct explanation for. As shown in

Table 5.1, those are the puzzle instances that demand the highest number of clauses and

variables, which also means they potentially require more memory (we measured usage of

up to 27 GB in the case of “Nurikabe Sudoku”). Therefore, we think the external MiniSat

executable might gain an advantage because of more efficient memory management than the

Java-based solver. However, we do not have enough data to prove this claim, so MiniSat may

prevail for other puzzle instances we did not test. Because the solving times for “Nurikabe

Sudoku” using Sat4j are significantly higher, only ten runs were conducted instead of 60 like

for the other puzzle instances.

When analyzing the constraints of “Nurikabe Sudoku”, we found that the high number of

clauses needed is mainly caused by the constraints ensuring that the ocean and every is-

land is continuous. The Formulae NK-xii, NK-xiii, NK-xiv, NK-xxi, NK-xxii and NK-xxiii

produce more than 12 million clauses alone, which is almost ten times the number all other

instances require combined.

Comparing encoding to solving times (using Sat4j), it turns out that for instances without

PBCs, the encoding times are all higher than the solving times, which does not hold if PBCs

are involved, where it differs from instance to instance which part takes longer.
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Plot 5.2: Average encoding time per clause, using Adder Networks
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Plot 5.3: Average solving time per clause, using Binary Decision Diagrams
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Plot 5.4: Average solving time per clause, using Adder Networks
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Plot 5.5: Average encoding time comparison, Binary Decision Diagrams vs.
Adder Networks

102 103 104

Adder Network | t-solve | (ms)

102

103

104

B
D

D
 | 

t-
so

lv
e 

| (
m

s)

Moderate

Extra Deadly

Plot 5.6: Average solving time comparison, Binary Decision Diagrams vs.
Adder Networks
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Plot 5.7: Average encoding time comparison, PBCs vs. PBCs + Combinations,
using Adder Networks

60 65 70 75 80 85 90

Combinations | t-encode | (ms)

60

65

70

75

80

85

90

P
B

C
s 

| t
-e

n
co

d
e 

| (
m

s)

Plot 5.8: Average encoding time comparison, PBCs vs. Combinations,
using Adder Networks
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Plot 5.9: Average solving time comparison, PBCs vs. PBCs + Combinations,
using Adder Networks
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Plot 5.10: Average solving time comparison, PBCs vs. Combinations,
using Adder Networks
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Variant

t-avg.
(ms)

t-std.
(ms)

#clauses #variables

encode
solve

encode
solve

Sat4j MiniSat Sat4j MiniSat

9 Marks The Spot 4428.02 170.90 1179.53 211.03 36.76 519.18 727636 5994

Chess Sudoku 29.05 3.23 1061.05 1.10 0.43 241.94 8912 729

Fawlty Towers 65.38 11.10 904.62 12.31 0.71 127.42 17632 2186

Frozen Picnic 168.32 14.92 886.33 3.99 0.81 51.47 40519 5387

Mark 1 28.60 8.18 903.05 2.12 0.50 52.05 8839 729

Nurikabe Sudoku 77406.68 4145268.40 413259.82 3341.18 536495.31 5633.74 13904145 1169013

Sudoku Man Of Mystery 23.18 1.97 876.67 0.93 0.71 6.85 7399 729

The Miracle Thermo 739.77 446.32 1671.62 261.78 24.74 112.12 138743 5265

The Original Sandwich 1677.18 15408.00 2059.25 26.28 384.06 12.22 302640 42635

The Pyramid 48.68 219.07 1434.53 2.23 3.46 3.36 15233 1679

Thermo 2020 24.23 1.97 1355.67 1.09 0.66 54.23 7659 729

Thermo Couples 27.98 3.80 1354.52 0.85 0.55 8.19 8884 729

Thermo Squares 23.92 17.95 1362.25 0.74 0.67 54.87 7692 729

The Road To Genius 22.95 1.97 1364.20 0.81 0.74 56.83 7401 729

Table 5.1: CTCGH Sudokus, solving with Sat4j and MiniSat,
PBC-Encoding with Adder Networks
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9 Marks The Spot × ×

Chess Sudoku × × ×

Fawlty Towers × ×

Frozen Picnic × × × ×

Mark 1 × × ×

Nurikabe Sudoku × ×

Sudoku Man Of Mystery ×

The Miracle Thermo × ×

The Original Sandwich × ×

The Pyramid × × ×

Thermo 2020 × ×

Thermo Couples × × ×

Thermo Squares × ×

The Road To Genius ×

Table 5.2: Sudoku Puzzle instances and their rules.
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Conclusion

This thesis demonstrated how different variants and rules of Sudoku Puzzles could be en-

coded as sets of logical clauses. We have seen that in most cases, SAT-solvers can find

assignments that satisfy these sets of clauses in a relatively short time. We also found

that solving Sudokus is by no means a trivial problem as the number of clauses and the

time needed to solve “Nurikabe Sudoku” have shown. We have elaborated in detail on how

Pseudo-Boolean Constraints can be used to encode constraints regarding sums, like in Killer

Sudokus or for the Sandwich Sum rules. Specifically for Killer Sudoku instances, we found

that both shown encoding methods Adder Networks and Binary Decision Diagrams (both

proposed by [5]) have comparable performance, but that Adder Networks produce fewer

clauses and are encoding the PBCs faster. Additionally, we have shown that encoding Killer

Sudokus without PBCs can significantly reduce the time needed to solve them.

In future work, the proposed encoding methods for Sudoku rules could help to craft new

puzzle instances of exotic variants like “9 Marks The Spot” or “The Miracle Thermo”. Fur-

ther, we came across multiple engaging questions for which we only estimated an answer

or gave an upper bound, like what is the highest possible number of islands in “Nurikabe

Sudoku” or how long can a hidden path in “9 Marks The Spot” be at maximum. Also

teasing: CTCGH [10] contains many more Sudoku variants which could be analysed and

encoded for SAT-solvers.

During our work, we only used a limited test set of puzzle instances, which all had to

be rewritten by hand into a format our program could understand. In general, there seem

to be no common test sets for non-original Sudoku Variants like Killer Sudoku, which may

also has to do with the lack of a common file format that could be used to share more exotic

puzzle variants. To facilitate future work, it would be desirable to agree on a standard file

format specifically tailored for Sudokus. This would allow the puzzle and research commu-

nity to build an openly available and directly usable database of Sudoku Puzzles, which

would make the testing and analysis of new encoding and solving algorithms more reliable.
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ence+Business Media LLC, 233 Spring Street Boston, New York, NY 10013, USA,

2008. ISBN 978-0-8176-4763-6.

[20] Toby Walsh. SAT v CSP. In Rina Dechter, editor, Principles and Practice of Constraint

Programming, CP 2000, pages 441–456, Berlin, Heidelberg, 2000. Springer Berlin Hei-

delberg. ISBN 978-3-540-45349-9.

https://www.sciencedirect.com/science/article/pii/000437029090009O
https://www.sciencedirect.com/science/article/pii/000437029090009O
http://anytime.cs.umass.edu/aimath06/proceedings/P34.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P34.pdf
https://doi.org/10.1080/10586458.2013.870056
https://www.sat4j.org/index.php


 
 

August 2021 

 
 
 
 
 
Declaration on Scientific Integrity 
(including a Declaration on Plagiarism and Fraud) 
Translation from German original 
 
 
Title of Thesis: 
 
 
 
Name Assesor:  ________________________________________________________  
 
Name Student:  ________________________________________________________  
 
Matriculation No.:  ________________________________________________________  
 
 
With my signature I declare that this submission is my own work and that I have fully 
acknowledged the assistance received in completing this work and that it contains no 
material that has not been formally acknowledged. I have mentioned all source materials 
used and have cited these in accordance with recognised scientific rules. 
 
Place, Date:  _______________________  Student:  ____________________________  
 
 
 
Will this work be published? 
 
� No 
  
� Yes. With my signature I confirm that I agree to a publication of the work (print/digital) 

in the library, on the research database of the University of Basel and/or on the 
document server of the department. Likewise, I agree to the bibliographic reference in 
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable) 

 
Publication as of:  _________________________________________________________  
 
 
Place, Date:  _______________________  Student:   ____________________________  
 
 
Place, Date:  _______________________  Assessor:   ____________________________  
 
 
 
Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis . 

Möhlin, 20.07.22

Sebastian Schlachter

2017-927-534

Encoding Diverse Sudoku Variants as SAT Problems

Prof. Dr. Malte Helmert


	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 SAT-Problems and SAT-Solvers
	2.2.1 DIMACS CNF File Format
	2.2.2 How SAT-Solvers solve
	2.2.3 MiniSat and Sat4j

	2.3 Constraint Networks (CN)
	2.3.1 Unary Constraints
	2.3.2 Binary Constraints
	2.3.3 N-ary Constraints
	2.3.4 Common Encodings
	2.3.5 Pseudo-Boolean Constraints (PBCs)

	2.4 Sudoku

	3 Sudoku Variants and Rules
	3.1 Killer Sudoku
	3.2 Thermometers
	3.3 Sandwich Sums
	3.4 Secret Direction
	3.5 Arrowheads
	3.6 Chess Moves
	3.7 Fawlty Towers
	3.8 Nurikabe Sudoku

	4 Encoding
	4.1 Encoding of PBCs
	4.1.1 Encoding of PBCs using Binary Decision Diagrams
	4.1.2 Encoding of PBCs using Adder Networks

	4.2 Normal Sudoku
	4.3 Anti-Knight
	4.4 Killer Sudoku
	4.5 Arrowheads
	4.6 Thermometers (Hidden)
	4.7 Sandwich Sum
	4.8 Secret Direction
	4.9 Fawlty Towers
	4.10 Nurikabe Sudoku

	5 Experiments
	5.1 Adder Networks vs. Binary Decision Diagrams
	5.2 Optimization of Killer Sudoku Encoding
	5.3 CTCGH Sudoku Variants compared using Sat4j and MiniSat

	6 Conclusion
	Bibliography



