
University Basel

Automatic Selection of Pattern

Collections for Domain Independent

Planning

Master Thesis

Sascha Scherrer

s.scherrer@unibas.ch

June 3, 2014

Examiner: Malte Helmert

Supervisors: Florian Pommerening, Martin Wehrle

Acknowledgments

I would like to thank Prof. Dr. Malte Helmert for providing the opportunity to write

my master thesis in the area of artificial intelligence. I would also like to thank Prof.

Dr. Malte Helmert, Dr. Martin Wehrle and Florian Pommerening for suggesting mul-

tiple possible topics for my thesis as well as helping me select this one. I am thankful

for the support, suggestions and ideas provided by Dr. Martin Wehrle and Florian

Pommerening during the last six months. Finally, I thank my friends, colleagues and

my family for supporting me during this time.

2

Abstract

Heuristic search with admissible heuristics is the leading approach to cost-optimal,

domain-independent planning. Pattern database heuristics—a type of abstraction

heuristics—are state-of-the-art admissible heuristics. Two recent pattern database

heuristics are the iPDB heuristic by Haslum et al. and the PhO heuristic by Pom-

merening et al..

The iPDB procedure performs a hill climbing search in the space of pattern collec-

tions and evaluates selected patterns using the canonical heuristic. We apply different

techniques to the iPDB procedure, improving its hill climbing algorithm as well as the

quality of the resulting heuristic. The second recent heuristic—the PhO heuristic—

obtains strong heuristic values through linear programming. We present different

techniques to influence and improve on the PhO heuristic.

We evaluate the modified iPDB and PhO heuristics on the IPC benchmark suite

and show that these abstraction heuristics can compete with other state-of-the-art

heuristics in cost-optimal, domain-independent planning.

3

Contents

Acknowledgments 2

Abstract 3

1 Introduction 6

2 Background 7

2.1 Planning . 7

2.2 Heuristic Search . 8

2.3 Pattern Databases . 8

2.4 Using Multiple Pattern Databases . 9

2.5 iPDB . 10

2.5.1 Selecting Patterns . 10

2.5.2 Sample States . 11

2.5.3 Combining PDBs . 11

2.6 PhO . 11

2.6.1 Selecting Patterns . 12

2.6.2 Combining PDBs . 12

3 Extensions of the iPDB Heuristic 13

3.1 Limiting Pattern Selection Time . 13

3.2 Limiting Minimum Improvement . 14

3.3 Increasing the Neighborhood . 15

3.4 Ignoring Candidate Pattern . 19

3.5 Sampling using FF Heuristic . 21

3.6 Iteration Duration Estimation . 22

4 Extensions of the PhO Heuristic 25

4.1 Partial Systematic Sizes . 25

4.2 Dynamically Chosen Systematic Size . 27

4.3 Limiting Number & Total Size of PDBs 27

4.4 Limiting Evaluation Time . 29

4.5 Pruning Unused Constraints . 29

5 Conclusion and Future Work 32

5.1 Conclusion . 32

4

5.2 Future Work . 32

References 34

5

1 Introduction

Domain-independent classical planning deals with finding a sequence of actions—called

a plan—that lead from an initial state to a goal state. A common approach to classical

planning is heuristic search in the state space. Heuristic search uses a search algorithm

combined with a heuristic function to guide it. From the vast amount of different types

of heuristics, abstraction heuristics are an increasingly popular choice. A common type

of abstraction heuristics are heuristics based on pattern databases [Culberson and

Schaeffer, 1998, Edelkamp, 2001]. Pattern databases (PDBs)—especially big ones—

require a lot of memory to store which leads to the usual approach of selecting multiple

smaller PDBs instead of a single big one. One of the main problems concerning multiple

PDBs is that the quality of the resulting heuristic depends strongly on the selection

of patterns. Another big problem is combining the information of multiple PDBs.

Different ways of selecting patterns often require different ways of combining PDBs to

get the most out of them.

Treating pattern selection as an optimization problem and solving it using an ge-

netic algorithm [Edelkamp, 2006] was one of the first approaches to automatic pattern

selection. The iPDB procedure [Haslum et al., 2007] uses a hill climbing search in the

space of pattern collections to find a good pattern collection. It used the canonical

heuristic [Haslum et al., 2007] to combine the PDBs generated from the pattern col-

lection. The hill climbing search is guided by a measurement of the improvement that

adding a new pattern to the collection would have.

The PhO heuristic takes a more straight-forward approach to pattern selection by

selecting all patterns up to a given pattern size. The PhO heuristic achieves good

heuristic values using the patterns to generate a set of constraints for a linear program

(LP) and solving this LP.

We examine different aspects of the iPDB heuristic and the PhO heuristic and

explore different techniques to increase their performance as well as their quality. In

Section 2 we provide all necessary background information needed to understand the

different approaches taken to modify the existing heuristics. In Section 3 and Section 4

we will describe the investigated changes and directly evaluate them experimentally.

We will come to a conclusion and propose some future work in Section 5.

6

2 Background

In order to be able to discuss all ideas, changes and improvements that were studied

some background knowledge is necessary.

2.1 Planning

A SAS+ planning task as introduced by Bäckström and Nebel [1995] with action costs

is a tuple Π = (V,O, s0, s∗, c) where V is a finite set of variables, each variable v ∈ V
having its own finite domain Dv. A partial state is a partial function over V assigning

a value s(v) ∈ Dv to some variables Vars(s) ⊆ V . A state is a partial state assigning a

value to every variable. The state s0 is called the initial state; the goal s∗ is a partial

state. Two partial states s and s′ are consistent if there is no variable v ∈ V for which

both states are defined and have different values. A partial state s′ that is defined on

some variables Vars(s′) = P ⊆ V and is consistent with a state s can be written as a

projection of s onto P : s′ = s|P .

The finite set O consists of all operators, each having a partial state preo as the

precondition and a partial state eff o as the effect. The cost function c : O → N0

assigns each operator o ∈ O its cost. An operator o ∈ O is applicable in a state s if

its precondition is consistent with s. Applying an operator o ∈ O to a state s if o is

applicable in s results in a state s[o] with

s[o](v) =

eff o(v) if v ∈ Vars(eff o)

s(v) otherwise

The result of applying an operator which is not applicable in a state is undefined. The

successors of a state are all states that can be reached by applying an operator to that

state. Applying a sequence of operators π = 〈o1, o2, ..., on〉 is defined as:

s[π] =

s if π = 〈〉

s[o1][〈o2, ..., on〉] otherwise

The result of applying a sequence of operators of which one operators is not applicable

in the respective state is undefined. The finite set of states S consists of all states of

Π. All states S∗ ⊆ S that are consistent with the (partial) goal state s∗ are called goal

states.

An s-plan for a state s ∈ S is a sequence of operators π so that s[π] is defined and

7

consistent with s∗. The cost of an operator sequence π = 〈o1, o2, ..., on〉 is defined as

c(π) =

n∑
i=1

c(oi)

An optimal s-plan of s ∈ S is an s-plan with minimal cost. A plan is an s0-plan.

The causal graph of a planning task (V,O, s0, s∗, c) is defined as a directed graph

consisting of all variables in V as nodes. Its nodes are connected with precondition arcs

from node u to node v 6= u if there is an operator o ∈ O with u ∈ preo and v ∈ eff o.

Nodes are also connected with co-effect arcs from u to v and vice versa if there exists

an operator o ∈ O with u, v ∈ eff o. Two variables u, v are causally connected if their

corresponding nodes in the causal graph are connected either by a precondition arc or

by a co-effect arc.

Finding an optimal plan for a planning task can be done by heuristic search in the

state space.

2.2 Heuristic Search

A heuristic is a function h : S → N0 ∪ {∞} and is an estimator for the optimal plan

cost in a state. The heuristic function which returns the optimal plan cost for every

state is called h∗. A heuristic h is admissible if h(s) ≤ h∗(s) holds for every state.

A heuristic is consistent if h(s) ≤ h(s[o]) + c(o) holds for every states s and every

operator o applicable in s. The optimal heuristic h∗ always returns the optimal plan

cost and is in general not efficiently computable because SAS+ is a generalization of

STRIPS which is PSPACE-complete as shown by Bylander [1994].

Heuristic search is done by searching in the state space guided by a heuristic. Usually

a best-first search algorithm is used which always expands the most promising states

first based on some metric. A common example is the search algorithm A* [Hart et al.,

1968] which expands the state with lowest f(s) = g(s) + h(s) first. The so called f -

value depends on the distance from the initial state g(s) and a heuristic value h(s). If

the heuristic h is admissible then A* guarantees that an optimal plan will be found if

one exists.

2.3 Pattern Databases

Pattern databases (PDBs) were first introduced by Culberson and Schaeffer [1998]

as a domain specific heuristic for solving the 15- and 24-puzzle. PDBs have been

8

adapted to cost-optimal planning by Edelkamp [2001]. PDBs can also be applied to

domain-independent planning:

A pattern is a subset of variables P ⊆ V of a planning task Π = (V,O, s0, s∗, c).

Projecting the planning task Π using the pattern P results in an abstracted planning

task ΠP = (P,OP , sP0 , s
P
∗ , c

P). The states of ΠP are only defined on variables in P

and are therefore partial states in Π. The operators OP are the operators O of Π with

their preconditions and effects restricted to the variables in P . The cost of the optimal

s-plan for every state s in ΠP gets computed and stored in a pattern database.

The heuristic value of a state s of Π is then computed by simply looking up the

optimal plan cost for s|P in the pattern database, we write this as hP (s). A pattern

database heuristic is always admissible due to the fact that every plan in Π is a plan

in ΠP and therefore the cost of an optimal plan in ΠP must be lower than or equal

to the cost of an optimal plan in Π. Pattern databases are independent of the initial

state of a planning task and can therefore be reused if two tasks only differ in their

initial state. As one can imagine, computing such a pattern database for big patterns

can take quite some time and storage space. In fact, creating a pattern database for

the full pattern—containing each variable in the planning task—requires computing

the optimal plan cost for every state. A pattern database with the empty pattern has

a single entry which has to be a goal in ΠP and is therefore equivalent to h0 : S → {0}.
The step from using a single PDB to using multiple PDBs introduces two interesting

problems.

2.4 Using Multiple Pattern Databases

In domain independent planning the time used to create PDBs is usually shared with

the time used for searching for a plan. This time is often limited in some way (from

seconds to minutes to hours or days) and has to be considered when creating PDBs.

The patterns to use have to be selected automatically without human interaction and

deeper knowledge of the problem at hand. In addition the time available for solving a

problem in domain independent planning may make it difficult to create large pattern

databases. Two algorithms that deal with the problems of PDBs in domain indepen-

dent planning and automatic selection of patterns are the PhO (Posthoc Optimization)

heuristic by Pommerening et al. [2013] and the iPDB heuristic by Haslum et al. [2007].

As with all admissible heuristics we can combine pattern databases by simply taking

the maximum value of multiple pattern databases heuristics. The heuristic values of

two PDBs can even be added if their patterns are additive. Two patterns P1 and P2

9

are additive if the set of operators that affect a variable in P1 is disjoint from the set

of operators that affect a variable in P2. A set of patterns is additive if all patterns

in the set are pairwise additive. An additive set of patterns A can be combined into a

heuristic function:

hA(s) =
∑
P∈A

hP (s)

There is always a unique, best way of combining the patterns of a pattern collection

C into a collection SC of all maximal (with respect to set inclusion) additive subsets

of C. The heuristic function

hC(s) = max
A∈SC

∑
P∈A

hP (s)

is called the canonical heuristic function for the pattern collection C.

2.5 iPDB

The iPDB procedure as introduced by Haslum et al. [2007] uses a hill climbing algo-

rithm in the space of pattern collections to accumulate a set of patterns which are

then combined and evaluated with the canonical heuristic.

2.5.1 Selecting Patterns

The initial pattern collection of the iPDB procedure consists of one pattern per goal

variable containing that goal variable. A candidate pattern is a pattern that is the

same as a pattern in the pattern collection except for one additional variable. This

additional variable has to be causally connected to at least one variable already in the

pattern. In every iteration one candidate pattern gets added to the pattern collection

and the set of candidate patterns gets extended accordingly. The neighborhood of a

pattern collection consists of all pattern collections that contain one candidate pattern

in addition to all patterns in the current pattern collection.

The decision of which pattern to add is made depending on the so called counting

approximation. Every pattern collection in the neighborhood gets evaluated on a set of

samples using the canonical heuristic. The number of samples on which the canonical

heuristic improves using a neighbor pattern collection is called the improvement of the

respective candidate pattern. The candidate with the highest improvement is added to

the set of patterns and the neighborhood gets extended accordingly. There are several

limits necessary to ensure a successful execution of the algorithm as bigger patterns

10

are preferred over smaller patterns due to their higher heuristic values. To prevent

the algorithm from selecting bigger and bigger patterns and using up all available

memory a per-pattern limit as well as a total limit on the PDB size is used. To

ensure termination within reasonable time the minimum value of improvement for the

counting approximation is also limited. A high-level description of the iPDB pattern

selection can be seen in Algorithm 1.

Algorithm 1 Base iPDB

1: collection = init()
2: candidates = gen_candidates(collection)
3: stop = false
4: repeat

5: samples = sample_states()
6: {bestc, bestimpr} = evaluate(samples, collection, candidates)
7: collection = collection ∪ {bestc}
8: candidates = candidates \ {bestc}
9: candidates = candidates ∪ gen_candidates(bestc)

10: if bestimpr < minimpr or candidates = {} then
11: stop = true
12: end if

13: until stop

2.5.2 Sample States

Optimally, samples would be uniformly taken from the search space which is practi-

cally impossible without doing the search first. An approximation is achieved by using

random walks with a random length chosen by a binomial distribution with a mean

of the estimated solution length. The estimated solution length is computed by mul-

tiplying the heuristic value of the initial state by 2 to compensate for underestimation

and dividing by the average operator cost.

2.5.3 Combining PDBs

The iPDB algorithm uses the canonical heuristic as described in Section 2.4 to evaluate

its set of pattern databases.

2.6 PhO

The posthoc optimization heuristic by Pommerening et al. [2013] uses linear programs

(LPs) and PDBs to compute the sum of incurred costs of all operators.

11

2.6.1 Selecting Patterns

The PhO heuristic uses a so called systematic pattern selection to selects all interesting

patterns up to a given pattern size. A pattern is interesting if the subgraph of the

causal graph induced by the pattern is weakly connected and contains a directed path

via precondition arcs from each node to some goal variable node. Every pattern that is

not interesting can be replace by one or multiple (additive) smaller patterns resulting

in the same heuristic values [Pommerening et al., 2013].

2.6.2 Combining PDBs

For a pattern P we define the set of relevant operators relP (O) ⊆ O as all operators

that have effects which are defined on at least one variable in P . A pattern database

with pattern P therefore only tracks costs that are incurred by operators in relP (O)

since all other operators do not change the abstract state. We call the summed up

costs of an operator o ∈ O in a fixed but unknown optimal plan Xo. The estimate of

a PDB with pattern P can therefore never exceed the incurred costs of operators in

relP (O):

hP (s) ≤
∑

o∈relP (O)

Xo

This results is one inequality per PDB which can be used to build an LP for a state s

and pattern collection C:

minimize:
∑

o∈OXo

subject to:
∑

o∈relP (O)Xo ≥ hP (s) forall P ∈ C
Xo ≥ 0 forall o ∈ O

The objective value of the LP can be used as an estimate for the cost of the fixed but

still unknown optimal plan. The PhO heuristic is admissible as proven by Pommeren-

ing et al. [2013].

12

3 Extensions of the iPDB Heuristic

In this section will discuss the changes investigated and applied to the iPDB heuristic.

The evaluation will be directly after the description of each proposed technique due

the number of changes investigated.

The International Planning Competition (1998–2011) tasks for optimal planning

were used to benchmark performance. All experiments were done with a time limit of

30 minutes and a memory limit of 2 GB on machines with two 8-core Intel Xeon E5-

2660 CPUs (one core per task). A* was used as the search algorithm in all experiments.

All implementations and changes were integrated into the Fast Downward planning

system [Helmert, 2006]. Tables are shortened in way that rows which have the same

value in all columns are aggregated together into a single row labeled Others.

We built our modifications into the implementation of the iPDB procedure by Pom-

merening et al. [2013] which is based on the implementation by Sievers et al. [2012].

The base implementation using a minimum improvement limit of 10 will be called

hiPDB .

3.1 Limiting Pattern Selection Time

The notion of improvement of a candidate pattern is a relative quality measure and

therefore quite good for selecting the best pattern to add. When used as a stopping

criterion the improvement does not offer much information about the absolute quality

of the heuristic that can be obtained by the set of patterns and can therefore lead to

premature stopping or prolonged continuation of the hill climbing search. In practice,

the improvement may stay above the minimum improvement even after enough good

patterns have been selected and remain above it until the whole available time is used

up. An example of this behavior on a specific problem (airport-p18) can be seen in

Figure 1. The graph shows that the optimal point to stop searching for patterns (in

this specific instance) would be after six iterations but the improvement remains above

300 for many more iterations. To prevent this from happening some other stopping

criteria have to be in place.

The simplest way of limiting long runtime is by introducing a time limit. The

implementation this work is based on already contained a imprecise time limit which

we replace with a more accurate one. Our time limit is checked while the candidates are

evaluated and stops the evaluation process immediately once the time limit is exceeded.

We add the best candidate evaluated in this iteration to the pattern collection and

stop the pattern selection.

13

Figure 1: Best improvement per iteration and total runtime if stopped after nth itera-
tion on airport-p18

The iPDB implementation with a time limit of s seconds will be referred to as hiPDB
t=s

from now on. The results in Table 1 show that the existence of a time limit is more

important than the actual value the time limit is set to. Three values from one third

to two thirds of the total time have been tested with very similar results. All further

versions will use a time limit of 900 seconds except when stated differently.

3.2 Limiting Minimum Improvement

The problem with a fixed limit on the minimum improvement is that having it set

too low results in long runtime with little gain while having it set too high stops the

algorithm too soon and increases the chance to get a weaker heuristic. We introduce a

dynamic limit to counteract those problems and help find the balance between building

a pattern collection and searching for an optimal plan. Our dynamic limit is based on

the idea that the limit continually rises until it finally is higher than the current best

improvement. The dynamic limit in iteration n with improvement of improvementi

in iteration i < n with a constant a is:

limitn = a ∗
∑

i=1..n−1
improvementi

The results of the evaluation can be seen in Table 2 and show that our dynamic

14

hiPDB hiPDBt=600 hiPDBt=900 hiPDBt=1200

airport (50) 28 30 30 30

parcprinter-08-strips (30) 15 19 20 20

parcprinter-opt11-strips (20) 11 15 16 16

pipesworld-tankage (50) 16 17 16 16
woodworking-opt08-strips (30) 10 14 14 14

woodworking-opt11-strips (20) 5 9 9 9

Others (1196) 579 579 579 579

Sum (1396) 664 683 684 684

Table 1: Time Limit Results

limit while solving more problems than the base version is inferior to a time limit.

Our dynamic limit is more susceptible to stopping too soon due to low improvement

than the base version caused by the monotonically increasing limit. While improving

coverage slightly on a few domains (e.g. airport) compared to the time limit the

small losses in many other domains result in an overall worse coverage. The iPDB

implementation with a dynamic limit with value a will be referred to as hiPDB
dyn=a from

now on. To be certain that this dynamic limit is worse than a time limit more

experiments with lower values for a should be conducted. A decline in coverage for

values of a close to zero is expected as the dynamic limit goes towards zero.

3.3 Increasing the Neighborhood

The downside of using a hill climbing algorithm to select good patterns is the fact that

hill climbing in general only finds local optima. Figure 2 shows the improvement values

of patterns added in each iteration on a specific problem (pipesworld-notankage-p09).

As can be seen, the improvement drops down to a very low value before going up in

the next iteration. Depending on the problem and the limit, the algorithm might stop

at the first low value and miss all useful patterns that would come later.

We introduce a counter measure by extending the neighborhood to find better pat-

terns that otherwise would not be found. This has been implemented by adding not

only patterns that have one variable more than the currently selected ones but pat-

terns that have up to n more variables. A n-variable extension of P is a pattern

E = P ∪{v1, v2, ..., vn} with v1 causally connected to u ∈ P and vi causally connected

to vi+1.

15

hiPDBt=900 hiPDBdyn=0.0125 hiPDBdyn=0.025 hiPDBdyn=0.05 hiPDBdyn=0.1 hiPDBdyn=0.2

airport (50) 30 30 30 31 34 25
depot (22) 8 7 8 8 8 8

driverlog (20) 13 13 13 12 12 12
elevators-opt08-strips (30) 20 19 19 19 18 17
elevators-opt11-strips (20) 16 15 15 15 15 14
freecell (80) 20 20 20 19 19 19
logistics00 (28) 21 21 20 20 20 20
miconic (150) 55 53 53 53 52 50
mystery (30) 16 15 15 15 15 15
nomystery-opt11-strips (20) 16 15 15 15 14 14
parcprinter-08-strips (30) 20 19 19 19 17 16
parcprinter-opt11-strips (20) 16 15 15 15 13 12
pegsol-08-strips (30) 30 30 29 29 27 27
pegsol-opt11-strips (20) 20 20 19 19 17 17
pipesworld-notankage (50) 17 16 16 16 16 16
pipesworld-tankage (50) 16 16 16 16 17 14
sokoban-opt08-strips (30) 29 29 29 29 28 28
trucks-strips (30) 8 8 8 8 8 6
visitall-opt11-strips (20) 16 17 17 17 16 16
woodworking-opt08-strips (30) 14 14 14 14 14 12
woodworking-opt11-strips (20) 9 9 9 9 9 7
zenotravel (20) 11 11 11 11 10 10
Others (596) 263 263 263 263 263 263

Sum (1396) 684 675 673 672 662 638

Table 2: Dynamic Limit Results

16

Figure 2: Best improvement per iteration and total runtime if stopped after nth itera-
tion on pipesworld-notankage-p09

Due to how the evaluation step and computation of the improvement works, all

PDBs have to be kept in memory the whole time. Depending on the problem and how

many variables are added to generate new patterns there might be a lot of memory

occupied, sometimes even enough to reach the memory limit of 2 GB. To prevent a

crash in these cases we added an estimation for the memory usage of all PDBs together

and use it to limit the generation of new PDBs during iterations. When this limit (set

to 1.6 GB of 2 GB) is reached, no new PDBs are allowed to be generated but the

selection process continues. The already created PDBs get evaluated and the best

gets added to the selections until another limit stops the algorithm. The version of the

algorithm which extends patterns by n new variables will be called hiPDB
nvar . A high-level

description of the iPDB pattern selection with increased neighborhood can be seen in

Algorithm 2.

The result of adding multiple variables at once combined with the memory limit

can be seen in Table 3. Note that the configuration with n = 1 differs from hiPDB

only in the memory limit. Pattern extensions with multiple variables seem to increase

coverage by quite a bit. Extensions by more variables generate many more candidate

patterns which rapidly fill the available memory and also increase the time needed

to evaluate all candidates. These are probably the main reasons why hiPDB
2var has the

highest coverage. As Table 4 shows, when more variables are used to extend patterns,

17

hiPDB1var hiPDB2var hiPDB3var hiPDB4var

airport (50) 30 30 26 16
depot (22) 8 11 10 9
driverlog (20) 13 14 13 14

elevators-opt08-strips (30) 20 22 22 21
elevators-opt11-strips (20) 16 18 18 17
floortile-opt11-strips (20) 2 2 6 5
grid (5) 3 3 3 2
mystery (30) 16 16 16 15
nomystery-opt11-strips (20) 16 18 18 18

parcprinter-08-strips (30) 20 22 23 23

parcprinter-opt11-strips (20) 16 17 17 17

pegsol-08-strips (30) 30 29 27 27
pegsol-opt11-strips (20) 20 19 17 17
Pipesworld-notankage (50) 17 19 17 17
pipesworld-tankage (50) 16 16 16 10
psr-small (50) 49 50 50 50

tidybot-opt11-strips (20) 14 14 14 4
tpp (30) 6 6 8 8

transport-opt08-strips (30) 11 14 13 13
transport-opt11-strips (20) 6 10 9 9
trucks-strips (30) 8 8 9 9

visitall-opt11-strips (20) 16 17 17 17

woodworking-opt08-strips (30) 14 14 13 11
woodworking-opt11-strips (20) 9 9 8 6
Others (729) 308 308 308 308

Sum (1396) 684 706 698 663

Table 3: Increased Neighborhood Results

18

Algorithm 2 iPDB with increased neighborhood

1: collection = init()
2: candidates = gen_candidates(collection)
3: stop = false
4: repeat

5: samples = sample_states()
6: {bestc, bestimpr} = evaluate(samples, collection, candidates)
7: collection = collection ∪ {bestc}
8: candidates = candidates \ {bestc}
9: if not memory_limit_reached() then

10: candidates = candidates ∪ gen_candidates(bestc, n)
11: end if

12: if bestimpr < minimpr or candidates = {} or time_limit_reached() then
13: stop = true
14: end if

15: until stop

hiPDB1var hiPDB2var hiPDB3var hiPDB4var

1360 1361 1345 1249

Table 4: Number of instances where iPDB pattern selection finished

fewer instances actually complete the pattern selection procedure. This is mainly due

to completely filling the available memory and crashing despite there being a memory

limit. So far, no solution to fix this problem has been found.

3.4 Ignoring Candidate Pattern

We tested a reduction of the search space by removing all patterns from the candidate

set that seem useless. This was done by removing all patterns with an improvement

lower than the minimum improvement limit. We remove patterns that might be useful

later on if the removed pattern can be used additively with a not yet added pattern.

This version of the procedure will be called hiPDB
ign and is outlined in Algorithm 3.

The results of this approach can be seen in Table 5 and show almost no change in

coverage. When looking at the number of instances which finished pattern selection

as shown in Table 6 we see that there seem to be more memory issues than without

ignoring patterns. This is possibly due memory fragmentation and/or memory leaks.

Never the less, the almost equal coverage show that there is at least some kind of

19

hiPDB2var hiPDBign,1var hiPDBign,2var hiPDBign,3var

airport (50) 30 30 24 14
depot (22) 11 7 10 8
driverlog (20) 14 13 14 13
elevators-opt08-strips (30) 22 19 22 22

elevators-opt11-strips (20) 18 15 18 18

floortile-opt11-strips (20) 2 2 2 6

freecell (80) 20 19 20 20

logistics00 (28) 21 20 20 20
miconic (150) 55 55 54 54
nomystery-opt11-strips (20) 18 16 18 18

parcprinter-08-strips (30) 22 23 29 29

parcprinter-opt11-strips (20) 17 18 19 19

pegsol-08-strips (30) 29 30 29 29
pegsol-opt11-strips (20) 19 20 19 19
pipesworld-notankage (50) 19 17 16 10
pipesworld-tankage (50) 16 16 14 8
psr-small (50) 50 49 50 50

sokoban-opt08-strips (30) 29 29 29 27
tpp (30) 6 6 6 8

transport-opt08-strips (30) 14 11 14 13
transport-opt11-strips (20) 10 6 10 9
trucks-strips (30) 8 8 8 9

visitall-opt11-strips (20) 17 16 17 17

woodworking-opt08-strips (30) 14 16 16 13
woodworking-opt11-strips (20) 9 11 11 8
Others (496) 216 216 216 216

Sum (1396) 706 688 705 677

Table 5: Ignoring Candidates Results

20

Algorithm 3 iPDB with candidate ignoring

1: collection = init()
2: candidates = gen_candidates(collection)
3: stop = false
4: repeat

5: samples = sample_states()
6: {bestc, bestimpr} = evaluate(samples, collection, candidates)
7: collection = collection ∪ {bestc}
8: candidates = candidates \ {bestc}
9: for all candidate in candidates with improvement(candidate) < minimpr do

10: candidates = candidates \ {candidate}
11: end for

12: if not memory_limit_reached() then
13: candidates = candidates ∪ gen_candidates(bestc, n)
14: end if

15: if bestimpr < minimpr or candidates = {} or time_limit_reached() then
16: stop = true
17: end if

18: until stop

hiPDBign,1var hiPDBign,2var hiPDBign,3var

1363 1308 1224

Table 6: Number of instances where iPDB pattern selection finished

potential in discarding "useless" candidates assuming one can find some better way of

doing it.

3.5 Sampling using FF Heuristic

The sampling algorithm was examined and a slight change was tested. To see how a

different sampling method behaves combined with iPDB a more target oriented ap-

proach was taken. Instead of sampling uniformly by doing random walks, the FF

heuristic [Hoffmann and Nebel, 2001] is used to guide the first walk and add all eval-

uated states on the path to the sample set. This first walk is stopped once it reaches

a goal or a dead-end and sampling is continued as described in Section 2.5.2 using

random walks.

The results of the changed sampling can be seen in Table 7 and Table 8. This method

of sampling states decreased the quality of the heuristic quite a bit as can be seen by

21

hiPDBFF hiPDB2var

airport (50) 37 30
depot (22) 10 11

driverlog (20) 13 14

elevators-opt08-strips (30) 21 22

elevators-opt11-strips (20) 17 18

logistics00 (28) 20 21

mystery (30) 15 16

nomystery-opt11-strips (20) 19 18
pipesworld-notankage (50) 18 19

pipesworld-tankage (50) 17 16
transport-opt11-strips (20) 9 10

trucks-strips (30) 10 8
visitall-opt11-strips (20) 16 17

woodworking-opt08-strips (30) 12 14

woodworking-opt11-strips (20) 7 9

zenotravel (20) 10 11

Others (936) 452 452

Sum (1396) 703 706

Table 7: Sampling Results

the higher amount of expanded states. Although this sampling method is worse than

the default one, it caused strange artifacts by not reaching the memory limit unlike

the compared version of iPDB. For example, all 7 tasks in the airport domain that

have been solved with the modified sampling have not been solved by the compared

version due to reaching the memory limit during pattern selection and never starting

the search.

These results should be taken with a grain of salt as multiple effects interact with

each other (mainly crashes due to reaching the memory limit and non-uniform sam-

pling). The results in Table 8 are also aggregated using geometric mean and do not

necessarily reflect the single values ideally.

3.6 Iteration Duration Estimation

The possible positive effect of skipping iterations that are expected to violate the time

limit has been considered. Using the knowledge gained from Section 3.1 we assume

that saving some small amount of time has no relevant impact on the performance of

22

hiPDBFF hiPDB2var

airport (30) 0.10 0.10

barman-opt11-strips (4) 5539215.39 2879968.23

blocks (28) 857.59 665.75

depot (10) 45867.83 13404.80

driverlog (13) 3290.75 273.02

elevators-opt08-strips (21) 16483.35 12193.38

elevators-opt11-strips (17) 26332.80 21713.80

floortile-opt11-strips (2) 116800.62 111605.44

freecell (20) 317.29 355.73
grid (3) 90.56 90.56

gripper (7) 58403.75 58199.55

logistics00 (20) 35.88 17.55

logistics98 (5) 1838.69 10375.12
miconic (55) 7037.87 3365.79

mprime (23) 87.32 116.91
mystery (16) 85.22 51.15

nomystery-opt11-strips (18) 2310.32 2317.53
openstacks-opt08-strips (19) 11223.60 11223.60

openstacks-opt11-strips (14) 38595.00 38595.00

openstacks-strips (7) 6.73 7.31
parcprinter-08-strips (22) 0.10 0.10

parcprinter-opt11-strips (17) 0.10 0.10

parking-opt11-strips (5) 149905.12 149905.12

pathways-noneg (4) 2353.62 2353.62

pegsol-08-strips (29) 1881.28 1872.51

pegsol-opt11-strips (19) 24082.45 24338.06
pipesworld-notankage (18) 3808.83 2093.30

pipesworld-tankage (16) 1014.31 887.78

psr-small (50) 1.25 0.52

rovers (7) 2637.28 380.81

satellite (6) 8421.72 7709.15

scanalyzer-08-strips (13) 185.51 108.67

scanalyzer-opt11-strips (10) 974.23 885.02

sokoban-opt08-strips (29) 47434.23 31875.09

sokoban-opt11-strips (20) 38697.34 26029.07

tidybot-opt11-strips (14) 17552.72 16212.23

tpp (6) 460.35 79.65

transport-opt08-strips (14) 2292.03 662.92

transport-opt11-strips (9) 134667.07 43232.39

trucks-strips (8) 1017.33 12214.37
visitall-opt11-strips (16) 1.06 0.18

woodworking-opt08-strips (12) 359.74 6.91

woodworking-opt11-strips (7) 854.39 30.40

zenotravel (10) 196.88 48.70

Geometric mean (693) 1117.15 675.03

Table 8: Sampling Results: Expansions without last f-layer
smaller values are better

23

Δt > 0 |Δt| ≤ 1 mean(Δt) min(Δt) max(Δt)

26.6% 69.35% -1.39s -345.43s 615.85s

Table 9: Time Estimation Evaluation, Δt = estimate − real

the algorithm. We implemented iteration duration estimation as linear extrapolation

from previous iterations. Estimates were compared to the real time in each iteration

and aggregated into Table 9. To evaluate the impact of such a duration estimation

a more exact estimation would be needed, possibly by using more input data like the

number of candidate patterns.

24

Figure 3: Coverage for different k values

4 Extensions of the PhO Heuristic

The same setup as described in Section 3 was used.

The PhO procedure that has been used and modified is the version implemented by

Pommerening et al. [2013]. The base implementation will be called hPhO.

4.1 Partial Systematic Sizes

The systematic pattern selection selects all interesting patterns up to a given pattern

size k. The first thing investigated was how the systematic pattern selection can be

changed to allow for non integer values for k. This was mostly done the get a deeper

understanding of how the amount and selection of patterns interact with the evaluation

using LPs. For a non integer value k, all patterns with size up to and including bkc
are generated as before. In addition, of all patterns with size bkc+ 1 a percentage of

k−bkc are selected (by generation order). The PhO heuristic that selects patterns up

to a pattern size K will be called hPhOK .

The evaluation as seen in Table 10 shows that such partial layers tend do worse

(indicated by the fact that k = {1, 2, 3} are local optima as seen in Figure 3). This is

probably caused by groups of inequalities in the LP which only yield good heuristic

values if the whole group is present.

25

hPhO1 hPhO1.25 hPhO1.5 hPhO1.75 hPhO2 hPhO2.25 hPhO2.5 hPhO2.75 hPhO3 hPhO4

airport (50) 22 24 23 23 23 14 13 13 12 7
barman-opt11-strips (20) 4 4 4 4 4 4 0 0 0 0
blocks (35) 28 27 26 26 26 23 20 18 18 17
depot (22) 7 7 7 7 7 4 2 2 2 2
driverlog (20) 11 12 12 12 12 12 12 12 12 12

elevators-opt08-strips (30) 11 12 15 16 17 17 17 17 18 18

elevators-opt11-strips (20) 9 10 13 13 14 14 14 14 14 15

floortile-opt11-strips (20) 2 2 2 2 2 2 2 2 2 0
freecell (80) 14 14 14 14 14 8 8 8 7 6
grid (5) 1 1 1 1 2 1 2 2 2 1
gripper (20) 7 7 7 7 7 6 6 6 6 5
logistics00 (28) 16 16 17 20 20 20 20 20 20 20

logistics98 (35) 4 4 4 5 5 5 5 5 5 5

mprime (35) 20 20 19 19 19 17 17 17 17 13
mystery (30) 14 13 13 13 13 13 13 12 11 9
nomystery-opt11-strips (20) 10 13 15 16 16 15 15 15 15 15
openstacks-opt08-strips (30) 19 17 17 17 17 16 15 15 14 10
openstacks-opt11-strips (20) 14 12 12 12 12 11 10 10 9 5
openstacks-strips (30) 7 7 7 7 7 7 7 7 7 5
parcprinter-08-strips (30) 15 15 15 15 16 16 16 16 23 27

parcprinter-opt11-strips (20) 11 11 11 11 12 12 12 12 18 20

parking-opt11-strips (20) 3 1 1 1 1 0 0 0 0 0
pegsol-08-strips (30) 27 27 27 27 27 26 26 26 26 18
pegsol-opt11-strips (20) 17 17 17 17 17 16 16 16 16 5
pipesworld-notankage (50) 14 14 14 15 14 11 9 8 9 3
pipesworld-tankage (50) 10 7 7 7 6 5 4 4 4 3
psr-small (50) 49 49 49 49 49 48 48 48 47 46
rovers (40) 6 6 6 6 6 7 7 7 7 7

satellite (36) 6 6 6 6 6 6 6 5 5 4
sokoban-opt08-strips (30) 23 22 21 24 27 19 17 17 14 5
sokoban-opt11-strips (20) 19 19 18 20 20 16 14 14 11 3
tidybot-opt11-strips (20) 7 7 7 9 10 11 11 11 11 3
tpp (30) 6 6 6 6 6 6 6 6 6 8

transport-opt08-strips (30) 11 11 10 10 10 11 11 11 11 11

transport-opt11-strips (20) 6 6 5 5 5 6 6 6 6 6

trucks-strips (30) 5 5 5 6 6 6 6 6 6 6

visitall-opt11-strips (20) 16 16 16 16 16 16 16 15 15 12
woodworking-opt08-strips (30) 9 10 11 11 15 14 14 14 14 12
woodworking-opt11-strips (20) 4 5 6 6 10 9 9 9 9 8
Others (250) 74 74 74 74 74 74 74 74 74 74

Sum (1396) 558 556 560 575 590 544 526 520 523 446

Table 10: Partial Layers Coverage

26

granularity global per-domain per-problem

coverage 590 633 641

Table 11: k-Selection Granularity

4.2 Dynamically Chosen Systematic Size

Although the overall coverage is the highest for k = 2, the optimal value for k can be

chosen on different granularities:

1. Global, the best overall value (k = 2) is chosen

2. Per-domain, the best value for each domain is chosen

3. Per-problem, the best value for every single problem is chosen

These three ways to choose the optimal value for k have been evaluated. It is important

to note here that these three ways each need a different amount of prior knowledge: no

prior knowledge for the first, domain knowledge for the second and problem knowledge

for the third (so options 2. and 3. are more of theoretical interest). The results in

Table 11 show that choosing a value for k at a finer granularity increases the coverage.

The higher increase from choosing globally to choosing per-domain than from choosing

per-domain to choosing per-problem is expected because problems get exponentially

more difficult. Although expected, the difference of 43 additional problems solved to

only 8 additional problems solved seems relevant. This indicates that the best value

of k depends more on the domain of the problem than on the problem itself.

4.3 Limiting Number & Total Size of PDBs

The PhO heuristic returns good heuristic values but at the cost of slow evaluations.

State evaluations become slower with more constraints in the LP which directly de-

pends on the number of patterns in the pattern collection. To somewhat limit the

time needed for each evaluation the number of patterns as well as the total size of all

PDBs together can be limited. Different values for both limits were tested on a subset

of domains. The domains were chosen by selecting domains that have different values

for the optimal systematic size k as seen in Table 12.

Different combination of limits for number of PDBs (100, 400, 700 and 1000) and

for the total size (sum of number of entries) of PDBs (10’000, 100’000, 200’000 and

27

Domain Optimal k

airport 1-2
parcprinter-08-strips 3-4
pipesworld-tankage 1
sokoban-opt08-strips 2
tpp 4+
transport-opt08-strips 1-4
woodworking-opt08-strips 2-3

Table 12: Selected Domains

total size limit

#PDB limit 10’000 100’000 200’000 500’000 no limit

100 94 95 94 95 95
400 102 102 102 102 102
700 102 98 98 96 96

1’000 101 94 93 92 90
no limit 80 80 80 80 80

Table 13: Coverage of Different Limit Combinations

28

hPhO2 hPhO2,e=0.01 hPhO2,e=0.005 hPhO2,e=0.001

airport (50) 23 22 23 24

grid (5) 2 2 2 1
mprime (35) 19 19 19 18
parking-opt11-strips (20) 1 1 1 3

pipesworld-tankage (50) 7 6 7 7

tidybot-opt11-strips (20) 10 10 10 8
woodworking-opt11-strips (20) 10 10 10 9
Others (1196) 519 519 519 519

Sum (1396) 591 589 591 589

Table 14: Limiting Evaluation Time Coverage

500’000) have been tested as shown in Table 13. Limiting the total size of all PDBs

influences the coverage only slightly while limiting the number of PDBs influences the

coverage quite a bit. This is mainly because the number of PDBs is the same as the

amount of constraints in the LP while a limit on the total size only indirectly (over

the number of PDBs) influences the number of constraints. A limit on the number of

PDBs of around 400 PDBs performed the best on the tested domains.

4.4 Limiting Evaluation Time

A similiar approach to limiting the number and the total size of PDBs is limitting the

actual time it takes to evaluate states. This is done by computing the heuristic on a

set of sample states (sampled the same way as described in Section 2.5.2). The time

needed for evaluating the sample states gets measured and if it exceeds the limit no

more patterns are allowed to be added to the pattern collection. Only a small limit on

the evaluation time influences the coverage of the PhO heuristic as shown in Table 14.

Further values for the limit should be tested to gain more knowledge on the effects of

limiting evaluation time. We expect that a limit on the number of PDBs and a limit

on the evaluation time have similar effects and that possibly only one should be used.

4.5 Pruning Unused Constraints

Limiting the number of PDBs on generation has the wanted effect of reducing the

pattern collection but does this independently of the patterns. A different approach

is to generate more patterns and then later remove part of them depending on some

29

criterion. When solving an LP with more constraints than variables some constraints

are usually not used, meaning they could be removed for this specific LP without

changing the solution. By evaluating the PhO heuristic on a set of sample states and

looking at the LP it is easy to extract which constraints were used in each solution.

With this information the constraints which were used the least often can be removed.

We present a pruning technique that removes all constraints that have not been used

at all on a set of sample states. The number of samples indirectly influences how many

constraints get removed due to fewer samples giving fewer chances for the constraints

to be used. The PhO heuristic with systematic size K and pruning using number of

samples S will be called hPhOK,sS .

We performed experiments for systematic sizes k = {2, 3} and different numbers of

sample states samples = {1, 5, 10, 50, 100, 200} as seen in Table 15. The results show

that the coverage is the highest with a very small number of samples. Such a small

number of samples leads to the removal of many constraints but might do so in an

arbitrary way. The increase in coverage looks promising, especially the increase in

coverage for systematic size 3.

30

hPhO2 hPhO2,s1 hPhO2,s10 hPhO2,s50 hPhO3 hPhO3,s1 hPhO3,s5 hPhO3,s10 hPhO3,s50 hPhO3,s100

airport (50) 23 31 31 29 12 15 14 14 12 12
barman-opt11-strips (20) 4 4 4 4 0 4 2 0 0 0
blocks (35) 26 28 28 27 18 26 26 25 22 22
depot (22) 7 7 7 7 2 4 3 3 2 2
elevators-opt08-strips (30) 17 12 16 16 18 13 16 17 18 18

elevators-opt11-strips (20) 14 10 13 13 14 10 13 14 14 14

freecell (80) 14 14 14 14 7 12 11 10 7 7
grid (5) 2 1 2 2 2 2 2 2 2 2

gripper (20) 7 7 7 7 6 6 6 6 6 6
miconic (150) 50 50 50 50 50 51 51 51 51 51

mprime (35) 19 19 19 19 17 17 17 17 17 17
mystery (30) 13 13 13 13 12 12 12 12 11 12
nomystery-opt11-strips (20) 16 12 15 16 15 11 14 14 15 15
openstacks-opt08-strips (30) 17 17 17 17 14 14 14 14 14 14
openstacks-opt11-strips (20) 12 12 12 12 9 9 9 9 9 9
parcprinter-08-strips (30) 16 15 16 16 23 19 23 23 23 23

parcprinter-opt11-strips (20) 12 11 12 12 18 15 18 18 18 18

parking-opt11-strips (20) 1 1 1 1 0 0 0 0 0 0
pegsol-08-strips (30) 27 27 27 27 26 26 26 26 26 26
pegsol-opt11-strips (20) 17 17 17 17 16 16 16 16 16 16
pipesworld-notankage (50) 14 14 14 14 9 12 10 10 9 9
pipesworld-tankage (50) 6 8 8 7 4 5 5 4 4 4
psr-small (50) 49 49 49 49 47 48 48 47 47 47
rovers (40) 6 6 6 6 7 7 7 7 7 7

satellite (36) 6 6 6 6 5 5 5 5 5 5
scanalyzer-08-strips (30) 7 8 7 7 7 7 7 7 7 7
scanalyzer-opt11-strips (20) 4 5 4 4 4 4 4 4 4 4
sokoban-opt08-strips (30) 27 28 28 28 14 24 24 24 24 24
sokoban-opt11-strips (20) 20 20 20 20 11 19 19 19 18 18
tidybot-opt11-strips (20) 10 10 10 10 11 12 12 12 12 12

transport-opt08-strips (30) 10 11 10 10 11 11 11 11 11 11

transport-opt11-strips (20) 5 6 5 5 6 6 6 7 7 7

visitall-opt11-strips (20) 16 16 16 16 15 16 16 16 16 16

woodworking-opt08-strips (30) 15 11 14 15 14 13 14 14 14 14
woodworking-opt11-strips (20) 10 6 9 10 9 8 9 9 9 9
Others (243) 71 71 71 71 71 71 71 71 71 71

Sum (1396) 590 583 598 597 524 550 561 558 548 549

Table 15: Pruning Constraints Coverage

31

5 Conclusion and Future Work

Comparing the two investigated abstraction heuristics with another state-of-the-art

heuristic—the LM-Cut heuristic [Helmert and Domshlak, 2009]—in Table 16 we can

see that both abstractions heuristics are viable and can compete with the LM-Cut

heuristic. The results are slightly distorted due to predominant miconic domain with

its 150 task (compared to the average of 31 tasks per domain). An aggregation over

all domains except miconic has been added for easier comparison.

5.1 Conclusion

Many techniques have been tested on the iPDB heuristic and the PhO heuristic giv-

ing new knowledge about their inner working. Especially the extension of candidate

patterns by multiple variables in iPDB and the pruning of constraints in PhO have

been found to increase the performance of the heuristics. We hope that the insights

gained as a result of this thesis can be used to further improve on the iPDB and PhO

heuristics.

5.2 Future Work

Some possible future improvements to the two heuristics have already been hinted

at in the evaluation. Extending candidate patterns in iPDB with multiple variables

helps coping with local optima but further techniques that are known to work with

hill climbing algorithms may prove to be applicable. One such techniques is stochastic

hill climbing which would choose patterns with a probability proportional to their

improvement. Improving the used-memory estimation might also improve the heuristic

as a crash means instant failure while the problem might have been solved if it were not

for the crash. A possible way to reduce memory usage—that could be investigated—

is to use dominance pruning once the memory limit is reached and then remove all

candidate patterns that are no longer in the (now smaller) neighborhood of the selected

pattern set.

A method to extract information about the domain of a problem could increase the

quality of the PhO heuristic by quite a bit and could be further investigated. We

believe that constraint pruning can be refined by changing the pruning criterion for

better results.

32

hiPDB2var hLM-Cut hPhO2,s10

airport (50) 30 28 31

depot (22) 11 7 7
driverlog (20) 14 13 12
elevators-opt08-strips (30) 22 22 16
elevators-opt11-strips (20) 18 18 13
floortile-opt11-strips (20) 2 7 2
freecell (80) 20 15 14
grid (5) 3 2 2
logistics00 (28) 21 20 20
logistics98 (35) 5 6 5
miconic (150) 55 141 50
mprime (35) 23 22 19
mystery (30) 16 17 13
nomystery-opt11-strips (20) 18 14 15
openstacks-opt08-strips (30) 19 19 17
openstacks-opt11-strips (20) 14 14 12
parcprinter-08-strips (30) 22 18 16
parcprinter-opt11-strips (20) 17 13 12
parking-opt11-strips (20) 5 3 1
pathways-noneg (30) 4 5 4
pegsol-08-strips (30) 29 27 27
pegsol-opt11-strips (20) 19 17 17
pipesworld-notankage (50) 19 17 14
pipesworld-tankage (50) 16 12 8
psr-small (50) 50 49 49
rovers (40) 7 7 6
satellite (36) 6 7 6
scanalyzer-08-strips (30) 13 15 7
scanalyzer-opt11-strips (20) 10 12 4
sokoban-opt08-strips (30) 29 30 28
tidybot-opt11-strips (20) 14 14 10
transport-opt08-strips (30) 14 11 10
transport-opt11-strips (20) 10 6 5
trucks-strips (30) 8 10 6
visitall-opt11-strips (20) 17 11 16
woodworking-opt08-strips (30) 14 17 14
woodworking-opt11-strips (20) 9 12 9
zenotravel (20) 11 13 9

Sum (1396) 706 763 598

Sum without miconic (1246) 651 622 548

Table 16: Heuristic Comparison

33

References

[Bylander, 1994] Tom Bylander. The computational complexity of propositional STRIPS

planning. Artificial Intelligence, 69(1–2):165–204, 1994.

[Bäckström and Nebel, 1995] Christer Bäckström and Bernhard Nebel. Complexity results

for SAS+ planning. Computational Intelligence, 11(4):625–655, 1995.

[Culberson and Schaeffer, 1998] Joseph C. Culberson and Jonathan Schaeffer. Pattern

databases. Computational Intelligence, 14(3):318–334, 1998.

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern databases. In Pre-proceedings of

the Sixth European Conference on Planning, pages 13–24, 2001.

[Edelkamp, 2006] Stefan Edelkamp. Automated creation of pattern database search heuris-

tics. In Stefan Edelkamp and Alessio Lomuscio, editors, Proceedings of the Fourth

Workshop on Model Checking and Artificial Intelligence, pages 36–51, 2006.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis

for the heuristic determination of minimum cost paths. In IEEE Transactions on

Systems Science and Cybernetics, pages 100–107, 1968.

[Haslum et al., 2007] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven

Koenig. Domain-independent construction of pattern database heuristics for cost-

optimal planning. In Robert C. Holte and Adele How, editors, Proceedings of the

Twenty-Second AAAI Conference on Artificial Intelligence, pages 1007–1012, 2007.

[Helmert, 2006] Malte Helmert. The Fast Downward planning system. Journal of Artificial

Intelligence Research, 26:191–246, 2006.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel Domshlak. Landmarks, critical

paths and abstractions: What’s the difference anyway? In Alfonso Gerevini, Adele

Howe, Amedeo Cesta, and Ioannis Refanidis, editors, Proceedings of the Nineteenth

International Conference on Automated Planning and Scheduling, pages 162–169,

2009.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard Nebel. The FF planning system:

Fast plan generation through heuristic search. Journal of Artificial Intelligence

Research, 14:253–302, 2001.

34

[Pommerening et al., 2013] Florian Pommerening, Gabriele Röger, and Malte Helmert. Get-

ting the most out of pattern databases for classical planning. In Francesca Rossi,

editor, Proceedings of the Twenty-Third International Joint Conference on Artificial

Intelligence, pages 2357–2364, 2013.

[Sievers et al., 2012] Silvan Sievers, Manuela Ortlieb, and Malte Helmert. Efficient imple-

mentation of pattern database heuristics for classical planning. In Daniel Borrajo,

Ariel Felner, Richard Korf, Maxim Likhachev, Carlos Linares Lopez, Wheeler Ruml,

and Nathan Sturtevant, editors, Proceedings of the Fifth Annual Symposium on

Combinatorial Search, pages 105–111, 2012.

35

	Acknowledgments
	Abstract
	Introduction
	Background
	Planning
	Heuristic Search
	Pattern Databases
	Using Multiple Pattern Databases
	iPDB
	Selecting Patterns
	Sample States
	Combining PDBs

	PhO
	Selecting Patterns
	Combining PDBs

	Extensions of the iPDB Heuristic
	Limiting Pattern Selection Time
	Limiting Minimum Improvement
	Increasing the Neighborhood
	Ignoring Candidate Pattern
	Sampling using FF Heuristic
	Iteration Duration Estimation

	Extensions of the PhO Heuristic
	Partial Systematic Sizes
	Dynamically Chosen Systematic Size
	Limiting Number & Total Size of PDBs
	Limiting Evaluation Time
	Pruning Unused Constraints

	Conclusion and Future Work
	Conclusion
	Future Work

	References

