
Implementation and Evaluation of
Depth-First IBEX in Fast Downward

Bachelor’s Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Remo Christen

Petr Sabovčik

petr.sabovcik@stud.unibas.ch

2021-062-310

22.07.2024

Acknowledgments

Much thanks to my supervisor Remo Christen, who made writing this thesis a fun and

rewarding experience.

Calculations were performed at sciCORE (http://scicore.unibas.ch/) scientific computing

core facility at University of Basel.

Abstract

Budgeted Tree Search (BTS) is a depth-first version of the search algorithm framework

Iterative Budgeted Exponential Search (IBEX). It aims to improve the worst case run time

of Iterative Deepening A* (IDA*), a widely used search algorithm when memory is an issue.

BTS seeks to remedy IDA*’s shortcomings while maintaining the same space complexity. A

weakness of IDA* is that under certain circumstances each iteration spends a considerable

amount of effort exploring a minimal portion of the state space in addition to what it explored

in earlier iterations. A main component of BTS is its addition of the exponential search

procedure, which forces the search to expand exponentially more nodes with each iteration.

We implement BTS and evaluate its performance in Fast Downward, a classical planning

system, and compare it to IDA* with the use of the International Planning Competition

(IPC) benchmark suite.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 State Space . 3

2.2 Black Box Interface . 3

2.3 Search Algorithms . 4

2.3.1 Depth-First Search . 4

2.3.2 Informed and Uninformed Search . 5

2.3.3 Heuristics . 5

2.3.4 g-value . 5

2.3.5 f-value . 5

2.3.6 A* . 6

2.3.7 Iterative Deepening A* . 6

2.4 Classical Planning . 7

2.4.1 PDDL . 8

2.4.2 Fast Downward . 9

3 Depth-First IBEX 10

3.1 Exponential Search . 11

3.2 Global Variables . 11

3.3 Algorithm Overview . 12

3.4 Algorithm Properties . 14

4 Implementation 15

4.1 Unregistered States . 15

4.2 Estimate Caching . 16

4.3 Path Checking . 16

5 Evaluation 17

5.1 Coverage . 18

5.2 Exponential Search . 19

Table of Contents v

5.3 Errors . 19

5.3.1 Stack Overflows . 20

5.3.2 Out of Memory and Out of Time Errors 21

5.4 Expansions until last jump . 21

5.5 Iterations . 21

5.6 Memory . 23

5.7 Runtime . 23

6 Conclusion 24

Bibliography 25

1
Introduction

Whether winning a game of chess or planning deliveries of millions of packages is at stake,

search algorithms play a pivotal role in learning how to solve these tasks in an optimal

way. In the field of artificial intelligence, search algorithms are used to navigate complex

state spaces to find solutions to such problems. It is to be expected then, that this field is

constantly innovating, seeking to find new and better strategies to solve important problems.

The two attributes of search algorithms that are most often the target of improvements

are their time and space complexity. Iterative Budgeted Exponential Search (IBEX) is a

novel search algorithm framework [9], the depth-first version of which aims to improve the

worst case run time of an algorithm used when memory is an issue - Iterative Deepening A*

(IDA*) [10]. Depth-first IBEX intends to remedy IDA*’s shortcomings, while maintaining

the same space complexity [14].

Throughout this thesis, we will refer to the depth-first version of IBEX as Budgeted Tree

Search (BTS). We consider the depth-first version of IBEX as it has a more straightforward

implementation and is more suitable for the environment of Fast Downward [6]. Additionally,

we have an already existing well-established search algorithm (IDA*) to compare it against.

The paper A Guide to Budgeted Tree Search [14] will be the model for our implementation

of BTS.

IDA*’s shortcomings are caused by its linear nature, which can lead to its iterations only

exploring a very small portion of the state space (in addition to what it explored in earlier

iterations) under certain circumstances. The way BTS seeks to bypass this issue is by

employing exponential search, enforcing the search to expand exponentially more nodes

with each iteration.

The goal of this thesis is to document the implementation and performance of BTS in

Fast Downward, a classical planning system providing an environment that allows for the

implementation and testing of search algorithms. We will examine BTS’s performance using

some well-known planning problems featured in past International Planning Competitions

(IPC) and compare it to the performance of IDA* and A* [4], also examining the difference

a simple path checking optimization makes on the performance of BTS and IDA*.

Introduction 2

As Fast Downward has built-in duplicate checking mechanisms and favors non-iterative-

deepening search algorithms, we will also delve into its inner workings, such as its state

registry and heuristic estimate caching that can cause issues when trying to implement

algorithms like BTS.

In the next chapter, we will discuss the concepts IBEX builds upon, the basics of classical

planning, Fast Downward’s main components, and the way it encodes planning tasks. For a

complete context, we will also discuss the workings of IDA*. In later chapters, we will detail

BTS’s functioning, its implementation in Fast Downward, and the results of our performance

analysis.

2
Background

First, we introduce the formal definitions of state spaces, the underlying search algorithms

relevant to our evaluation of BTS, classical planning, the Planning Domain Definition Lan-

guage (PDDL) format used by Fast Downward, and Fast Downward itself.

2.1 State Space
State spaces describe an environment in terms of states, actions, and transitions between

states. A state represents a configuration of the environment, while actions define how

states can be modified. Transitions explicitly describe how one state can be transformed

into another.

A formal definition of a state space is a tuple S = ⟨S,A, cost, T, sI , SG⟩ where:

• S is a finite set of states.

• A is a finite set of actions.

• cost is a cost function that assigns a non-negative cost to each action.

• T is a transition function that maps states and actions to successor states.

• sI is the initial state.

• SG is a set of goal states.

The state spaces we are interested in are solved by heuristic tree search with an admissible

heuristic. What these properties entail is explored later in this chapter.

2.2 Black Box Interface
While search algorithms may differ in the ways they navigate the search space, the algorithms

we are interested in share a common interface they use to find solutions to planning tasks.

To be satisfactory for our purposes, the black box must be able to provide the following

functions:

Background 4

• get initial state(): Returns the initial state of the planning task.

• is goal state(state): Returns whether the given state is a goal state.

• get successors(state): Returns a list of successor states of the given state along with

the action that, upon application, results in the given successor state.

• get cost(operator): Returns the cost of the given operator.

• get evaluator value(state): Returns the heuristic value of the given state.

Using these functions, search algorithms do not require an explicit representation of the

entire state space, but can instead rely on this interface to provide them with the information

needed to find plans. The Fast Downward planning system also provides a similar interface,

as discussed later in this chapter.

2.3 Search Algorithms
Search algorithms navigate state spaces, with the aim of finding plans. Each algorithm has

its own strategy on how to explore this space, and each has its own strengths and weaknesses.

Their shared purpose is to find a plan from the initial state to a goal state.

In the following section, we will discuss heuristics and how search algorithms use them to

guide their exploration of the state space, also examining search algorithms that do not use

heuristics.

2.3.1 Depth-First Search
Depth-First Search is a search algorithm that forgoes the use of heuristics and instead simply

recursively explores the state space reaching deeper and deeper before backtracking. As can

be expected, this algorithm is not optimal and might not even terminate if it gets stuck in

a cycle. It has a time complexity of O(|V | + |E|), where |V | is the number of vertices and

|E| is the number of edges in the state space. Typically, it is implemented as a tree search

algorithm.

Depth-First search can be implemented using the following pseudocode:

Algorithm 1 Depth-First Search (DFS)

1: if is goal state(state)
2: return SOLVED
3: successors← get successors(state)
4: for ⟨successor, operator⟩ in successors
5: solutionPath.push(operator)
6: if DFS(successor) == SOLVED
7: return SOLVED
8: solutionPath.pop()

Although it has certain applications, it is generally inadvisable to use in larger state spaces.

Background 5

2.3.2 Informed and Uninformed Search
Search algorithms can be split into informed and uninformed search algorithms. Uninformed

search algorithms, such as Depth-First search, simply explore the state space without any

additional information. They do not prefer any states over others and do not take into

account the cost to reach states. As can be expected, this runs the risk of exploring the

state space inefficiently and finding suboptimal solutions.

In contrast, informed search algorithms use heuristics to guide their exploration of the state

space. Heuristics, as explained in the following, help the search algorithm prioritize states

that are more likely to lead to the goal state with a lower cost. Provided the heuristic has

certain properties, the plans found by informed search algorithms that are relevant to this

thesis are guaranteed to be optimal.

2.3.3 Heuristics
Heuristics are functions that estimate the cost to reach a goal state from a given state. They

are used by informed search algorithms to guide the search process by prioritizing states

that are likely to lead to the goal. While depth-first search does not utilize heuristics, both

BTS and IDA* do, making them informed search algorithms

The heuristics we are interested in are admissible heuristics. These are heuristics that never

overestimate the cost to reach the goal state, in formal terms h(s) ≤ h∗(s), where h∗(s) is

the perfect heuristic. The perfect heuristic h∗(s) is the least-cost path from the state s to

the closest goal state. If no such path exists, then h∗(s) =∞. It should also be noted that

a heuristic h always outputs non-negative values or infinity.

Admissible heuristics are essential for informed search algorithms, as the plans found by A*,

IDA*, and BTS are guaranteed to be optimal using admissible heuristics .

2.3.4 g-value
Each state has a g-value, which denotes the cost to reach the state from the initial state. It

does not need to reflect the true least-cost path to the state, but instead shows the least-cost

path found so far by the search algorithm. Due to their iterative-deepening nature, both

IDA* and BTS recalculate the g-value of states in each iteration.

2.3.5 f-value
The f-value of a state is some combination of the cost to reach the state from the initial

state and the heuristic value of the state. This is important to note as both IBEX and IDA*

use the f-value to determine which states to explore next. For our purposes it is sufficient

to assume that f(s) = g(s) + h(s), where g(s) is the cost to reach the state from the initial

state and h(s) is the heuristic value of the state.

Background 6

2.3.6 A*
A* is a simple algorithm that uses heuristics to guide its navigation of the state space [4].

It orders states by their f-value, expanding those with the lowest f-value first. In doing so,

it targets states that are likely to lead to the goal state with the lowest cost. A* is optimal

and complete, provided it uses an admissible heuristic.

It is a very simple example of an informed search algorithm. Its main drawback is its space

complexity, which is O(bd), where b is the branching factor and d is the depth of the state

space. IDA* is an extension of A* that is more space efficient, which we will discuss in the

following section.

2.3.7 Iterative Deepening A*
It may seem counterintuitive, but it can be preferable to iteratively explore the state space

rather than diving deep into it. The idea is to avoid considering the whole state space at

once, which is very taxing on memory, and instead to explore the state space in layers.

Ideally considering the smallest subset of the state space needed to find a solution. Iterative

Deepening A* (IDA*), as its name suggests, iteratively deepens the search space, increasing

the maximal f-value to be considered in each iteration [10].

Unlike DFS, IDA* is an informed search algorithm and is optimal and semi-complete. These

qualities make it a popular choice for solving planning tasks. IDA*, compared to simply A*,

is much more space efficient with a worst-case space complexity of O(d) compared to A*’s

O(bd).

IDA* can be implemented as follows:

Algorithm 2 Iterative Deepening A* (IDA*)

1: threshold← h(state)
2: while true
3: result← search(state, 0, threshold)
4: if result = FOUND
5: return solutionPath
6: if result =∞
7: return NO SOLUTION
8: threshold← result

The searches called by IDA* are f-bounded, meaning that a state s is only expanded if

f(s) ≤ threshold, where f(s) is the f-value of the state s. When a state s with f(s) >

threshold is encountered, the search function returns the f-value of the state. This way,

IDA* can iteratively explore the state space, increasing the threshold in each iteration.

Background 7

Algorithm 3 Search function for IDA*

1: if is goal state(state)
2: return SOLVED
3: successors← get successors(state)
4: for ⟨successor, operator⟩ in successors
5: solutionPath.push(operator)
6: result← search(successor, g + get cost(operator), threshold)
7: if result == SOLVED
8: return SOLVED
9: else if result < threshold

10: threshold← result
11: solutionPath.pop()
12: return threshold

2.4 Classical Planning
We call the problems mentioned in the introduction that we are trying to solve classical

planning tasks. These involve finding a plan that leads from some given initial state to

some desired goal state. To traverse between states, we use actions defined for the specific

planning task. These actions have preconditions that must be met in order to be applicable,

and effects that modify the state when the action is executed. Additionally, actions also

have costs, meaning that plans can have differing overall costs depending on the sum of the

costs of the actions the plan is made up of.

The specific way of formalizing planning task Fast Downward uses are called SAS+ planning

tasks [3]. Formally, these tasks are defined as a tuple Π = ⟨V,O, I, γ⟩ where:

• V is a finite set of variables with a finite set of possible values.

• O is a finite set of actions.

• I is the initial state.

• γ is a goal state, which may or may not be reachable.

Fast Downward takes PDDL files as input and then translates them into SAS+ classical

planning tasks, utilizing Finite Domain Representation (FDR) [7] within the program.

Background 8

2.4.1 PDDL
Fast Downward uses the Planning Domain Definition Language (PDDL) as input. This

format allows a compact and human-readable way to define planning tasks. It is composed

of two parts: a domain file and a problem file [5]. In this section, we will examine the blocks

world problem in the PDDL format. This problem involves stacking blocks on top of each

other, with the goal being a certain configuration of blocks stacked atop each other

Domain File
The following is an excerpt of a domain file for the blocks world problem in the PDDL

format:

(define (domain BLOCKS)

(:requirements :strips)

(:predicates (on ?x ?y)

(ontable ?x)

(clear ?x)

(handempty)

(holding ?x)

)

(:action pick-up

:parameters (?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect

(and (not (ontable ?x))

(not (clear ?x))

(not (handempty))

(holding ?x)))

...

In this excerpt we see the predicates involved in the blocks world problem, as well as the

definition of the pick-up action. Predicates are used to describe properties of states in

planning tasks. They can either be true or false. For example, we can see that a block can

either be on another block or not, and the hand which moves the blocks around can either

be empty or not.

Actions are used to describe how states can be changed. Actions have effects that modify

the state upon the action’s application, and preconditions that must be met for the action

to be applied. For example, the pick-up action can only be applied if the block has no other

blocks on top of it (clear), is on the table (ontable), and the hand that picks up the block

is empty (handempty). The application of the pick-up action results in the block no longer

being on the table, the block no longer being clear, and the hand not being empty anymore.

Background 9

Problem File
Here we consider a problem file for the Blocks World problem in the PDDL format. First

we consider the problem using an intuitive visual representation:

a) The initial state b) The goal state

In the actual PDDL format, these two states are represented as follows:

(define (problem BLOCKS-4-1)

(:domain BLOCKS)

(:objects A C D B)

(:init (clear B) (ontable D) (on B C) (on C A) (on A D) (handempty))

(:goal (and (on D C) (on C A) (on A B)))

)

The two problem and domain files together can be used as input for Fast Downward, which

attempts to find a sequence of actions that lead from the initial configuration to the desired

goal configuration. Its handling of PDDL files and its functioning is explained in the next

section.

2.4.2 Fast Downward
Fast Downward is a classical planning system with a considerable degree of modularity [6]. It

supports any given PDDL domain/problem pair, and also allows for the use of various search

algorithms and heuristics, each with customizable options. It functions by translating the

input PDDL file pair into a multi-valued planning task. It also handles heuristic value cal-

culation and provides means for the search algorithm to access states within the state space

as described by the planning task. All these steps Fast Downward takes to solve planning

tasks are split into the following phases: translation, knowledge compilation, and search.

For our implementation and evaluation of IBEX, we worked with Fast Downward’s search

algorithm classes, leaving its translation and knowledge compilation capabilities unaltered,

hence why we will not be examining those components of Fast Downward.

Furthermore, it should be noted that iterative-deepening search algorithm approaches are

not too easily implemented in Fast Downward, and our implementation of both IBEX and

IDA* had to circumvent certain Fast Downward duplicate checking measures. Details on

how we did this will be discussed in the implementation section.

3
Depth-First IBEX

In the past, there has been much effort to improve upon IDA* [2] [12], IBEX aims to

outperform these past efforts and provide a more efficient search algorithm [9]. The depth-

first version of IBEX, Budgeted Tree Search (BTS), is the focus of this thesis and in this

chapter we will delve into its workings.

BTS is an instance of the IBEX search algorithm framework that improves upon IDA*’s

design [14]. It aims to reduce the worst case time-complexity of IDA* while retaining its

favorable space complexity. How it does this is best explained by using an example of where

IDA* performs poorly. Consider the following example state space:

Figure 3.1: Poor performance scenario for IDA*

In this example, the goal state is located on the rightmost branch of the state space with

the f-values of the leaf nodes increasing incrementally from left to right. IDA*’s expansion

strategy of increasing the search bound using the highest f-value encountered may fail as

each iteration could lead to only a single additional node being considered compared to the

previous iteration.

Depth-First IBEX 11

3.1 Exponential Search
Firstly, it should be addressed that the name of exponential search is somewhat confusing.

The name refers to the whole process, but its first phase is often referred to as being

the exponential search phase. For the sake of clarity, we will refer to its first phase as

the exponential search phase, although it should be noted that in the most correct sense,

”exponential search” should be reserved as the name for the whole process.

Binary search is a common search algorithm for searching for a value in a sorted list. How-

ever, for unbounded lists or lists with unknown lengths, binary search is not applicable.

This is because we lack the information needed to determine the midpoint of the list.

In such cases, exponential search can be used. Exponential search works by checking ele-

ments at increasing powers of, in this implementation, 2 until the desired value or a greater

value are found [1]. If the desired value is found, the search terminates. If a greater value

is found, the binary search phase is employed to find the desired value, using the last index

checked during the exponential search phase as the upper bound.

These two steps combined constitute exponential search and are instrumental for BTS, as

it also desires to find the optimal solution cost with an unknown upper bound in the fewest

iterations possible.

A disadvantage of this approach is that it may expand nodes with an f-value higher than the

optimal solution cost. With an admissible and consistent heuristic, IDA* does not expand

nodes with an f-value higher than the optimal solution cost [10]. However, BTS does not

have this guarantee, which makes it prone to expand more nodes than IDA*. This issue is

mitigated by a budget, which limits the number of nodes expanded in each iteration.

3.2 Global Variables
BTS keeps track of multiple variables shared between all three of its main functions. These

variables are:

• solutionPath: The current path from the initial state to the goal state.

• solutionCost: The cost of the current solution path.

• solutionLowerBound: A copy of the lower bound of the i interval.

• nodes: The number of nodes expanded during the latest iteration.

• budget: The number of nodes expanded in the last iteration, also determines the

growth rate of the search space.

• i: The search interval. This interval is set to [h(intial state),∞] at the start of the

algorithm and gets refined with each iteration in the search function. It contains a

range of f-values that lead to exponentially more nodes being expanded with each

iteration. Once the lower and upper bounds of the interval are equal, the algorithm

returns the least costly solution.

• fbelow: The maximum f-value expanded below the cost limit during the latest iteration.

Depth-First IBEX 12

• fabove: The next largest f-value encountered in the latest iteration.

Additionally, the algorithm takes c1 and c2 as input parameters. These parameters deter-

mine the growth rate of the search space and the maximum number of nodes expanded in

each iteration. Specifically, c1 and c2 determine the minimum and maximum factors of the

growth rate of the number of expanded nodes in each iteration, respectively. However, there

are exceptions to this. If a solution is found, then the growth of nodes expanded may be

less than c1. If no f-bound exists to cause a growth rate lower than a factor of c2, then the

growth rate may exceed c2.

3.3 Algorithm Overview
BTS addresses the issue of IDA* expanding a minimal number of nodes with each iteration

when its node expansions grow linearly by employing a three-phase search strategy: regular

IDA* iteration starting on line 9 (Algorithm 4), exponential search starting on line 14, and

binary search starting on line 21. Each of these stages is shown in the pseudocode of BTS

below:

Algorithm 4 BTS(c1, c2)

1: solutionPath← ∅
2: solutionCost←∞
3: budget← 0 ▷ budget in node expansions
4: i← [h(get initial state()),∞] ▷ initial f interval
5: while solutionCost > i.lower
6: solutionLowerBound← i.lower
7: i.upper←∞
8: ▷ 1. Regular IDA* iteration
9: i← i ∩ Search(i.lower,∞)

10: if nodes ≥ c1 · budget
11: budget← nodes
12: continue
13: ▷ 2. Exponential Search phase
14: ∆← 0
15: while (i.upper ̸= i.lower) ∧ (nodes < c1 · budget)
16: nextCost← i.lower + 2∆

17: ∆← ∆+ 1
18: solutionLowerBound← i.lower
19: i← i ∩ Search(nextCost, c2 · budget)
20: ▷ 3. Binary Search phase
21: while (i.upper ̸= i.lower) ∧ ¬(c1 · budget ≤ nodes < c2 · budget)
22: nextCost← i.lower+i.upper

2
23: solutionLowerBound← i.lower
24: i← i ∩ Search(nextCost, c2 · budget)
25: budget← max(nodes, c1 · budget)
26: if solutionCost = i.lower
27: return

The algorithm is initialized with an interval i that represents the range of f-values to be

explored, specifically using the heuristic value of the initial state as a lower bound and

Depth-First IBEX 13

infinity as the upper bound. The lower bound is chosen to be the heuristic value of the

initial state because when using an admissible heuristic, the optimal solution cost is at least

as high as the heuristic value of the initial state. Similarly, IDA* uses the heuristic value of

the initial state as the initial search bound as well. It then performs a regular IDA* iteration

and if less nodes have been expanded than desired, it moves on to the exponential search

phase, increasing the upper search bound using powers of 2.

Once a solution is found or the budget is exceeded, the algorithm moves on to the binary

search phase, narrowing down the search interval until the solution cost is found. Here, the

search bound is halved with each iteration.

At any point, if the lower and upper bounds of the search interval are equal, the algorithm

terminates. This is because once this condition is met, it is guaranteed that the solution

cost is optimal. It may also occur that the regular IDA* iteration finds a solution cost lower

than the lower bound of the search interval. In this case, the algorithm exits the while-loop

and returns the optimal solution.

Algorithm 5 Search(costLimit, nodeLimit)

1: fbelow ← 0 ▷ max f expanded below costLimit
2: fabove ←∞ ▷ next largest f
3: nodes← 0 ▷ nodes expanded
4: LimitedDFS(get initial state(), 0, costLimit, nodeLimit)
5: if nodes ≥ nodeLimit
6: return [0, fbelow]
7: else if fbelow ≥ solutionCost
8: return [solutionCost, solutionCost]
9: else

10: return [fabove,∞]

The search function functions as a wrapper for the LimitedDFS function. Depending on

the number of nodes expanded during the search iteration and fbelow, it adjusts the search

interval.

Case 1 (Algorithm 5, line 5): If the search iteration exceeds the node limit, the search

interval is set to [0, fbelow], meaning that assumptions about the least costly solution are

disregarded and the upper bound is set to the highest f-value encountered below the cost

limit.

Case 2 (Algorithm 5, line 7): If the maximum f-value below the cost limit encountered

is greater than or equal to the solution cost, the search interval is set to

[solutionCost, solutionCost], indicating that the optimal solution has been found.

Case 3 (Algorithm 5, line 9): If neither of the above conditions are met, the search

interval is set to [fabove,∞], where fabove is the next largest f-value encountered during the

search iteration.

Depth-First IBEX 14

Algorithm 6 LimitedDFS(currState, pathCost, costLimit, nodeLimit)

1: currF ← pathCost+ h(currState)
2: if solutionCost = solutionLowerBound
3: return
4: else if currF > costLimit
5: fabove ← min(fabove, currF)
6: return
7: else if currF ≥ solutionCost
8: fbelow ← solutionCost
9: return

10: else
11: fbelow ← max(currF, fbelow)
12: if nodes ≥ nodeLimit
13: return
14: if is goal state(state)
15: solutionPath ← currentPath
16: solutionCost ← currF
17: return
18: successors← get successors(state)
19: for ⟨successor, operator⟩ in successors
20: currentPath.push(operator)
21: LimitedDFS(successor, pathCost+ get cost(operator), costLimit, nodeLimit)
22: currentPath.pop()

Lastly, the LimitedDFS function bears a similar structure to a depth-first search as used by

IDA*. The main difference of note is its more sophisticated early termination conditions.

Using information like the number of nodes expanded and the f-values of the nodes encoun-

tered during the search iteration, it can ensure that it does not behave worse than IDA*.

The early termination conditions contribute to the algorithm’s efficiency.

3.4 Algorithm Properties
In this section we will briefly examine the properties of BTS, such as its time and space

complexity, completeness, and optimality.

• Time Complexity: BTS has the worst case time complexity O(N log(C∗/ϵ)) [14],

where C∗ is the cost of the optimal solution and ϵ is the granularity of action costs,

meaning that ϵ = 1 for integers. ϵ = 0.1 for problems where action costs differ by 1

decimal digit, and so on. Action costs matter in the time complexity because they

play a role in setting the search bound.

• Space Complexity: BTS retains the space complexity of IDA*, which is O(bd),

where b is the branching factor and d is the depth of the optimal solution.

• Completeness: BTS is complete, meaning that it will always find a solution if one

exists and terminate if none exists.

• Optimality: BTS is optimal, meaning that it will always find the least costly solution.

4
Implementation

Since our goal was to implement IBEX in Fast Downward, we decided to use the BTS guide

as a reference for our implementation. The guide provides a very clear explanation of how

BTS works and how it can be implemented and serves as a gentle introduction to depth-first

IBEX.

At the time of writing this thesis, the latest release of Fast Downward is release-23.06.0,

which is the version that was used for our implementation and evaluation of BTS. Our

implementation of BTS in Fast Downward can be accessed in the following repository:

https://github.com/lalancz/downward.

As mentioned in the introduction chapter, a major issue we faced was that Fast Downward

stores states in memory in a not all too transparent way, as required due to its duplicate

detection mechanisms. Diminishing their memory saving benefits, when testing BTS and

IDA*, we were more interested in the conditions under which BTS enters the exponential

search phase and how it compares to IDA* in terms of the number of iterations required.

4.1 Unregistered States
In Fast Downward, states can be registered in the state registry to (not only) enable duplicate

detection and caching of heuristic values. States are ”packed”, meaning that they are stored

in the most memory-efficient form possible. They are also assigned a state ID, which is used

to identify them. Since Fast Downward’s design leads it to store many states in memory at

the same time, this is a very important memory saving step.

Furthermore, states can be opened, which changes their status to ”open” and registers some

other state as their parent. Using the parent information, Fast Downward can reconstruct

the path from the initial state to the goal state.

Our iterative-deepening approach causes trouble with all of these features. Reopening nodes

with each iteration creates cycles in the state space and makes the built in path tracing loop

infinitely. This is why instead of using the path tracing function, we chose to use a vector

to keep track of the operators used to reach the goal state.

We sidestep the issue by making use of functions that fetch unregistered states and not

https://github.com/lalancz/downward

Implementation 16

registering them at all. However, this alone is not enough.

4.2 Estimate Caching
Simply replacing all relevant functions with their unregistered counterparts will still pro-

duce an error. Heuristics by default make use of caching, which requires per-state infor-

mation to be stored. This is not possible with unregistered states. Therefore, the option

cache estimates has to be set to false for every heuristic used with our implementation

of BTS and IDA*.

4.3 Path Checking
As mentioned earlier, we also considered a simple optimization that avoids the expansion of

nodes that are already on the path to the current state. This optimization is not present in

the original BTS paper, but we decided to include it in our implementation to attempt to

mitigate stack overflows that were occurring.

The optimization is simple: before expanding a node, we check if it is already on the path

to the current state. If it is, we skip the expansion. For this we make use of a vector,

which stores the visited states. To check if a state is visited, we have to iterate over the

vector, which is a linear operation and is quite costly. We are unable to use a unique state

ID, because unregistered states do not have one and states cannot be hashed as they are

implemented in Fast Downward, which rules out the use of a hash set.

BTS with this path checking optimization does not constitute a graph search algorithm, since

it entails only partial duplicate checking. The set of visited states changes throughout each

iteration, meaning that the same state may be considered multiple times in each iteration,

despite the path checking. We only discard states that are already part of the currently

considered path. This does not mean that the same state cannot be considered again in the

same iteration, just as a part of a different path.

5
Evaluation

In this chapter we will discuss the performance of our implementation of BTS in comparison

to our implementation of IDA* and the built-in implementation of A* in Fast Downward.

For the evaluation, we used the sciCore Center for Scientific Computing at the University

of Basel. The specific sciCore partition we used for these results was infai 2, which uses

Core Intel Xeon Silver 4114 2.2 GHz Processors. We chose 30 minutes as the time limit and

3584 MB as the memory limit. To run these experiments we used Fast Downward Lab [11].

We ran two experiments, one with the landmark cut heuristic (hLM-CUT) [8] and one with

the blind heuristic. hLM-CUT is a well-known admissible heuristic that has been implemented

in Fast Downward. As its name implies, the blind heuristic simply returns a constant value

for each state with the exception of the goal state, for which it returns 0.

We tested BTS and our own implementation of IDA* in Fast Downward, both with and

without path checking. As in the BTS paper, we chose values c1 = 2 and c2 = 8 for BTS.

We present the results for hLM-CUT in table 5.1 and for the blind heuristic in table 5.2.

In the following sections, we will discuss the results in more detail.

Algorithm Name A* BTS BTS path checking IDA* IDA* path checking

Coverage 966 559 596 556 591
Exponential search — 13.82% 17.88% — —
Error out of time 858 1222 1235 1222 1241
Error out of memory 6 9 0 10 0
Expansions until last jump — 978.25 1629.09 767.11 1091.47
Iterations — 1757 1988 1821 2188
Peak memory sum (MB) 1189.7 1149.4 1149.4 1149.3 1149.3
Search time (s) 0.09 0.77 0.54 0.70 0.49

Table 5.1: Results for hLM-CUT heuristic, the expansions until last jump and search time
metrics are geometric means

Evaluation 18

Algorithm Name A* BTS BTS path checking IDA* IDA* path checking
Coverage 718 257 287 246 270
Exponential search — 19.21% 23.17% — —
Error out of time 0 1475 1545 1486 1562
Error out of memory 1112 21 0 15 0
Expansions until last
jump

— 171745.17 121924.19 127070.28 54197.04

Iterations — 2158 2398 3075 3316
Peak memory sum (MB) 7144.4 4730.7 4730.4 4730.1 4730.1
Search time (s) 0.02 1.11 0.53 1.43 0.62

Table 5.2: Results for the blind heuristic, the expansions until last jump and search time
metrics are geometric means

Domain BTS IDA*

mprime 21 20
nomystery-opt11-strips 11 12

organic-synthesis-split-opt18-strips 14 13
parcprinter-08-strips 14 13

parcprinter-opt11-strips 9 8

Table 5.3: Differences in coverage for the lmcut heuristic

Domain BTS IDA*

movie 3 2
organic-synthesis-split-opt18-strips 10 9

parcprinter-08-strips 5 3
parcprinter-opt11-strips 2 0

pegsol-08-strips 26 24
pegsol-opt11-strips 16 14

pipesworld-notankage 6 5

Table 5.4: Differences in coverage for the blind heuristic

5.1 Coverage
Coverage reflects the number of tasks that were able to be solved by each of the algorithms.

Tables 5.3 and 5.4 show the differences in coverage of BTS and IDA* for the hLM-CUT and

blind heuristics, respectively.

A* has the highest coverage for both heuristics, which could be explained by its emphasis

on speed, avoiding the time limit. Given the chosen time and memory limits, it seems that

A*’s sacrificing memory usage efficiency for speed is the best strategy. BTS has a higher

coverage than IDA*, however only by a very small margin. The path checking option does

not seem to have a significant impact on coverage.

Table 5.3 shows that there is one domain where IDA* has a higher coverage than BTS by one

task. This is an anomaly caused by improper checking whether we have found a solution.

Our implementation of BTS fails to report that it has found a solution, causing the task

to be marked as failed. In this one case, the conditions for finding a solution are not met,

even though an optimal solution has been found, and the search continues. With the search

continuing, the conditions required for our implementation to report that it has found a

Evaluation 19

Domain BTS Exponential Search % BTS Search Time (s) IDA* Search Time (s)

organic-synthesis-split-
opt18-strips

32.50 2.30 2.16

transport-opt08-strips 25.93 0.51 0.58
snake-opt18-strips 25.00 7.77 7.72
blocks 13.56 0.23 0.22

Table 5.5: Search times for high percentage of iterations that entered the exponential search
phase using hLM-CUT

solution are not met. Rerunning the task with a modified version of our implementation,

which checks if the solution path vector is empty before marking the task as failed and

reporting that the task has been solved if it is not, resulted in the exact same coverage (559)

as without this modification.

The BTS paper leaves some ambiguity as to under which conditions the algorithm should

report the task as solved or failed, meaning that we had to make some assumptions when

implementing BTS. Leaving the condition responsible for reporting the task as solved as

strict as it currently is leaves less risk of suboptimal solutions being reported as optimal and

potentially invalid plans being found.

5.2 Exponential Search
This metric shows the arithmetic mean of the percentage of iterations that entered the

exponential search phase.

Tables 5.5 and 5.6 show the differences in search time for selected domains with a high

percentage of iterations that entered the exponential search phase. They show that from

a domain level perspective, it is difficult to predict what effect the percentage of iterations

that enter the exponential search phase will have on the search time. A stark difference

in search times can be seen for the movie domain with the blind heuristic, where BTS has

a geometric mean search time of 355.66 seconds, while IDA* has a geometric mean search

time of 535.95 seconds. However, the difference for the other domains is not as pronounced.

For domains where IDA* slightly outperforms BTS despite a high number of its iterations

entering the exponential search phase, it may be that the number of nodes expanded by

IDA* and BTS grows at just enough of a similar rate to trigger the exponential search

phase in BTS, but the number of nodes expanded is so similar that the overhead required

for the exponential search phase is not worth it.

5.3 Errors
In this section we will look at the errors that occurred during the experiments.

Evaluation 20

Domain BTS Exponential Search % BTS Search Time (s) IDA* Search Time (s)

psr-small 19.58 0.10 0.12
movie 15.30 355.66 535.95
blocks 12.60 0.44 0.56
pegsol-08-strips 10.21 1.34 1.60

Table 5.6: Search times for high percentage of iterations that entered the exponential search
phase using the blind heuristic

5.3.1 Stack Overflows
The recursive approaches of BTS and IDA* are prone to stack overflows, which can arise

due to the depth-first nature of the search. Although they are less prone to stack overflows

owing to their searches being f-bounded, stack overflows may still occur. They recurve too

deeply into the search tree, causing the stack to overflow. This is especially prevalent in the

Sokoban domain, where the search reaches very deep. As BTS may set the f-bound higher

than whatever the optimal solution cost is, our implementation of BTS may end up in a

situation where it is reaches deep enough into the state space to cause a stack overflow.

Figure 5.1: Visualization of a Sokoban problem [13]

Sokoban is a game packaged as a planning problem in the IPC benchmark suite. The

objective of the game is to push boxes within a warehouse onto a target location. The game

is played on a grid, where a warehouse worker can move in four directions, also being able

to push boxes around.

The specific version of Sokoban used in the IPC benchmark suite assigns the cost of 0 to

the action of moving the warehouse worker, meaning that the warehouse worker can move

around the warehouse infinitely without incurring any cost. This causes the f-bound to not

be met, allowing the search to go on indefinitely, ultimately ending in a stack overflow.

We also encountered stack overflow problems in the elevator domain for the blind heuristic,

where passengers can enter and leave elevators with a cost of 0.

Evaluation 21

5.3.2 Out of Memory and Out of Time Errors
These metrics refer to the number of tasks that failed due to running out of memory or

time.

Other than segmentation faults, there are also out of memory and out of time errors to

consider. A* ends in a large number of out of memory errors with the blind heuristic, which

can be explained by it being forced to explore much more of the state space than with

hLM-CUT.

To be expected due to their iterative-deepening approach, BTS and IDA* fail due to running

out of time for about 50% more tasks than A*. This is due to the fact that they are slower

than A* and are more likely to reach the time limit. Keeping in mind that the likeliest cause

for a search algorithm to fail is either running out of time or memory, it is logical to see

that due to their high memory efficiency, BTS and IDA* would have a higher proportion of

their failures be due to running out of time.

5.4 Expansions until last jump
When examining the number of nodes expanded, we discard the number of nodes expanded

in the last iteration. We refer to the number of nodes expanded excluding the last iteration

as ”expansions until last jump”. We discard the number of nodes expanded in the last

iteration because the number of nodes expanded in the last iteration is often cut short by

the algorithm finding a solution and ceasing the search. Thus, the number of nodes expanded

in the last iteration is the work of the chosen tie-breaking mechanism rather than the search

algorithm. For this reason, the number of nodes expanded in the last iteration obscures the

behavior of the search algorithms that we are actually interested in. To get this number of

nodes expanded until last jump, we take the total number of nodes expanded and subtract

the number of nodes expanded in the last iteration.

While BTS guarantees better worst case performance than IDA*, it can incur more node

expansion than IDA*. This is because the f-bound can be set to be higher than the optimal

solution cost during the exponential search phase. This can lead to the search expanding

more nodes than IDA* would.

This metric also exists for A*, but it is calculated differently and thus we chose not to

include it in the table.

5.5 Iterations
Plots 5.2 and 5.3 show the comparison between the number of iterations performed by BTS

and IDA* for the hLM-CUT and blind heuristics, respectively. The metric in tables 5.1 and

5.2 show the total number of iterations performed by the search algorithms.

Note that multiple tasks may occupy the same points on the plot.

As the plots show, BTS never performs more iterations than IDA*. This is to be expected,

as BTS never expands less nodes than IDA* per iteration.

The points on the edges signify that only one of the algorithms found a solution for the

Evaluation 22

100 101 102

100

101

102

BTS (lower for 41 tasks)

ID
A
*
(l
ow

er
fo
r
1
ta
sk
)

Number of iterations for hLM-CUT

Figure 5.2: Number of iterations for BTS and IDA* using hLM-CUT

100 101 102

100

101

102

BTS (lower for 41 tasks)

ID
A
*
(l
ow

er
fo
r
0
ta
sk
s)

Number of iterations for the blind heuristic

Figure 5.3: Number of iterations for BTS and IDA* using the blind heuristic

Evaluation 23

given problem. Points on the top edge signify that only BTS found a solution, while points

on the right edge signify that only IDA* found a solution.

As can be seen in plot 5.2, there is 1 point on the right edge of the plot, signifying that

IDA* found a solution that BTS did not. This is the only point in the plot where this is

the case. It occurs for a task in the nomystery-opt11-strips domain, the reason for this is

explained in subsection 5.1.

5.6 Memory
The metric shown in the tables refers specifically to the sum of the peak memory usage for

all searches for a given algorithm. Each of the algorithms spikes in memory usage at the

beginning of the search, but then stabilizes.

The tasks solved by both BTS and IDA* within the time allotted are small enough that A*’s

memory usage is not a problem. This explains why the peak memory usage is so similar

for all the algorithms with hLM-CUT. However, with the blind heuristic, A* is not able use

heuristic values to guide its search, and thus the difference in peak memory usage is much

more pronounced. A* uses significantly more memory than the other algorithms with the

blind heuristic, as shown in table 5.2.

A supporting factor for this explanation is that A* runs out of memory often with the blind

heuristic, while the other algorithms instead run out of time. Minimal time is spent on

calculating the heuristic value with the blind heuristic, which means that A* is allowed to

expand a very high number of nodes, which in turn uses up a very high amount of memory.

5.7 Runtime
This metric shows the geometric mean of the search times for the algorithms in seconds.

The geometric mean gives a better representation of the average runtime, as the runtime

can vary significantly between tasks.

A* is the fastest considered algorithm by far, which can be expected by not using an iterative-

deepening approach. Compared to IDA*, BTS has a better worst case guarantee, but for

our tasks with hLM-CUT these guarantees do not outweigh the added overhead. However,

for the blind heuristic, BTS is noticeably faster than IDA*. This could be explained by the

blind heuristic causing IDA* to grow its f-bounds slowly, leading to IDA* having to perform

more iterations. This can be seen in plot 5.3.

Optimizing using the path checking is a significant factor in the runtime of BTS and IDA*,

more than halving the geometric mean of the search times when using the blind heuristic.

Even for hLM-CUT, the improvement in search times is significant. However, A* remains the

fastest algorithm by far.

6
Conclusion

The goal of this thesis was to implement BTS in Fast Downward and evaluate its perfor-

mance. We examined whether it truly does improve IDA*’s worst case runtime and found

that it actually never requires more iterations than IDA* to find a solution. We also found

that BTS is able to find solutions for some problems that IDA* cannot. However, we found

that BTS often requires more node expansions than IDA*, as also stated in the BTS paper.

Our experiments show that BTS is a promising algorithm providing a clear improvement

over IDA* in iterations required to solve a task. In implementing BTS, we made use of some

niche features of Fast Downward, as Fast Downward can be quite unfriendly to iterative-

deepening search algorithms. Along the way, we also encountered stack overflows caused

by the recursive nature of BTS and IDA*. We attempted to mitigate this by avoiding the

expanding of states that were already a part of the currently considered path, which helped

avoid stack overflows, but did not raise the coverage by a large margin.

In the future, it would be interesting to see how a graph search instance of IBEX, Budgeted

Graph Search, would perform and how it would fare against BTS. It would also be interesting

to see how our implementation of BTS could be further optimized within Fast Downward.

Bibliography

[1] Jon L. Bentley and Andrew C.-C Yao. An Almost Optimal Algorithm for Unbounded

Searching. Information Processing Letters, 5(3):82–87, 1976.

[2] Ethan Burns, Wheeler Ruml, and Minh Binh Do. Heuristic search when time matters.

Journal of Artificial Intelligence Research, 47:697–740, 2013.

[3] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-

putational Intelligence, 11:625–656, 1995.

[4] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[5] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An Introduc-

tion to the Planning Domain Definition Language, 2019.

[6] Malte Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[7] Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Arti-

ficial Intelligence, 173(5):503–535, 2009. Advances in Automated Plan Generation.

[8] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:

what’s the difference anyway? pages 162–169, 2009.

[9] Malte Helmert, Tor Lattimore, Levi H. S. Lelis, Laurent Orseau, and Nathan R. Sturte-

vant. Iterative Budgeted Exponential Search. In Proceedings of the Twenty-Eighth

International Joint Conference on Artificial Intelligence.

[10] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27(1):97–109, 1985.

[11] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab, 2017.

[12] Guni Sharon, Ariel Felner, and Nathan R. Sturtevant. Exponential deepening A* for

real-time agent-centered search. pages 871–877, 2014.

[13] Tom Silver and Rohan Chitnis. PDDLGym: Gym environments from PDDL problems.

In International Conference on Automated Planning and Scheduling (ICAPS) PRL

Workshop, 2020.

Bibliography 26

[14] Nathan R. Sturtevant and Malte Helmert. A Guide to Budgeted Tree Search. pages

75–81, 2020.

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Assessor: __

Name Student: __

Matriculation No.: __

I attest with my signature that I have written this work independently and without outside
help. I also attest that the information concerning the sources used in this work is true and
complete in every respect. All sources that have been quoted or paraphrased have been
marked accordingly.

Additionally, I affirm that any text passages written with the help of AI-supported
technology are marked as such, including a reference to the AI-supported program used.
This paper may be checked for plagiarism and use of AI-supported technology using the
appropriate software. I understand that unethical conduct may lead to a grade of 1 or “fail”
or expulsion from the study program.

Place, Date: _______________________ Student: ____________________________

Will this work, or parts of it, be published?

No

Yes. With my signature I confirm that I agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, I agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: ___

Place, Date: _______________________ Student: ____________________________

Place, Date: _______________________ Assessor: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis.

September 2023

Prof. Dr. Malte Helmert

Petr Sabovčik

2021-062-310

Basel, 22.07.2024

Basel, 22.07.2024



Implementation and Evaluation of Depth-First IBEX in Fast
Downward

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 State Space
	2.2 Black Box Interface
	2.3 Search Algorithms
	2.3.1 Depth-First Search
	2.3.2 Informed and Uninformed Search
	2.3.3 Heuristics
	2.3.4 g-value
	2.3.5 f-value
	2.3.6 A*
	2.3.7 Iterative Deepening A*

	2.4 Classical Planning
	2.4.1 PDDL
	2.4.2 Fast Downward

	3 Depth-First IBEX
	3.1 Exponential Search
	3.2 Global Variables
	3.3 Algorithm Overview
	3.4 Algorithm Properties

	4 Implementation
	4.1 Unregistered States
	4.2 Estimate Caching
	4.3 Path Checking

	5 Evaluation
	5.1 Coverage
	5.2 Exponential Search
	5.3 Errors
	5.3.1 Stack Overflows
	5.3.2 Out of Memory and Out of Time Errors

	5.4 Expansions until last jump
	5.5 Iterations
	5.6 Memory
	5.7 Runtime

	6 Conclusion
	Bibliography

