
An algorithm for computing
bisimulations in planning

Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Examiner: Malte Helmert

Supervisor: Martin Wehrle

Sascha Scherrer

s.scherrer@unibas.ch

09-058-454

31.07.2012

Acknowledgments

I would like to thank Prof. Dr. Malte Helmert for suggesting the topic for my bachelor

thesis as well as for the opportunity to write this thesis in the area of artificial intelligence.

I further would like to thank Dr. Martin Wehrle for his support and suggestions during the

last three months.

Finally, I thank my friends, colleagues and my family for supporting and occasionally dis-

tracting me.

Abstract

Merge-and-shrink abstractions are a popular approach to generate abstraction heuristics

for planning. The computation of merge-and-shrink abstractions relies on a merging and

a shrinking strategy. A recently investigated shrinking strategy is based on using bisim-

ulations. Bisimulations are guaranteed to produce perfect heuristics. In this thesis we

investigate an efficient algorithm proposed by Dovier et al. [2004] for computing coarsest

bisimulations. The algorithm however cannot directly be applied to planning and needs

some adjustments. We show how this algorithm can be reduced to work with planning

problems. In particular, we show how an edge labelled state space can be translated to a

state labelled one and what other changes are necessary for the algorithm to be usable for

planning problems. This includes a custom data structure to fulfil all requirements to meet

the worst case complexity. Furthermore, the implementation will be evaluated on planning

problems from the International Planning Competitions. We will see that the resulting algo-

rithm can often not compete with the currently implemented algorithm in Fast Downward.

We discuss the reasons why this is the case and propose possible solutions to resolve this

issue.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Planning . 3

2.1.1 Notation . 3

2.1.2 Merge-and-shrink . 4

2.2 Bisimulation equivalence . 5

2.2.1 Definition . 5

3 Efficient algorithm for computing bisimulation equivalence 6

3.1 The algorithm . 6

3.1.1 Notation . 6

3.1.2 Idea . 6

3.1.3 Rank definitions . 7

3.1.3.1 Well founded case . 7

3.1.3.2 General case . 7

3.1.4 Paige Tarjan Partition Refinement . 8

3.1.5 Description . 8

3.2 Translation to planning . 9

3.2.1 Edge labels to state labels . 10

3.2.2 Avoiding one single equivalence group 10

4 Implementation 12

4.1 Partition . 12

4.2 Approximative bisimulation . 13

5 Evaluation 14

5.1 Fast Downward . 14

5.2 Experimental setup . 14

5.3 Results . 14

5.3.1 Gripper domain . 14

Table of Contents v

5.3.2 Without upper bound . 15

5.3.3 With upper bound . 15

5.4 Discussion . 15

6 Conclusion 18

Bibliography 19

Declaration of Authorship 20

1
Introduction

Domain independent planning concerns the problem of searching and finding a sequence of

actions from a start to a goal state. It can be used to find - optimal, if needed - solutions

of complex problems. Planning can be done as heuristic search using a heuristic function

to evaluate states and select the most promising one. The search is done by maintaining

an open and a closed list. The former one contains all states that are reachable and have

not yet been visited, the latter one contains all visited states. At each iterative step a state

from the open list is chosen and then visited. Selecting the state in the open list with the

lowest value returned by the heuristic function yields the state that is nearest to the goal

(according to the heuristic function). Visiting a state renders all its successors reachable

and if they aren’t in either the open or the closed list they get added to the open list. Once

a goal state is reached, the solution can be extracted from the closed list.

One category of heuristic functions are abstraction heuristics. Simplifying the search space

by abstracting states yields a smaller search space which can be used to estimate the distance

to a goal by measuring abstract goal distances. An example for such an abstraction heuristic

is merge-and-shrink. Merge-and-shrink has originally been proposed by Dräger et al. [2006]

in the context of model checking and Helmert et al. [2007] in the context of planning.

Merge-and-shrink uses - as the name suggests - a merging and a shrinking strategy. It

works on a set of atomic projections of the state space and iteratively selects two (by using

the merging strategy) and then decides which needs to be shrunk and actually shrinks it

(shrinking strategy). Nissim et al. [2011] suggested the use of bisimulation for computing

the abstraction and also noted that such an abstraction heuristic is perfect.

A bisimulation is a binary relation between two state spaces under which they exhibit the

same behaviour. Especially of interest is the coarsest bisimulation of a given state space, as

it yields the smallest abstraction, and its computation. Dovier et al. [2004] introduced ’an

efficient algorithm for computing bisimulation equivalence’ in the context of model-checking

using the partition refinement algorithm by Paige and Tarjan [1987].

The target of this thesis is to adapt and implement the algorithm by Dovier et al. [2004] for

the use in planning. To be able to use it on a planning problem, we first need to translate

the edge labelled state space into a state labelled state space by replacing all edges with

states. The state space needs to be adjusted further so the algorithm correctly handles

Introduction 2

the goal states. A custom data structure will be introduced to maintain all abstract states

during the refinement.

2
Background

2.1 Planning
2.1.1 Notation
A planning task is a tuple (V,O, s0, s∗) where V is a finite set of variables v ∈ V , each having

its own finite domain Dv. A state over V is a function s with s(v) ∈ Dv ∀v ∈ V . A partial

state over V is a state over a subset Vs ⊂ V which means that not all variables are relevant.

The initial state s0 is a state while the goal s∗ is a partial state. O is a final set of operators,

each consisting of a pair of partial states representing the necessary preconditions and the

effect of applying the operator. An operator is applicable if the current state fulfils the

mapping of the preconditions. The successors of a state are all states that can be reached

by applying an operator to the current state.

The labelled transition system of such a task is usually represented as a tuple (S,L, T, s0, S∗),

where S is a final set of states, L a final set of (transition) labels, T a set of labelled transition

defined as T ⊆ S × L× S, s0 ∈ S is the start state and S∗ ⊆ S are the goal states.

A plan is the path from the start state to any of the goal states. A given plan is optimal

if and only if its cost (or length if all transitions are unit cost) is equal to the cost of the

shortest possible path from the start state to any goal state.

A heuristic is a function defined as h : S → N0∪{∞} and is an estimator for the distance to

a goal state. A given heuristic is admissible if the estimated distance is lower or equal to the

actual distance for every state. A given heuristic is consistent if for every pair of connected

states (s1, l, s2) ∈ T the following holds: h(s1) ≤ h(s2) + 1 (unit cost variant of the triangle

inequality) and h(s) = 0 for all s ∈ S∗.
Planning can be done by heuristic search of the state space. Algorithm 1 shows pseudocode

of such a search algorithm. Note that the definition of minimum on line 4 depends on the

actual search algorithm (e.g. a greedy best first search uses the smallest heuristic value).

The function solution() returns - as the name suggests - the solution.

An abstraction is a simplified and preferably smaller version of a transition graph gained

by ignoring or concentrating some information. An abstraction is defined by its abstraction

mapping function α : S → S′. The abstract transition graph T ′ = (S′, L′, T ′, s′0, S
′
∗) is

calculated as followed: L′ = L, (α(s), l, α(s′)) ∈ T ′ ∀(s, l, s′) ∈ T , α(s0) = s′0 and α(s∗) ∈

Background 4

S′∗∀s∗ ∈ S∗.

Algorithm 1 Heuristic search using a consistent heuristic function

1: open := {root}
2: closed := {}
3: while open not empty do
4: n = pop min(open)
5: if n not in closed then
6: insert n into closed
7: if n is goal then
8: return solution(n)
9: end if

10: for all successor n′ of n do
11: if h(n′) <∞ then
12: insert n’ into open
13: end if
14: end for
15: end if
16: end while
17: return no solution

A projection of a planning task is an abstraction which only uses a subset V ′ of the tasks

variables. It maps states with the same values for all variables in the subset .

α(s1) = α(s2) iff s1(v) = s2(v) ∀v ∈ V ′ (2.1)

An atomic projection is a projection which only uses a single variable v and is written as

πv.

2.1.2 Merge-and-shrink
Merge-and-shrink is an algorithm for calculating an abstraction using a merging strategy

and a shrinking strategy. It starts with a set of all atomic projections of the given task

and iteratively merges and shrinks (so their size after merging remains under a given size

bound N) two abstractions at a time until only a single abstraction is left. The size of an

abstraction is defined as the number of abstract states it contains. The merging strategy

selects the abstractions to use in a given iteration while the shrinking strategy decides which

of the two abstractions should be shrunk and how this should be done. The synchronized

product S⊗ = (S⊗, L⊗, T⊗, s
0
⊗, S

∗
⊗) of two transition systems S1 = (S1, L1, T1, s

0
1, S
∗
1) and

S2 = (S2, L2, T2, s
0
2, S
∗
2) is defined as followed: S⊗ = S1 ⊗ S2, S⊗ = S1 × S2, s0⊗ = (s01, s

0
2),

S∗⊗ = S∗1 × S∗2 , T⊗ = {((ss1, ss2), l, (st1, s
t
2)) | (ss1, l, st1) ∈ T1, (ss2, l, st2) ∈ T2}

The heuristic value is then calculated by measuring the the shortest distance of every state

to a goal state. One possible way to shrink is to compute the coarsest bisimulation.

Background 5

Algorithm 2 Merge-and-shrink

1: abs := {πv|v ∈ V }
2: while |abs| > 1 do
3: Select A1,A2 ∈ abs
4: Shrink A1and/orA2 until size(A1) · size(A2) ≤ N
5: abs := (abs \ {A1,A2}) ∪ {A1 ⊗A2}
6: end while
7: return only element of abs

2.2 Bisimulation equivalence
2.2.1 Definition
A bisimulation is a binary relation ∼ over two transition systems S1, S2 defined as followed:

For every pair of states p ∈ S1, q ∈ S2 in the bisimulation (p ∼ q): if there is a p′ ∈ S1 with

p → p′ then there is a q′ ∈ S2 with q → q′ and if there is a q′ ∈ S2 with q → q′ then there

is a p′ ∈ S1 with p→ p′ and p′ ∼ q′.
Two transition systems S1 and S2 are bisimilar if for all initial states in S1 there exists a

bisimilar initial state in S2 and vice versa. A simple example with the mapping (dashed

arrows) between the two systems is given in Figure 2.1. Note that while n2 maps to n1′,

n1′ maps to n1.

Figure 2.1: Two bisimilar graphs and their mapping

As stated by Nissim et al. [2011], there always exists a coarsest bisimulation (e.g. the right

transition system in Figure 2.1) and this coarest bisimulation can be used to calculate a

perfect heuristic.

3
Efficient algorithm for computing bisimulation

equivalence

This chapter will introduce the algorithm used for computing the coarsest bisimulation and

the idea behind it as well as what needs to be changed to be able to use it for planning.

3.1 The algorithm
3.1.1 Notation
A partition of a set N is a set of pairwise disjoint subsets (called blocks) so that each element

of N is in exactly one subset. The union of all blocks yields the set N and the intersection

of any two blocks is always the empty set. Each block must hold at least one element of N .

A refinement P of a partition X is a partition with ∀p ∈ P,∃x ∈ X with p ⊆ x.

Given a binary relation E and its inverse relation E−1 on a set N is a subset of N ×N . A

partition P of N is stable with respect to E if for every pair of blocks B1, B2 ∈ P either

B1 ⊆ E−1(B2) or B1 ∩ E−1(B2) = {}.
The subgraph G′ = 〈B,E � B〉 of G = 〈N,E〉 consists of the states of a subset B ⊂ N of

the states in N and the edges between them E � B := (B ×B) ∩ E.

3.1.2 Idea
Dovier, Piazza, and Policriti [2004] introduced an efficient algorithm for computing bisimu-

lation equivalence which can be used to calculate the coarsest bisimulation of state-labelled

graphs (a transition system with labelled states an no labels on edges). The algorithm uses

a negative strategy by starting with the coarsest partition P = {N} of a graph G = 〈N,E〉
and then splitting the blocks as long as P is not stable. The algorithm uses the idea of

separating parts of the graph that aren’t bisimilar and refining them separately. They de-

fine a rank and group all states with the same rank together. Figure 3.1 shows a simple

example (the algorithm will be explained later on) with 4 rank induced blocks. Collapsing

a block replaces all nodes in it with a new one inheriting all incoming and outgoing edges of

the replaced nodes. In Figure 3.1a the block containing the goal state (on the bottom) gets

Efficient algorithm for computing bisimulation equivalence 7

collapsed (has no effect). In Figure 3.1b the 2nd block from the top gets refined (separating

connected from not connected states). In Figure 3.1c the 2nd block from the bottom gets

collapsed.

(a) collapse (b) refine (c) collapse

Figure 3.1: Minimisation (well founded case)

3.1.3 Rank definitions
3.1.3.1 Well founded case

For an acyclic graph G = 〈N,E〉, the following recursive definition of rank can - according

to Dovier, Piazza, and Policriti [2004] - be used to make the above stated separation:

rank(n) =

{
0 if n is a leaf

1 +max{rank(m) : 〈n,m〉 ∈ E} otherwise
(3.1)

With this definition of rank, states that are bisimilar always get assigned the same rank.

The opposite does not hold true.

3.1.3.2 General case

To be able to compute a rank for general graphs (i.e. cyclic graphs) the definition must be

generalised. The following definitions are needed.

A strongly connected component of a given graph G = 〈N,E〉 is a set of states where each

state can be reached from each state of this set. A graph Gscc = 〈Nscc, Escc〉 built from the

strongly connected components of an other graph is always acyclic.

Nscc = {c|c is a strongly connected component of G}
Escc = {〈c1, c2〉|c1 6= c2 and (∃n1 ∈ c1)(∃n2 ∈ c2)(〈n1, n2〉 ∈ E)}

(3.2)

The well founded set of a graph is a set of all states from which no acyclic state is reachable.

The subgraph G(n) of a graph G = 〈N,E〉 contains all states reachable from n. The well

founded part of a graph G = 〈N,E〉 is defined as WF (G) = {n ∈ N |G(n) acyclic}.

Efficient algorithm for computing bisimulation equivalence 8

rank(n) =

0 if n is a leaf

−∞ if c(n) is a leaf in Gsccand n is not a leaf in G

max({1 + rank(m)|〈c(n), c(m)〉 ∈ Escc,m ∈WF (G)}∪

{rank(m)|〈c(n), c(m)〉 ∈ Escc,m /∈WF (G)}) otherwise

(3.3)

3.1.4 Paige Tarjan Partition Refinement
A given graph G = 〈N,E〉 can be interpreted as binary relation E on the set of states

contained in G. The expression aEb for two states a, b ∈ N is equivalent with 〈a, b〉 ∈ E
meaning that there is an edge in G from a to b. Also E−1(Y) = {x|∃y ∈ Y with xEy} are

all predecessors of the states in Y . The partition refinement algorithm as proposed by Paige

and Tarjan [1987] can be used to efficiently calculate the coarsest stable partition. It is the

underlying algorithm for computing the coarsest bisimulation. The following pseudocode is

a simple version of the efficient algorithm.

Splitting a block b with respect to some set s (as done on line 6 of Algorithm 3) yields two

new blocks b1 = b∩ s and b2 = b \ (b∩ s). After splitting b with respect to s, these two sets

fulfil the requirement(see Section 3.1.1) for the partition to be stable.

Algorithm 3 Compute coarsest stable partition of N

1: P = {N}
2: while P not stable do
3: select b ∈ P
4: compute s = E−1(b)
5: for all p ∈ P do
6: split p with s
7: end for
8: end while

In the actual implementation a more sophisticated version - also proposed by Paige and

Tarjan [1987] - is used. Especially the selecting of a good splitter (one that actually splits

some blocks) on line 3 is crucial for the algorithm. The more sophisticated version has a

runtime complexity of O(|E| · log(|N |)).

3.1.5 Description
Below in Algorithm 4 the procedure to compute the coarsest bisimulation as proposed by

Dovier et al. [2004] is shown. First it computes the rank of every state using the definition

in Section 3.1.3.2. After the rank of every state is known, all states with rank −∞ (which

are dead ends in the transition graph) get collapsed and blocks at higher ranks get refined.

This refinement step is done by splitting the blocks with both elements that are connected

to the collapsed block and ones that are not. This refinement of blocks at higher ranks is

also done after each collapse at these ranks. Next comes the main loop of the algorithm in

which the higher ranks get processed. First, a new subgraph with all blocks at the current

Efficient algorithm for computing bisimulation equivalence 9

rank (defined by the iteration) gets created and and refined with the Paige-Tarjan algorithm.

After this refinement is done, the resulting blocks get collapsed and for every such block, all

blocks at higher ranks get refined by splitting connected elements and not connected ones.

The result after the main loop is a graph containing the coarsest bisimulation.

The algorithm has a runtime complexity of O(|E| · log(|N |)) as stated by Dovier, Piazza,

and Policriti [2004].

Algorithm 4 Compute coarsest bisimulation

1: for n ∈ N do
2: compute rank(n);
3: end for
4: p := max{rank(n)|n ∈ N};
5: for i = − inf, 0, ..., p do
6: Bi := {n ∈ N |rank(n) = i}
7: end for
8: P := {Bi|i = −∞, 0, ..., p};
9: G := collapse(G,B−∞);

10: for n ∈ N ∩B−∞ do
11: for C ∈ P and C 6= B−∞ do
12: P := (P \ {C}) ∪ {{m ∈ C|〈m,n〉 ∈ E}, {m ∈ C|〈m,n〉 /∈ E}}
13: end for
14: end for
15: for i = 0, ..., p do
16: Di := {X ∈ P |X ⊆ Bi};
17: Gi := 〈Bi, E � Bi〉;
18: Di := Paige− Tarjan(Gi, Di);
19: for X ∈ Di do
20: G := collapse(G,X);
21: end for
22: for n ∈ N ∩Bi do
23: for C ∈ P and C ⊆ Bi+1 ∪ ... ∪Bp do
24: P := (P \ {C}) ∪ {{m ∈ C|〈m,n〉 ∈ E}, {m ∈ C|〈m,n〉 /∈ E}}
25: end for
26: end for
27: end for

3.2 Translation to planning
The algorithm described can be adapted to be used for planning. As stated in Section 3.1,

this algorithm works on a state-labelled graphs whereas we want one that works on edge

labels as planning is modelled this way. The algorithm also doesn’t work as expected on a

graph which has only one strongly connected component (so each state can be reached from

each state) because it doesn’t handle goal states in any way. This problem will be discussed

in Section 3.2.2.

Efficient algorithm for computing bisimulation equivalence 10

3.2.1 Edge labels to state labels
As suggested by Dovier et al. [2004], an edge-labelled graph can be converted in an equivalent

state-labelled graph by simply replacing all edges with states.

This conversion to state labels has a drawback, it can increases the amount of states and

edges in the graph significantly. By replacing the edges with states we double the amount

of edges and increase the amount of states by the amount of edges.

|N ′| = |N |+ |E| (3.4)

|E′| = |E|+ |E| (3.5)

So after the change the worst case complexity is O(|E| · log(|E| + |N |)). If the number of

edges per state in a given problem is linked to the amount of states (i.e. with increasing

number of states the number of edges per state increases) this transformation also increases

the worst case complexity (in addition to the worse constant factor) of the algorithm. This

increase in worst case complexity is problem specific and may vary strongly. An example of

how this translation works and how the number of states and edges increases can be seen in

Figure 3.2.

(a) edge labels (b) state labels

Figure 3.2: Transformation to state-labelled graph

In addition to the algorithm in Section 3.1 we need to make sure that states with different

labels are never in the same equivalence group. To fulfil this requirement, we split all blocks

after calculating the ranks into smaller blocks only containing one kind of state label each.

3.2.2 Avoiding one single equivalence group
As stated before, the algorithm behaves unexpectedly if all states are in one single strongly

connected component and therefore have a rank of −∞. A single strongly connected com-

ponent can only happen if every state is reachable from every state (happens quite often in

planning). This leads to the collapsing of all states into a single one. To solve this problem

without changing the definition of rank or modifing the algorith proposed by Dovier et al.

[2004] an additional state can be introduced representing a single goal state and connection

all actual goal states to this new one. After this change, the algorithm can be used without

Efficient algorithm for computing bisimulation equivalence 11

specially handling these states. This modification is displayed in Figure 3.3.

(a) multiple goal states (b) single goal
state

Figure 3.3: Transformation to state-labelled graph

Although the problem above can be solved by introducing a new state, it doesn’t change

the fact that the given definition of rank to split the task into smaller tasks yields only one

rank for the whole graph for typical AI tasks. This is because actions can often be reversed

by an opposite action (like making a step backwards). These action leading away from the

goal states lead to the problem where all states are in one strongly connected component

and therefore the same rank is assigned to all states. The algorithm looses an important

optimization this way.

4
Implementation

All algorithms and code produced are written in C++.

4.1 Partition
To match up with the worst case complexity of O(|E| · log(|N |)) a special data structure

with the following requirements is needed:

1. Get block of given element in O(1)

2. Iterate over elements of a block B in O(|B|)

3. Move element into different block in O(1)

Given that the number of elements doesn’t change during the refinement, an array can be

used to store the elements, which allows access of individual elements in O(1). Storing a

pointer to the block containing the element in each element fulfils requirement (1). To be

able to iterate over all elements in a given block and also move the elements in O(1) a doubly

linked list is a good choice. By storing the data needed for a doubly linked list (next and

previous node of list) in the array introduced before requirements (2) and (3) are also met.

Figure 4.1: Example partition for 5 elements in 2 blocks
P = {{0, 1, 4}, {2, 3}}

The partition refinement algorithm by Paige&Tarjan needs a second (working) partition of

the whole set for its calculation. In addition the blocks of the two partitions need to be

linked if one is a subset of the other, therefore a list of pointers to these linked blocks is

stored within each block.

Implementation 13

4.2 Approximative bisimulation
As mentioned in Section 2.2.1 there always exists a coarsest bisimulation. If the upper bound

for the amount of abstract states that the shrinking algorithm should return is lower than

the number of abstract states in the coarsest bisimulation, an approximative bisimulation

needs to be calculated. Because the algorithm proposed by Dovier et al. [2004] uses a

negative strategy by starting with one abstract state and then splitting it until the coarsest

bisimulation is reached, simply stopping before a split would increase the number of abstract

states over the upper bound gives us an approximative bisimulation.

5
Evaluation

5.1 Fast Downward
The algorithm was implemented for the use within the Fast Downward planner by Helmert

[2006]. Fast Downward contains many different algorithms to solve planning problems in-

cluding a merge and shrink algorithm. The algorithm for computing the coarsest bisimula-

tion is meant to be used as a shrinking strategy with the merge-and-shrink algorithm within

Fast Downward.

5.2 Experimental setup
The newly, in conjunction with this thesis, implemented algorithm will be abbreviated as BD.

Because Fast Downward already contains a merge-and-shrink heuristic using bisimulation

(this algorithm will be abbreviated as FD from now on), all tests were compared with this

implementation. The algorithm labelled BD2 is a preliminary version of the algorithm by

Dovier et al. [2004] which works directly on edge labels and is still in development. It is

included in the benchmarks to visualize the effect of translating edge labels to state labels.

Tested were different domains, some known to be shrinkable using bisimulation and some

that are not. All tests were done with and without an upper bound for the number of states.

The test machine is equipped with 6GB of RAM, a Core 2 Duo with 2.66 Ghz and running

linux (Kubuntu 12.04LTS).

5.3 Results
5.3.1 Gripper domain
The gripper domain is a scenario where there are two rooms and multiple balls which need

to be transported from the first to the second room. There is also a robot who has multiple

arms (usually two) and can pick up one ball (if it carries none) with each, move to a room

and drop the ball(s). The problem size is increased by increasing the number of balls to

transport to the second room. The gripper domain is a very good domain for calculating

bisimulation as it has many bisimilar states.

Evaluation 15

5.3.2 Without upper bound
These tests were executed with no upper bound for the amount of abstract states and a

threshold of 1, which means that the shrinking algorithm is executed for every abstraction

no matter how big or small it is. The problem size increases with higher problem number.

Time is measured in seconds needed to compute the abstraction and to search the solution.

Memory (abbreviated Mem) is the peak memory usage. Figure 5.1 shows the measured time

and memory usage and Figure 5.2 displays it in graphical form. The scale of the x-axis is a

combination of the number of states and edges in the problem calculated as x = |E|∗log(|N |)
for every data point. Figure 5.3

Problem Time FD Time BD Time BD2 Mem FD Mem BD Mem BD2
1 0s 0s 0s 3160 3160 3160
2 0s 0.02s 0s 3160 3420 3288
3 0s 0.02s 0.02s 3288 3584 3292
4 0.02s 0.06s 0.04s 3400 3968 3416
5 0.04s 0.08s 0.08s 3580 4456 3656
6 0.08s 0.16s 0.12s 3732 5032 3980
7 0.12s 0.24s 0.2s 4024 5908 4284
8 0.18s 0.38s 0.3s 4304 6956 4688
9 0.24s 0.56s 0.44s 4644 8148 5172
10 0.34s 0.84s 0.62s 5204 9676 5792
11 0.48s 1.2s 0.86s 5796 11444 6568
12 0.66s 1.7s 1.16s 6408 13644 7488
13 0.86s 3s 1.62s 7440 15996 8556
14 1.12s 3.28s 1.96s 8352 18764 9740
15 1.42s 4.32s 2.5s 9496 21980 11184
16 1.76s 6.5s 3.28s 10792 25468 12812
17 2.4s 8.32s 4.12s 12564 29488 14608
18 2.76s 9.54s 5.12s 14484 33988 16652
19 3.36s 12.4s 7.82s 16748 38996 19028
20 4.1s 13.34s 9.94s 19012 44528 21692

Figure 5.1: Results gripper domain

5.3.3 With upper bound
A heuristic obtained by an approximative bisimulation is worse than a exact bisimulation and

therefore it takes much longer to search for a solution to a problem. These tests were made

with smaller problems and with an upper bound of 97% of the states an exact bisimulation

would need. All values include searching for the solution (which takes much longer than

computing the abstraction) as it is part of evaluating the abstraction. Figure 5.4 shows the

measured values and the upper bound set.

5.4 Discussion
As seen in Figure 5.2 the memory usage of the new algorithm scales badly with the problem

size. This comes from the fact that memory usage scales mainly with the number of states

Evaluation 16

Figure 5.2: Results gripper domain

(higher constant factor than for edges). After translation from edge to state labels this new

number of states scales with the old number of states and edges. This way the much higher

number of edges gets multiplied with the higher constant factor.

Evaluation 17

Domain Problem FD BD

airport 1 6.84 31.96
driverlog 6 4.82 26.00

blocks 6-0 1.50 4.22
elevator-opt11-strips 1 2.42 7.46
floortile-opt11-strips 1 2.04 7.56

miconic 9-0 4.10 11.60
mprime 1 10.54 27.00
mystery 1 0.54 34.78

No-mprime 1 10.40 not solvable
No-mystery 1 0.56 40.26

pegsol-opt11-strips 1 18.42 not solvable
Pipesworld-tankage 1 0.48 44.94
sokoban-opt11-strips 1 0.88 61.88
visitall-opt11-strips 4-full 1.02 1.76

woodworking-opt11-strips 1 4.64 22.76
zenotravel 8 8.22 35.68

Figure 5.3: Different domains

Problem Max States Limit Time FD Time BD Mem FD Mem BD
1 74 72 0 0 3.2 3.2
2 184 178 0 0 3.3 3.4
3 354 343 0.04 0.06 3.8 3.9
4 602 584 0.28 0.34 7.3 7.5
5 948 920 2.26 1.96 25.4 25.7
6 1394 1352 10.86 12.46 124.6 125
7 1962 1903 64.02 67.56 614 611.6

Figure 5.4: Gripper domain

6
Conclusion

As described before, multiple changes to the algorithm by Dovier et al. [2004] were necessary.

In addition the implementation of the partition refinement algorithm by Paige and Tarjan

[1987] was needed as well as a custom data structure to represent the partitions.

As the evaluation shows, the algorithm can in fact be adapted to correctly compute the

coarsest bisimulation in the context of planning. Its performance in comparison to the

already implemented algorithm within Fast Downward isn’t as good as hoped for. One big

problem is the much higher memory usage and the consequential slowdown that comes with

it.

Further testing and developing of the edge label variant of the algorithm should be done as

well as investigating the potential of this variant. As of now, this preliminary version seems

to have more potential in planning than the direct attempt. Both variants of the algorithm

need improvement for the case when there is an upper bound for the number of abstract

states. Because of the way the partition refinement works it is not possible to directly stop

refinement when the limit is reached. The current implementation stops refining before the

actual limit is reached and therefore is not as exact as it could be.

The optimizations suggested by Dovier et al. [2004] and their usefulness as well as if they

can be used with the edge label variant of the algorithm should be investigated. These

suggested improvements tackle several problems including the case when there are only a

few rank-induced blocks as it is usual for planning problems.

Bibliography

[Dovier et al., 2004] Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient algorithm

for computing bisimulation equivalence. Theor. Comput. Sci., 311(1-3):221–256, 2004.

[Dräger et al., 2006] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model

checking with distance-preserving abstractions. In Antti Valmari, editor, SPIN, volume

3925 of Lecture Notes in Computer Science, pages 19–34. Springer, 2006. ISBN 3-540-

33102-6.

[Helmert, 2006] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res. (JAIR),

26:191–246, 2006.

[Helmert et al., 2007] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction

heuristics for optimal sequential planning. In Mark S. Boddy, Maria Fox, and Sylvie

Thiébaux, editors, ICAPS, pages 176–183. AAAI, 2007. ISBN 978-1-57735-344-7.

[Nissim et al., 2011] Raz Nissim, Jörg Hoffmann, and Malte Helmert. Computing perfect heuris-

tics in polynomial time: On bisimulation and merge-and-shrink abstraction in optimal

planning. In Toby Walsh, editor, IJCAI, pages 1983–1990. IJCAI/AAAI, 2011. ISBN

978-1-57735-516-8.

[Paige and Tarjan, 1987] Robert Paige and Robert E. Tarjan. Three partition refinement algo-

rithms. SIAM J. Comput., 16(6):973–989, December 1987.

Declaration of Authorship

I hereby declare that this thesis is the result of my own work and includes nothing which

is the outcome of work done in collaboration except as declared in the bibliography and

specified in the text.

This thesis is not substantially the same as any that I have submitted or will be submitting

for a degree or diploma or other qualification at this or any other University.

Basel, 31.07.2012

Sascha Scherrer

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Planning
	2.1.1 Notation
	2.1.2 Merge-and-shrink

	2.2 Bisimulation equivalence
	2.2.1 Definition

	3 Efficient algorithm for computing bisimulation equivalence
	3.1 The algorithm
	3.1.1 Notation
	3.1.2 Idea
	3.1.3 Rank definitions
	3.1.3.1 Well founded case
	3.1.3.2 General case

	3.1.4 Paige Tarjan Partition Refinement
	3.1.5 Description

	3.2 Translation to planning
	3.2.1 Edge labels to state labels
	3.2.2 Avoiding one single equivalence group

	4 Implementation
	4.1 Partition
	4.2 Approximative bisimulation

	5 Evaluation
	5.1 Fast Downward
	5.2 Experimental setup
	5.3 Results
	5.3.1 Gripper domain
	5.3.2 Without upper bound
	5.3.3 With upper bound

	5.4 Discussion

	6 Conclusion
	Bibliography
	Declaration of Authorship

