
Potential Heuristics for
Satisficing Planning

Master’s Thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence
http://ai.cs.unibas.ch

Examiner: Prof. Dr. Malte Helmert
Supervisor: Dr. Silvan Sievers

Alexander Rovner
alexander.rovner@unibas.ch

2015-050-289

February 4, 2020

Acknowledgments

I would like to thank Prof. Dr. Malte Helmert for the opportunity to write this thesis as
well as Dr. Silvan Sievers for supervising the project, providing crucial insight, and always
finding the time to give feedback. Furthermore, I want to thank my friends and family for
the mental support throughout the entirety of my studies. Special thanks go to Augusto
B. Corrêa and Simon Dold for all the spontaneous brainstorming sessions and discussions.

Abstract

Potential heuristics are a class of heuristics used in classical planning to guide a search
algorithm towards a goal state. Most of the existing research on potential heuristics is fo-
cused on finding heuristics that are admissible, such that they can be used by an algorithm
such as A* to arrive at an optimal solution. In this thesis, we focus on the computation
of potential heuristics for satisficing planning, where plan optimality is not required and
the objective is to find any solution. Specifically, our focus is on the computation of
potential heuristics that are descending and dead-end avoiding (DDA), since these prop-
erties guarantee favorable search behavior when used with greedy search algorithms such
as hillclimbing. We formally prove that the computation of DDA heuristics is a PSPACE-
complete problem and propose several approximation algorithms. Our evaluation shows
that the resulting heuristics are competitive with established approaches such as Pattern
Databases in terms of heuristic quality but suffer from several performance bottlenecks.

Contents

1 Introduction 5

2 Background 7
2.1 The SAS+ Planning Formalism . 7
2.2 Heuristic Search . 8
2.3 Potential Heuristics . 9

3 Related Work 10
3.1 One-Dimensional Potential Heuristics . 10
3.2 Higher-Dimensional Potential Heuristics . 12
3.3 Heuristics in Satisficing Planning . 12
3.4 Generalized Potential Heuristics . 13
3.5 Perfect Potential Heuristics . 14
3.6 Goal Distance Rank Correlation . 15
3.7 GLEM . 15

4 Theoretical Results 16
4.1 DDA Heuristics . 16
4.2 DER Heuristics . 18

5 Computing Potential Heuristics 20
5.1 Generating Features . 20
5.2 Exact Potential DDA Heuristics . 21
5.3 Approximating DDA Heuristics using a Sample 22
5.4 Learning Potential Heuristics from Abstractions 24

6 Results 26
6.1 Exact DDA Heuristics . 26
6.2 Sample-Based Approximations . 28
6.3 Abstract DDA Heuristics . 31

7 Future Work 35

8 Conclusion 36

A Detailed Coverage Results 40

4

Chapter 1

Introduction

The problem of coordinating large-scale operations with many variable components is
often encountered in the real world. A logistics company, for example, may be interested
in transporting cargo between and inside different cities. Solving such a task usually entails
searching for a sequence of actions that will lead to some desired outcome. In our example,
this desired outcome could be one where all packages have been delivered to their respective
destinations. The sequence of actions that leads to this outcome is called a plan.

In the real world, said actions may be associated with certain costs. Thus, when looking
for a plan, one is typically interested in finding one with minimal total cost. Finding such
optimal solutions is the main objective in the field of of cost-optimal planning

The problem of solving such tasks is computationally challenging because of the large
number of courses of action that can be taken in an attempt to achieve the given goal.
Most sequences of actions do not constitute a plan and many that do are suboptimal. In
the general case, planning has been shown to be a PSPACE-complete problem (Bylander,
1994). Usually, the difficulty of a planning task grows with its size. For instance, in our
logistics example, the problem of finding a plan becomes more challenging as more and
more packages are added. Therefore, in many situations, it is desirable to trade off the
guaranteed plan optimality against shorter solution times and lower memory costs. The
variation of planning that makes this trade-off is known as satisficing planning. Here, the
objective is to find any plan that leads from the initial situation to a goal state. It should be
mentioned that, although this trade-off indeed leads to shorter solution times, the overall
computational complexity of satisficing planning is the same as in the optimal case.

The most common approach to solving tasks in both, cost-optimal as well as satisficing
planning, is heuristic search. Here, the planning task induces a graph, also known as a
transition system, where each node represents a specific world state. In the aforementioned
logistics example, a world state could be described by the present locations of all packages
and vehicles. If there exists an action that can transform one world state into another then
the said graph contains an edge between the two nodes.

A search algorithm is then used to find a path from the initial node to one of the
nodes corresponding to a goal world state. Said search algorithms are guided by a heuristic
function that estimates the optimal cost of reaching the goal (or, alternatively, the number
of transitions needed to reach a goal state). An important result concerning the search
behavior of the A* search algorithm (Hart et al., 1968) shows that a heuristic that never
overestimates the optimal plan cost is guaranteed to guide A* to a cost-optimal solution.
Consequently, much research in the field of cost-optimal planning is focused on developing

5

precise admissible heuristics, that is, heuristics that satisfy the aforementioned property.
In satisficing planning, on the other hand, there exists no well-established understand-

ing of what constitutes a good heuristic function. Several possible ideas will be discussed
in Sections 3.3 and 3.6.

The focus of this thesis are potential heuristics for satisficing planning. Potential heuris-
tics are linear combinations of features of a world state. In principle, these functions can
be used in both, cost-optimal and satisficing planning, assuming that appropriate fea-
ture weights are chosen. For cost-optimal planning, this usually means choosing weights
such that admissibility is preserved. For the satisficing planning case, we will focus on
computing heuristics that are descending and dead-end avoiding (DDA).

In Chapter 3, we first give an overview of existing research on potential heuristics and
related approaches. In Chapter 4, we study the general theoretical complexity of comput-
ing DDA heuristics as well as an alternative variation thereof. Our analysis shows that
the computation of such heuristics is a PSPACE-complete problem. Following up on this
result, we introduce various algorithms for computing potential heuristics for satisficing
planning, discuss their strengths and weaknesses, and compare their performance to that
of established heuristics in Chapter 6.

6

Chapter 2

Background

In this chapter, we provide context for the remainder of this thesis by introducing planning
tasks and potential heuristics.

2.1 The SAS+ Planning Formalism

In the field of classical planning, we consider tasks where the world is fully observable and
all actions are deterministic, that is, the result of taking any action in any specific world
state is known in advance. Specifically, we focus on tasks given in the SAS+ planning
formalism (Bäckström and Nebel, 1995).

A SAS+ task is fully defined by the 4-tuple Π = 〈V, I,O, γ〉. Here, V is a set of all state
variables. We will refer to state variables as variables whenever doing so will not cause any
ambiguity. Each variable v ∈ V is associated with a finite domain dom(v). A variable-value
pair 〈v, d〉 with v ∈ V and d ∈ dom(v) is called a fact. A set of facts is called a partial
assignment. A partial assignment is called valid if no variable v ∈ V is mentioned in more
than one fact within said assignment. Unless stated otherwise, all partial assignments are
assumed to be valid. We refer to the set of all variables mentioned in some assignment s
as vars(s). The value assigned to variable v by s is denoted by s[v]. A partial assignment
s that mentions all variables (i.e. vars(s) = V) and thus fully describes some situation in
the world, is called a state. The initial state of the world is given by the initial assignment
I. We say that two partial assignments s and t agree if and only if the variables that they
have in common are assigned to the same values, i.e. s[v] = t[v] for all v ∈ vars(s)∩vars(t).
The partial assignment γ defines the objective of the planning task by specifying values
that must be achieved for certain variables. States that agree with this assignment are
called goal states.

Set O contains all operators of the planning task. Operators o ∈ O are deterministic
actions that have a precondition pre(o) and an effect eff(o), where both are partial as-
signments. An operator o is applicable in a state s if and only if pre(o) and s agree. We
use app(s) to refer to the set of all operators that are applicable in state s. Applying o
in s leads to a successor state sJoK with sJoK[v] = eff(o)[v] for all v ∈ vars(eff(o)) and
sJoK[v] = s[v] otherwise. succ(s) denotes the set of all successors of s. Informally, this
means that the assignment s is changed as specified by the effect of o, while variables that
are not mentioned in eff(o) retain the values they had before o was executed. Furthermore,
each o ∈ O is associated with a certain cost cost(o) ∈ R+

0 .
A task is said to be in transition normal form (TNF) (Pommerening and Helmert,

7

2015) if vars(eff(o)) = vars(pre(o)) for all operators o ∈ O. We assume that all tasks are
given in TNF. We can do so without loss of generality because there exists a polynomial
time algorithm for converting SAS+ tasks to TNF. For tasks in TNF, we use vars(o) as a
shorthand notation to refer to variables that are accessed by operator o.

A path π is a sequence of operators. We use the shorthand notation sJπK to denote the
result of sequentially applying all o ∈ π beginning in state s. State s is said to be solvable
if there exists a path π such that sJπK is a goal state. Furthermore, s is reachable if there
exists a path π with IJπK = s. States that are both, reachable and solvable are said to be
alive. The cost cost(π) of a path is the sum of costs of its elements. Path π is called a plan
if IJπK agrees with γ, i.e. the path leads from the initial state to a goal state.

Given a SAS+ planning task, the objective of a planner is to find a plan. In this
thesis, we differentiate between two areas of classical planning: satisficing and cost-optimal
planning. In satisficing planning, a task is considered solved once any plan has been found.
In cost-optimal planning, on the other hand, the planner is expected to return a plan π
such that there exists no other plan τ with cost(τ) < cost(π), i.e. the returned plan must
have minimal costs among all possible plans.

Bylander (1994) showed that planning is a PSPACE-complete problem. Specifically, he
proved that the PlanEx-decision problem, that is, the problem of deciding whether there
exists a solution for the given planning task, is PSPACE-complete in the general case,
but may become simpler given additional assumptions about the structure of the task.
PlanEx is the decision problem underlying satisficing planning. An analogous result was
shown for the bounded-cost plan existence decision problem (BcPlanEx), where the
question is whether or not there exists a plan whose cost does not exceed the given cost
bound. This is the decision problem corresponding to cost-optimal planning.

2.2 Heuristic Search

Heuristic search is the most common approach to planning. Here, a SAS+ task induces a
transition system or state space that is subsequently searched for a path from the initial
state to some goal state. Formally the transition system of task Π = 〈V, I,O, γ〉 is given
by the 6-tuple S(Π) = 〈S,L, c, T, s0, S?〉 where

• S is the finite set of all partial assignments s with vars(s) = V . In other words, S
is the set that holds all states of the planning task. We use the shorthand notation
|S(Π)| to refer to |S|.

• L is a finite set of labels. Each label lo ∈ L corresponds to an operator o ∈ O. Labels
associate transitions between two states with operators that induce said transitions.

• c : L → R+
0 is a label cost function. This function corresponds to the cost function

over the setO of operators, that is, c(lo) = cost(o) for all lo ∈ L and the corresponding
o ∈ O.

• T ⊆ S ×L× S is the set of all transitions in the state space. A transition is a triple
〈s, lo, s′〉 where sJoK = s′.

• s0 ∈ S is the initial state that is equivalent to the initial assignment I of Π, and

• S? is the set of all goal states.

8

Algorithms that are usually employed in planning are guided by one or multiple heuris-
tic functions. A heuristic is a function h : S → R0 ∪ {∞} that estimates the distance of
the given state to a goal state. The perfect heuristic h∗ returns the real distance of the
given state to the nearest goal state (here, path-cost and distance are synonymous).

The properties of a heuristic function have direct influence on the behavior of the
search algorithm. For example, heuristics whose estimates never exceed those of h∗ for any
given state are called admissible. Admissibility is a desirable property in optimal planning
because A* with an admissible heuristic is guaranteed to always find the cost-optimal path
to a goal (Hart et al., 1968). The same result also holds for iterative-deepening A* (Korf,
1985).

In the satisficing planning case, there is no established understanding of what con-
stitutes a good heuristic. In this thesis, we focus on heuristics that are descending and
dead-end avoiding (DDA) (Seipp et al., 2016). A heuristic h is descending if every alive
non-goal state has an alive improving successor. That is, for all non-goal alive s, there exists
a t ∈ succ(s) with h(t) < h(s). Furthermore, h is called dead-end avoiding if h(t) ≥ h(s)
for all non-alive t ∈ succ(s).

Intuitively, these two properties imply that the heuristic always makes a recommenda-
tion concerning the next state to be visited and it is guaranteed that a search algorithm
that follows these recommendations will never transition from a solvable state to an un-
solvable one. Thus, a greedy search algorithm equipped with a DDA heuristic is guaranteed
to reach a goal state without backtracking as long as the planning task is solvable. Addi-
tionally, Seipp et al. (2016) show that, given a DDA heuristic h, a solution will be found
after at most L = h(s0)−mins∈S h(s) search node expansions.

2.3 Potential Heuristics

The focus of this thesis is on potential heuristics (Pommerening et al., 2015). Here, a
potential heuristic is a weighted sum of indicator functions, where each indicator function
tests whether a specific conjunctive feature is present in the given state. Seipp et al. (2016)
formally define the potential heuristic hpot as

hpot(s) =
∑
F∈F

w(F)[F ⊆ s] (2.1)

Here, [·] denotes the indicator function (Knuth, 1992) and w(F) is the numerical weight
(the potential) of feature F , which is a set of facts. F denotes the set of all features.

The cardinality |F | of a feature is referred to as its dimension. Features with a dimen-
sion of 1 are called atomic features. Seipp et al. (2016) define the dimension of a potential
heuristic as the highest dimension of the features considered by the heuristic. The notion
of dimensionality is directly related to evaluation time: a potential heuristic of dimension
d for the planning task 〈V, I,O, γ〉 can be evaluated in O(|V |d) time. A review of existing
research on potential heuristics is given in the next chapter.

9

Chapter 3

Related Work

Since their introduction by Pommerening et al. (2015), potential heuristics have been
successfully used in classical planning. Typically, one of the crucial first steps towards
successfully employing a potential heuristic is the computation of feature weights w(F)
for all F ∈ F . The other important problem is that of automatically finding a good set
of features F . Much of the existing research on potential heuristics focuses on the former
task. In this chapter, we provide an overview of these approaches for both, optimal as well
as satisficing planning.

3.1 One-Dimensional Potential Heuristics

Potential heuristics provide a general framework that can be used to represent a num-
ber of different well-known heuristics. For example, a simple goal-count heuristic (Fikes
and Nilsson, 1971) can be represented using a set of atomic features F := {〈v, d〉 | v ∈
vars(γ), d 6= γ[v]} by setting w(F) := 1 for all F ∈ F .

Ferenczi (2016) uses potential heuristics to approximate Pattern Database (PDB)
heuristics (Culberson and Schaeffer, 1998). To this end, he formulates the problem of
finding potentials for the chosen set F of atomic features as a linear regression problem. A
problem of this approach is that the estimates obtained in this way, unlike PDBs, provide
no admissibility guarantees, which in turn means that A* is not guaranteed to find an
optimal plan given such a heuristic.

Instead of basing potential computations on some prototype heuristic, Pommerening
et al. (2015) opt to directly find potentials for atomic features such that the resulting
heuristic is always admissible. To this end, they demand that the heuristic be always
goal-aware and consistent.

A heuristic h is goal-aware if h(s?) = 0 for all goal states s?. It is consistent if h(s) ≤
cost(o) + h(sJoK) for every state and the corresponding applicable operators. Together,
consistency and goal-awareness imply admissibility (Russell and Norvig, 1995).

The problem of finding potentials such that the resulting potential heuristic has the
aforementioned two properties is then formulated as a linear programming (LP) problem.
The constraints follow from the two desired properties. We write the constraint for goal-
awareness as

∑
F∈F w(F)[F ⊆ s?] ≤ 0. The constraint for consistency is obtained by

rewriting the definition of consistency: hpot(s) − hpot(sJoK) ≤ cost(o) for all s and all
o ∈ app(s). Pommerening et al. (2015, 2017) observe that, given a fixed operator o, the set
of atomic features F can be divided into irrelevant features F irr whose variables are not

10

changed by o (i.e. vars(F) 6⊆ vars(o) for all F ∈ F irr) and context-independent features
F ind with vars(F) ⊆ vars(o) for all F ∈ F ind. For atomic features, |vars(F)| = 1 and thus
these are the only possible cases.

Given this observation, they conclude that the consistency constraint for atomic fea-
tures depends only on o ∈ O, but not on states s. This is due to the fact that the con-
tributions of irrelevant features to hpot(s) and hpot(sJoK) cancel each other out, while the
contributions of context-independent features depend solely on pre(o) and eff(o). Thus,
the final LP constraints are:

cost(o) ≥
∑

v∈vars(o)

(
w({〈v, pre(o)[v]〉})− w({〈v, eff(o)[v]〉})

)
(3.1)

0 ≥
∑
v∈V

w({〈v, s?[v]〉}) (3.2)

This formulation does not yet specify the objective opt that is to be optimized. To address
this, Pommerening et al. (2015) introduce the objective function optsI that represents the
heuristic estimate of the initial state:

optsI =
∑
v∈V

w({〈v, sI [v]〉}) (3.3)

Furthermore, they show that the potential heuristic hpot
optsI

obtained by solving the resulting

linear program has the same heuristic estimate for the initial state as the State Equation
heuristic hSEQ (Bonet, 2013).

A weakness of the above LP formulation is that it is only concerned with computing
the highest admissible heuristic estimate for the initial state. For this reason, a poten-
tial heuristic computed with this objective will likely provide less informative estimates
for other encountered states. To alleviate this issue, Seipp et al. (2015) propose several
alternative objective functions.

The first objective they introduce (optS) aims to maximize the average heuristic value
across the entire set S of all states of the planning task. The challenge, here, is that
dead-end states (i.e. states s with h∗(s) = ∞) can cause the linear program to become
unbounded. To prevent this, they introduce an upper bound M on all potentials by adding
constraints of the form pot(〈v, d〉) ≤ M for all 〈v, d〉 ∈ F , thus ensuring that the LP
remains bounded.

Another challenge is that heuristic values of unreachable parts of the state space (i.e.
states that will never be generated by A* search) influence the solution. To avoid this,
Seipp et al. (2015) propose optimizing the average heuristic of reachable states. Since there
is no known efficient way of extracting only the reachable portion of the transition system,
their proposed objective function optŜ aims to maximize the average over some set Ŝ of
sample states that are known to be reachable. Lastly, they also introduce an objective
function for minimizing the search effort using a formula by Korf et al. (2001).

Experimental evaluation shows that focusing only on the reachable parts of the state
space leads to more tasks being solved, when compared to optimizing for other objectives.
Even better performance, however, is achieved by using the maximum of multiple potential
heuristics as the final estimate.

11

3.2 Higher-Dimensional Potential Heuristics

The analysis of several planning domains by Seipp et al. (2016) (see Section 3.3) shows
that potential heuristics with only atomic features often fail to account for interactions
between different facts of the planning task. Thus, higher-dimensional features may be
necessary in order to obtain a more informative potential heuristic.

Pommerening et al. (2017) generalize the LP constraints introduced in the previous
section to also account for features that are conjunctions of two facts. While, as in the
one-dimensional case, the set of features F can be partitioned into features F irr that
are irrelevant for some fixed o ∈ O as well as context-independent features F ind, the
higher-dimensional LP formulation must also account for a third type of features, namely
context-dependent features.

A conjunctive 2-dimensional feature F is considered context-dependent (formally, F ∈
Fctx) if it consists of two facts fo and fō, where vars(fo) ∈ vars(o) and vars(fō) 6∈ vars(o).
Intuitively, this means that F consists of a context-independent feature fo and an irrelevant
feature fō. Due to this irrelevant feature, it is not possible to tell whether F is present
in s or not without evaluating [fō ∈ s]. Thus consistency constraints are no longer state-
independent.

Pommerening et al. (2017) show that, in the case of 2-dimensional heuristics, accounting
for context-dependent features in the consistency condition leads to an LP that can still
be represented by a compact set of linear constraints. Specifically, they show that the total
number of constraints in such a problem is O(|O||V |d) where d is the upper bound on the
variable domain sizes.

Furthermore, they prove that a compact representation is not possible for conjunc-
tive features of dimension 3 or more and that testing whether a corresponding potential
heuristic is consistent is a coNP-complete problem. However, they also introduce a fixed-
parameter tractable algorithm with which it is still feasible to compute the necessary
constraints in certain special cases.

3.3 Heuristics in Satisficing Planning

In satisficing planning, plan optimality is not a requirement and the goal is to find any
valid solution for the planning task. Therefore, demanding that heuristics be admissible
offers no advantages and only unnecessarily restricts heuristic quality. For this reason, the
LP model introduced earlier is is not appropriate for satisficing planning.

Instead of pursuing admissibility, Seipp et al. (2016) introduce the concept of DDA
heuristics (see Section 2.2) and study the conditions under which there can exist a DDA
potential heuristic. Specifically, they introduce correlation complexity as a measure of how
complex a potential heuristic must be in order to satisfy these favorable properties in
the given planning task. Correlation complexity is defined as the minimum dimension d
of all DDA potential heuristics for planning task Π. This concept is further extended to
characterize entire planning domains: the correlation complexity of a planning domain
D is the maximal correlation complexity among all planning tasks Π ∈ D. Unlike the
correlation complexity of a single task, which is bounded by the number n of variables in
said task, the complexity of a domain can be infinite.

Given a polynomial p and a task with encoding size n from a domain with a finite
correlation complexity, Seipp et al. (2016) show that the time needed to find a plan is
bounded by a polynomial in n under the following two conditions: a descending and dead-
end avoiding potential heuristic can be computed in p(n) time and the corresponding

12

integer-valued feature weights are polynomially bounded: |w(F)| ≤ p(n).
Although they introduce said tractability result and shows how correlation complexity

can be used to prove the existence of descending and dead-end avoiding potential heuristics
of a specific complexity, the question of how to automatically find such heuristics remains
open. This is also one of the central questions of this thesis.

3.4 Generalized Potential Heuristics

A possible approach to the task of automatically finding good potential heuristics for
satisficing planning was developed by Francès et al. (2019). Ideas from their work form
the basis for all algorithms introduced in this thesis. They focus on finding generalized
potential heuristics, that is, heuristics that work for any instance of a planning domain.
To compute such a heuristic, they use small instances from the chosen domain to learn
weights for some candidate set of features F .

Let S(Π) = 〈S,L, c, T, s0, S?〉 be the transition system of the given task Π. The set SA

is defined as the subset of S that contains only alive states. Furthermore, TD ⊂ T is the
subset of transitions that lead to an unsolvable state. Given a complexity measure1 K(F)
defined for all features F ∈ F , they formulate the problem of finding a descending and
dead-end avoiding heuristic as a mixed-integer programming (MIP) problem:

min
∑
F∈F

[w(F) 6= 0]K(F) (3.4)

s.t.
∨

s′∈succ(s)

h(s′) + 1 ≤ h(s) for s ∈ SA (3.5)

h(s′) ≥ h(s) for 〈s, l, s′〉 ∈ TD (3.6)

Intuitively, this MIP aims to minimize the total complexity of all features F ∈ F
with non-zero potentials, that is, all features that contribute to the heuristic estimate.
Constraint (3.5) demands that the heuristic be descending, while (3.6) constraints the
MIP to only admit dead-end avoiding heuristics as solutions.

The disjunction in (3.5) is encoded in modern MIP solvers such as IBM CPLEX using
indicator constraints. That is, a disjunction

∨n
i ϕi over n linear constraints ϕi is replaced

with a set of constraints li → ϕi, where li is a binary indicator variable. Constraint ϕi

is only active if the corresponding indicator variable equals to 1. The disjunction is then
achieved by adding the linear constraint

∑n
i li ≥ 1, which demands that at least one

constraint ϕi be satisfied.
The obvious reasons, why using this MIP for anything but the smallest task instances

is difficult, are the need to compute the sets SA and TD that induce all constraints of the
model as well as the inherent NP-hardness of mixed-integer programming.

Instead of computing MIP constraints for the entire set S right away, Francès et al.
(2019) opt to generate them incrementally within a constraint generation loop. In this
loop, an initial subset S0 of S is randomly selected. The solution of the corresponding
MIP is then tested for descendingness and dead-end avoidance on the remaining states in
S. If there are states where these properties do not hold, then set S0 is extended with χ
such states and the MIP is solved again, but this time with constraints induced by this
updated set.

1See Francès et al. (2019) for a detailed description of this measure.

13

In the worst case, this approach will converge to the initial case, where constraints are
computed from the entire S. However, Francès et al. (2019) observe that, in many cases,
a generalized heuristic can be found before that. If the MIP turns out to be unsolvable,
then a generalized heuristic with the desired properties does not exist for the given feature
set F . In this case, one can start over with more complex features.

3.5 Perfect Potential Heuristics

Analogously to the complexity analysis for satisficing planning by Seipp et al. (2016),
Corrêa and Pommerening (2019) perform an empirical study of the complexity that a
potential heuristic must have in order to accurately represent the perfect heuristic h∗.

Potential heuristics, as introduced by Pommerening et al. (2015), are too restrictive to
represent h∗ for all tasks, because they are finite by definition, and thus cannot cover cases
where h∗(s) =∞. Therefore, Corrêa and Pommerening (2019) define the perfect potential
heuristic as the combination of two potential heuristics.

hpot
w1,w2

(s) =

{
∞ if hpot

w2
(s) > 0

hpot
w1

(s) otherwise.
(3.7)

where hpot
w1

(s) = h∗(s) for all solvable states and hpot
w2

(s) > 0 if and only if s is unsolv-
able. Building on the idea of correlation complexity, they introduce optimal correlation
complexity as the minimal dimension of a perfect potential heuristic for task Π.

In their study, they compute the optimal correlation complexities of small tasks by first
computing the corresponding perfect heuristics. Afterwards they use an iterative approach
that generates a set Fn of all features up to dimension n for 1 ≤ n ≤ |V |. For each generated
set of features, they solve an LP with constraints of the form

∑
F∈Fn

w(f)[F ⊆ s] = h∗(s)
for all solvable s ∈ S, thus ensuring that the potential heuristic is indeed perfect on the
solvable portion of the state space. An analogous approach is used to compute the heuristic
for detecting unsolvable states. The first value of n for which the LP has a feasible solution
is the optimal correlation complexity of the planning task.

Their experiments show a number of interesting results. First of all, even domains such
as gripper and visitall, that are considered easy2 have high lower bounds on optimal
correlation complexity. The authors observe that this problem is partially caused by states
that are solvable, yet unreachable, because they violate mutexes. For such states, higher
dimensional features may be needed to capture their heuristics. By excluding such states
from consideration and focusing only on the reachable part of the state space they could
reduce the optimal correlation complexity of a number of tasks as well as greatly decrease
the total number of features needed to replicate the perfect heuristic.

In addition to the aforementioned LP approach, Corrêa and Pommerening (2019) intro-
duce an iterative algorithm that minimizes the total absolute error E(h) =

∑
s∈S |h∗(s)−

h(s)| between the perfect heuristic and the current potential heuristic h by extending the
latter with new features and greedily selecting weights for them. Experimental evaluation
shows that the highest decrease in the total absolute error comes from the addition of
a small number of high-dimensional features. This has great practical implications, as it
means that users with domain knowledge can construct informative heuristics by manually
selecting a small number of said high-dimensional features and then computing weights
for them using the fixed-parameter tractable algorithm from Pommerening et al. (2017).

2Seipp et al. (2016) prove that these domains have a correlation complexity of 2.

14

3.6 Goal Distance Rank Correlation

While Seipp et al. (2016) showed that descending and dead-end avoiding heuristics are
potentially beneficial for greedy search, Wilt and Ruml (2015) discovered a quantitative
metric of heuristic quality for satisficing planning. They observed that, in satisficing plan-
ning, the exact values returned by the heuristic are of little importance. What is truly
important is the ordering of states induced by said heuristic values. Generally, a heuristic
can return an arbitrary heuristic value for state s as long as any state s′ that is closer
to the goal has a lower heuristic value. In essence, they propose measuring the quality
of a heuristic in terms of its ability to replicate the state-ranking induced by the perfect
heuristic.

Specifically, Wilt and Ruml (2015) propose using Kendall’s τ coefficient (Kendall, 1948)
to quantify the degree to which the given heuristic replicates the ranking induced by the
perfect heuristic. They call this measure the Goal Distance Rank Correlation (GDRC).

A GDRC value of 1 implies that the state ranking induced by the heuristic in question
exactly matches that of the perfect heuristic for task Π. In the opposite case, where the
ranking of any two states differs from that of the perfect heuristic, the GDRC value is −1.
Because the perfect heuristic is DDA (assuming that there are no zero-cost operators), a
heuristic with a GDRC score of 1 is also DDA. In fact, such a heuristic is DDA on the
entire family of tasks obtained by replacing the initial state of Π with any other state of
its state space.

On the other hand, however, a heuristic that is DDA does not necessarily have a
positive GDRC value. The DDA set of properties pertains only to the reachable portion
of the transition system. A heuristic that always ranks correctly on this reachable portion
is DDA, even though it might rank incorrectly in the unreachable parts. In other words,
a GDRC score of 1 is a sufficient, but not a necessary condition for a DDA heuristic.

3.7 GLEM

Outside of the field of classical planning, Buro (1998) developed the Generalized Linear
Evaluation Model (GLEM), a framework for representing position evaluation functions for
games as linear combinations of features. Formula 3.8 illustrates this framework in our
notation.

e(s) = g(
∑
F∈F

w(F)[F ⊆ s]) (3.8)

It is easy to see that a potential heuristic can be represented in GLEM by using the identity
function g(x) = x. In his work, Buro (1998) addresses several practical considerations
concerning the computation of such evaluation functions using machine learning. Most
notably he proposes using a sample of states not only for learning feature weights, but
also for the process of feature selection itself. As will be discussed in Section 5.1, our
implementation of the feature generation process builds on this idea.

15

Chapter 4

Theoretical Results

A well known result in planning is one by Bylander (1994) that shows that classical
planning is a PSPACE-complete problem. A more recent result by Seipp et al. (2016)
(see Section 3.3) proves that given a DDA heuristic a satisficing solution will be found
after a polynomial number of state expansions. The necessary condition for this is, that
h(I)−mins∈S h(s) is bounded by p(n), where p is some polynomial and n is the encoding
size of the planning task. Clearly, this result makes DDA heuristics attractive for satisficing
planning. However, it also begs the question of how hard it is to obtain such heuristics.
Therefore, in this chapter, we analyse the complexity of computing a DDA heuristic and
also consider heuristics with an alternative set of properties. Our analysis shows that the
problem of ensuring these properties is generally not tractable.

4.1 DDA Heuristics

As already informally discussed in Section 2.2, we consider a heuristic to be DDA if it
satisfies the following two properties:

∀s ∈ (SA \ S?) : (∃s′ ∈ succ(s) : h(s′) < h(s)) (4.1)

∀s ∈ SA : (∀s′ ∈ (succ(s) \ SA) : h(s′) ≥ h(s)) (4.2)

where SA is the set of all alive states of the given task Π. The first formula demands
that the heuristic be descending, that is, each alive state must have a successor with a
better heuristic value. The second formula demands that this improving successor is never
an unsolvable state. If a task is unsolvable then SA = ∅ as no state is both reachable
and solvable. Here, the above formulas are true for all h and we say that the heuristic is
trivially DDA.

Furthermore, we formally define the IsDDA decision problem as follows:

Given: task Π = 〈V, I,O, γ〉 and a heuristic h

Question: is h descending and dead-end avoiding (DDA) in Π?

Theorem 1. The IsDDA decision problem is PSPACE-complete.

Proof. Since PSPACE=coPSPACE, this result follows from the proof that the complement
of IsDDA (i.e. the problem of deciding whether a heuristic is not DDA) is PSPACE-
complete (see Theorems 2 and 3).

16

Theorem 2. The NotDDA decision problem (complement of IsDDA) is PSPACE-hard.

Proof. We show PSPACE-hardness by reduction from the plan existence problem PlanEx
(Bylander, 1994): Given a task Π for which we want to decide PlanEx, construct a

heuristic function ĥ that cannot be DDA in solvable tasks (e.g. ĥ(s) = 0 ∀s ∈ S). If

Π 6∈ PlanEx then this means that Π has no alive states, which implies that ĥ is trivially
DDA and therefore 〈Π, ĥ〉 6∈ NotDDA. Inversely, if Π ∈ PlanEx, then there exist alive

states and ĥ will be inevitably found to not satisfy conditions 4.1 or 4.2, which means that
〈Π, ĥ〉 ∈ NotDDA.

The proof of Theorem 2 does not address the edge case where the planning task is
initially solved, that is, the initial state is also a goal state. We can ignore such cases without
loss of generality because such trivial tasks can be efficiently detected and transformed
into equivalent non-trivial tasks.

Theorem 3. The NotDDA decision problem is PSPACE-complete.

Proof. With hardness proven in Theorem 2, only PSPACE membership remains to be
shown. A possible approach to deciding NotDDA in polynomial space is illustrated in
Algorithm 1. Here, the algorithm systematically generates all states in the state space.
Whenever a new state is generated, the previous state is discarded, thus ensuring that
the memory consumption remains polynomial in V even though the time complexity is
exponential. For each generated alive state, the algorithm iterates over all of its successors
and verifies that the given heuristic satisfies the DDA properties.

Algorithm 1: Deciding NotDDA in polynomial space.

Given : task Π = 〈V, I,O, γ〉 and heuristic h
Question: is h not DDA?

1 for i← 1 .. |S(Π)| do
2 if si is not alive then
3 continue;
4 end
5 has improving succ ← F;
6 for o ∈ app(si) do
7 if [siJoK is alive] ∧ [h(siJoK) < h(si)] then
8 has improving succ ← T;
9 end

10 if [siJoK is not alive] ∧ [h(siJoK) < h(si)] then
11 accept; // h is not dead-end avoiding ⇒ not DDA.

12 end

13 end
14 if ¬has improving succ then
15 accept; // h is not descending ⇒ also not DDA.

16 end

17 end
18 fail; // All DDA conditions satisfied. h is DDA.

17

Thus, Theorem 1 shows that the problem of finding a DDA heuristic for the given
planning task is as hard as the problem of finding a plan for said task. To identify parts of
the DDA problem that are most likely responsible for this hardness result we reformulate
IsDDA as a Quantified Boolean Formula (QBF):

∀s

(
[s is goal] ∨

(
[s is alive]→

(
d(s) ∧ da(s)

)))
(4.3)

where [·] is a predicate, s is a short-hand notation for all state variables in V (e.g. ∀s is
equivalent to ∀v1v2... if V = {v1, v2, ...}), and d(s) (resp. da(s)) encodes descendingness
(resp. dead-end avoidance):

d(s) = ∃s′
(

[s′ ∈ succ(s)] ∧ [h(s′) < h(s)]
)

(4.4)

da(s) = ¬∃s′
(

[s′ ∈ succ(s)] ∧ ¬[s′ is solvable] ∧ [h(s′) < h(s)]
)

(4.5)

A closer look at d and da shows that the predicates [s is alive] and ¬[s′ is solvable] are
PSPACE-hard to evaluate. The latter is obviously the complement of the PlanEx decision
problem, while the former has a simple reduction from PlanEx: note that 〈V, I,O, γ〉 ∈
PlanEx if and only if I is alive. Furthermore, as established earlier, 〈V, I,O, γ〉 6∈ PlanEx
means that there are no alive states and thus I cannot be alive. Whether a state s of some
task 〈V, I,O, γ〉 is alive or not can be decided in polynomial space by deciding PlanEx
for tasks 〈V, I,O, s〉 and 〈V, s,O, γ〉.

4.2 DER Heuristics

One of the advantages of representing decision problems as QBFs is the framework they
provide for reasoning about the complexity of the underlying decision problem. Specifically,
it has been shown (Stockmeyer, 1976; Wrathall, 1976) that the complexity of deciding
satisfiability of a QBF is directly linked to the prefix type (Kleine Büning and Bubeck,
2009) of the formula.

A QBF where ∀ (respectively ∃) is the outer-most quantifier, has the prefix type Πn

(respectively Σn) where n denotes the number of alternations between the two quantifier-
types. The prefix type is easiest to determine when the QBF is given in prenex form. This
form is characterized by all quantifiers appearing at the beginning of the formula. These
quantifiers are then followed by a quantifier-free formula called a matrix. For example, the
formula ∃a∀b∃cΦ with matrix Φ has the prefix type Σ3. Every propositional formula is of
the prefix type Σ0 = Π0.

The various prefix types correspond to different complexity classes on the polynomial-
time hierarchy (Meyer and Stockmeyer, 1972) that are defined as follows:

ΣP
k+1 := NPΣP

k , ΠP
k+1 := coΣP

k+1

ΣP
k+1 is the class of all problems that can be decided non-deterministically in polynomial

time assuming the availability of an oracle that can decide problems in ΣP
k in O(1) time.

ΠP
k+1 is the class that contains all problems that are complements of those from ΣP

k+1.

Most notably ΣP
1 corresponds to the complexity class NP, and ΠP

1 = coNP.
The results from Section 4.1 show that computing exact DDA heuristics is prohibitively

expensive. This calls for a search of alternative properties with an easier underlying de-
cision problem, that is, a decision problem that lies in one of the complexity classes of

18

the polynomial-time hierarchy. Therefore, we investigated the use of dead-end recognizing
(DER) heuristics. A heuristic hDER is dead-end recognizing iff hDER(s) > 0 for all dead-
end states s. Thus, a dead-end recognizing heuristic is one that correctly recognizes all
dead-end states, but may also mark solvable states as dead-ends.

Assuming the existence of such a heuristic, Formula 4.3 simplifies to

∀s

(
[s is goal] ∨

(
[hDER(s) = 0]→ d̂(s)

))
(4.6)

d̂(s) = ∃s′
(

[s′ ∈ succ(s)] ∧ [hDER(s′) = 0] ∧ [h(s′) < h(s)]
)

(4.7)

Thus, given a fixed DER heuristic, the satisfiability of Formula 4.6 can be decided in
coNPNP. Unfortunately, however, the overall problem does not become easier if a DER
heuristic is not given and needs to be synthesized first. Let IsDER be a decision problem
that is defined as follows:

Given: task Π = 〈V, I,O, γ〉 and a heuristic h

Question: is h dead-end recognizing (DER) in Π?

Theorem 4. The IsDER decision problem is PSPACE-hard.

Proof. Reduction from PlanEx: We construct the heuristic

h(s) =

{
0 if s = I

1 otherwise

If Π ∈ PlanEx then I is certainly solvable and h does not violate the DER property by
marking it as such, i.e. 〈h,Π〉 ∈ IsDER. If Π 6∈ PlanEx then I cannot be solvable, which
means that h failed to recognize a dead-end and therefore 〈h,Π〉 6∈ IsDER.

Theorem 5. The IsDER decision problem is PSPACE-complete.

Proof. Analogously to Algorithm 1, Algorithm 2 shows how IsDER can be decided in
polynomial space. PSPACE-completeness follows from this result and Theorem 4.

Algorithm 2: Deciding IsDER in polynomial space.

Given : task Π = 〈V, I,O, γ〉 and heuristic h
Query: is h DER?

1 for i← 1 .. |S(Π)| do
2 if [〈V, si, O, γ〉 6∈ PlanEx] ∧ [h(si) ≤ 0] then
3 fail;
4 end

5 end
6 accept;

19

Chapter 5

Computing Potential Heuristics

In the previous chapter, we have shown that the exact computation of DDA heuristics is
a PSPACE-complete problem and, thus, as hard as planning itself. Therefore, the focus
of this chapter is on practical approaches for computing potential heuristics to be used
in satisficing planning. The general framework shared by most of said approaches is il-
lustrated in Algorithm 3. The concrete algorithms differ in their implementations of the
BuildOptimizationProblem component, while our approach to feature generation (see
Section 5.1) remains largely the same across all algorithms. Beginning in Section 5.2, we
present and discuss all approaches we implemented.

Algorithm 3: Framework for computing potential heuristics.

Input : task Π = 〈V, I,O, γ〉
Output: potential heuristic hpot

1 F ← GenerateFeatures(Π);
2 P ← BuildOptimizationProblem(Π,F);
3 hpot ← Solve(P);
4 return hpot;

5.1 Generating Features

When computing potential heuristics, feature selection is the first major challenge. The
most straight-forward approach, that is also used in most of the surveyed literature, is to
systematically generate all features of specific dimensions. The biggest problem with this
approach is its inability to scale to larger tasks or higher feature dimensions. Furthermore,
many of the features generated using this approach may never be encountered during pro-
gression search because they contain mutually exclusive facts. Such features only increase
the complexity of the optimization problem.

The opposite approach is to select all features manually. Doing so effectively, requires
the user to have a good understanding of the given planning domain and involves a sig-
nificant amount of work in instances with many variables. Furthermore, this would turn
heuristic computation into a domain-dependent approach.

As for the automatic generation part, we build on ideas from Buro (1998). Specifically,
we begin by systematically generating features of the specified dimensionality, and then

20

use a sample of 1000 states from the state space of the task to count the number of times
each generated feature was encountered in the sampled states.

Features that were not observed sufficiently often are subsequently removed from the
feature space. Depending on the appearance threshold used to filter out features, the size
of the feature set can be greatly reduced. In the baseline implementation, this threshold
is set to 0, thus admitting all systematically generated features into the final feature set.

The sample for this procedure is generated as follows: We use the FF heuristic (Hoff-

mann and Nebel, 2001) to obtain a solution cost estimate ĥ of the planning task. Sub-
sequently, random walks are performed either in forward or in backward direction (we
discuss backward sampling in Section 5.3), that is, either starting in the initial state, or
starting in some random goal state. Upon each random walk, the last visited state is added
to the sample. The walk direction is selected uniformly at random. This is done in order
to ensure that the sample contains states that are near the initial state, as well as those
that are close to some goal. The distance to be walked is also selected uniformly from the
range [0, ĥ].

5.2 Exact Potential DDA Heuristics

In Chapter 4, we showed that the pursuit of heuristics that are descending and dead-
end avoiding is intractable. Nonetheless, these heuristics are desirable because they can
guarantee an upper bound on the number of expansions the search algorithm will need to
find a goal. It is currently unclear how DDA heuristics influence other aspects of greedy
search behavior, such as the quality of the discovered solutions. In order to study this
further, we describe a naive algorithm for computing potential DDA heuristics.

The algorithm builds on the idea of formulating a MIP problem similar to the one used
by Francès et al. (2019) (see Section 3.4). Because we aim to compute DDA heuristics for
individual tasks rather than entire domains, unlike Francès et al. (2019), our features are
conjunctions of facts that may appear in some states of a planning task.

Thus, we cannot re-use the capacity measure K of Francès et al. (2019) for the objective
function. Ideally, we would prefer to minimize the upper bound L = h(I) − mins∈S h(s)
on the number of expansions. This objective, however, is clearly non-linear. Instead, we
propose two alternative formulations. The simplest idea is to make the objective function
constant:

min 0 (5.1)

s.t.
∨

s′∈succ(s)

h(s′) + 1 ≤ h(s) for s ∈ SA (5.2)

h(s′) ≥ h(s) for 〈s, s′〉 ∈ TD (5.3)

With this formulation, the MIP solver will stop upon finding the first solution that satisfies
the constraints. Experiments with this approach show that the solver often fails to find
an initial feasible solution under the given memory constraints. It is understandable that
finding this initial solution would be challenging, since any feasible assignment of weights
would also be the optimal solution under the given objective function. To address this
issue, we introduce slack variables to our model:

21

min
∑
s∈SA

αs +
∑

〈s,s′〉∈TD

β(s,s′) (5.4)

s.t.
∨

s′∈succ(s)

h(s′) + 1− αs ≤ h(s) for s ∈ SA (5.5)

h(s′) + β〈s,s′〉 ≥ h(s) for 〈s, s′〉 ∈ TD (5.6)

αs ≥ 0 for s ∈ SA (5.7)

β〈s,s′〉 ≥ 0 for 〈s, s′〉 ∈ TD (5.8)

With this formulation, an obvious feasible solution is one where the slack variables are so
large that all constraints become satisfied independently from the weights assigned to the
features. As the solver finds variable assignments that satisfy more of the constraints, an
increasing number of slack variables can be set to zero.

Informal experiments have shown that the MIP solver is able to get reasonably close to
finding an optimal solution in about half of the time allocated for optimization. Specifically,
this means that the solver is able to eliminate most slack variables from the model. The
other half of the time is then spent trying to eliminate the remaining few constraints (that
is, constraints that are presently only satisfied by using slack variables). This means that
the solver is able to compute a good/near-perfect approximation of a DDA heuristic much
quicker than it is able to find the actual DDA heuristic.

With this realization, the obvious first approach for approximating DDA heuristics is
to limit the time for solving the model and then work with the weights that could be
computed in that time.

Another advantage of this approach is that it works even if the dimensionality of the
desired potential heuristic is lower than the correlation complexity of the planning task.
In such cases, it is still possible to obtain an approximation. The approach without slack
variables, on the other hand would fail if the feature dimensions are too low, as this would
make the problem infeasible.

Expectedly, however, the main challenge of this approach lies not in solving the MIP,
but rather in formulating and storing it in memory. Indeed, in the overwhelming majority
of cases, heuristic computation fails before finishing the BuildOptimizationProblem
procedure. Clearly, both, the number of alive states, as well as the number of transitions
to unsolvable states may be exponential in the number of state variables. This implies that
the size of the MIP model itself is exponential in the number of variables. Furthermore,
as mentioned earlier, deciding if a state is alive is a PSPACE-complete problem. Thus this
approach is limited only to the smallest tasks.

5.3 Approximating DDA Heuristics using a Sample

As mentioned earlier, the exponential growth of the alive portion of the transition system
makes the exact approach infeasible. A possible alternative is to build an optimization
problem that is based only a subset of states. In the following sections, we describe two
algorithms that build a fixed size sample of the state space using either forward random
walks from the initial state or backward random walks from random goal states and then
use the sample to approximate a DDA heuristic.

22

Forward-Sampling Approach

When sampling states by performing a random walk that originates in the initial state,
we are guaranteed to only sample states that are reachable. Thus, with this approach, one
has to assume that the other property required for a state to be alive is given. That is,
states sampled by walking from the initial state are assumed to be solvable.

This assumption is incorrect in general, but holds in cases where the task is solvable
and either undirected or harmless (Hoffmann, 2002). Solvable tasks that are undirected
or harmless have no reachable dead-ends, thus making every reachable state solvable. A
number of well known planning domains, such as Blocksworld, the n-puzzle and Rubik’s
cube fall into the above category.

Similarly to the sampling approach for feature selection, the sampling process begins
by generating an FF estimate ĥ for the initial state. This estimate serves as the upper
bound on the distance of the random walk. The actual distance to be walked is then drawn
uniformly from the interval [0, ĥ]. This is done in order to ensure that sampled states are
located at various distances away from the initial state. Upon each walk, the last visited
state is added to the sample set Ssample. The walks are repeated until the desired sample
size is reached.

With the sample in place, the algorithm proceeds to construct the MIP model from
Section 5.2 where the set SA of alive states is substituted with Ssample. Furthermore, dead-
end avoidance constraints are omitted because we do not know which successors of the
sampled states are unsolvable.

This approach already avoids one of the major problems with the exact algorithm,
namely the explosive state space growth. Another major bottleneck, however, stems from
the NP-hardness of mixed-integer programming and remains unaddressed by this ap-
proach.

Backward-Sampling Approach

Obtaining a sample by walking backwards from some goal has proven to be a lot more
problematic than the forward-sampling approach from the previous section. Generally, the
assumption that a random goal and its predecessors are reachable seems to be wrong more
often than not. This is due to the fact that, in most planning tasks, the goal is specified
as a partial assignment of variables, meaning that vars(γ) ⊂ V . Generating a random goal
state by assigning the unspecified variables with random values often leads to states that
satisfy the goal formula, but are unreachable and at odds with human understanding of
what a goal state should look like.

An example of this can be observed in the Sokoban domain. In the PDDL description
of Sokoban from IPC 11, there are variables describing the positions of individual boxes
and the agent, as well as a special predicate at-goal for each box, signifying that the box
has been pushed on top of one of the designated goal positions. The goal assignment of
a Sokoban task is then expressed using only these at-goal predicates. As can be seen
in Figure 5.1, the fact that the other variables do not appear in the goal can lead to
unreachable and intuitively incorrect goal states being generated.

Although the problem of finding only the ‘correct’ starting points for random backward
walks without interference from the user presently remains unsolved, we believe that this
approach has a potential advantage compared to simply sampling states by progressing
from the initial state.

In the literature, backward walk sampling approaches have been successful in, for
example, generating training instances for machine learning approaches to the computation

23

¬box-1-at-goal box-1-at-goal box-1-at-goal box-1-at-goal

Figure 5.1: Example of the sampling problem in the Sokoban domain. Pictured are (from left ro
right): initial state, a reachable goal state, a goal state that is unreachable, but legal according to
the rules of Sokoban, and a mutex-violating goal state obtained by assigning v 6∈ vars(γ) randomly.

of heuristic functions. The studies of these approaches, however, are usually limited to
domains where the goal is defined in terms of all or most state variables of the task.
For example, in their paper on bootstrap learning, Arfaee et al. (2010) focus on learning
heuristics for the n-puzzle, where each state variable has a designated value in the goal
assignment.

The reason why it is more desirable to sample states by walking backwards is because
in addition to sampling the actual states, one also obtains the (potentially suboptimal)
goal distances for each visited state. Using these observed distances, we can reduce the
MIP model from the previous section to an LP. Recall that the reason previously described
approaches rely on mixed-integer programming is because of the disjunctive descending-
ness constraint. The constraint states that some successor of state s must be improving.
Knowing the goal distances, however, we can directly state which successor must be im-
proving.

This time, Ssample contains pairs of states (s, s′), where s′ ∈ succ(s). We then formulate
the following LP model over this sample:

min
∑

(s,s′)∈Ssample

α(s,s′) (5.9)

s.t. h(s)− h(s′) + α(s,s′) ≥ 1 (5.10)

α(s,s′) ≥ 0 for (s, s′) ∈ Ssample (5.11)

The slack variables α(s,s′) are necessary to prevent the problem from becoming in-
feasible whenever mutually contradicting samples are drawn. This can happen if paths
s → s′ → ... → s? and s′ → s → ... → s? (with s? ∈ S?) both exist in the transition sys-
tem of the planing task. In this case, a formulation without slack variables would become
infeasible whenever (s, s′) and (s′, s) are both part of Ssample.

This optimization problem is similar to the maximization of GDRC for the selected set
of state-pairs. The difference is that the algorithm aims to produce a heuristic that matches
the ordering of states based on the observed goal distances, rather than the perfect goal
distances.

5.4 Learning Potential Heuristics from Abstractions

The exact computation of DDA heuristics is only feasible for very small planning tasks.
As already mentioned, the reasons for this are the usually very large number of states

24

in the transition system, as well as the size of the feature set, which can be still quite
large even after filtering out rare features as described in Section 5.1. Both of these factors
scale with the number of state variables (and their domain sizes) and make the problem
of computing a DDA heuristic challenging even for modestly-sized planning tasks. Indeed,
tasks where the exact DDA heuristic computation would succeed are usually tasks that
are easy enough to be solved with simpler heuristics, or even blind search.

In the previous section, we described an attempt to address the state space growth
by working with a sample set of states rather than the entire transition system. In this
section, we explore the use of abstractions for the purpose of alleviating the issues that
arise due to the state- and feature space growth.

In planning, a popular approach for dealing with the aforementioned scaling of the
transition system is to compute a heuristic based on an abstraction of the planning task.
In this thesis, we specifically consider Pattern Database (PDB) abstractions (Culberson
and Schaeffer, 1998; Edelkamp, 2001). In a PDB-abstracted planning task ΠP , the set
of variables V of the original task Π is reduced to a certain subset P , called a pattern.
Furthermore, all facts referring to variables that are not in P are removed from all partial
assignments, including the goal assignment, as well as operator effects and preconditions.
A PDB heuristic corresponds to the perfect heuristic of the abstract task ΠP and can be
used to guide the search towards a goal in the state space of the concrete task Π.

Analogously to this concept, we introduce abstract DDA heuristics. Here, we fist use
a pattern selection algorithm to select an abstraction and construct the corresponding
abstract task ΠP as described above. Then we apply the naive algorithm from Section 5.2
to this task. This is feasible because the transformation from Π to ΠP produces a smaller
task, with fewer states and a small feature set. The resulting heuristic is then used to
guide a greedy search algorithm.

Experience shows that PDB heuristics are most successful when many such PDBs
capturing different aspects of the original task are combined into a single heuristic function.
Because PDB heuristics are inherently admissible, much of the research on combining
these heuristics is focused on preserving this property. We refer to Seipp et al. (2017) for
a detailed overview of these approaches.

In the context of DDA heuristics and satisficing planning, however, admissibility is
neither guaranteed nor necessary. Therefore, we opt to combine multiple abstract DDA
heuristic estimates by simple summation.

25

Chapter 6

Results

We implemented all of the described algorithms in the Fast Downward planning system
(Helmert, 2006). In this chapter, we present the results of our empirical evaluation of
said algorithms and compare them with existing approaches. Unless stated otherwise,
all planners use greedy best-first search (GBFS). We used IBM CPLEX 12.9 to solve
the various MIP and LP problems. All calculations were performed on an Intel Xeon
Silver 4114 processor running at 2.2 GHz at sciCORE (http://scicore.unibas.ch/) scientific
computing center at University of Basel. For each task, the planner was given a time
limit of 30 minutes and a memory limit of 7600 MB. As a benchmark set, we used 1816
STRIPS planning tasks from satisficing tracks of all International Planning Competitions
(http://ipc.icaps-conference.org). All potential heuristics are of dimension 2. Filtering of
systematically generated features (see Section 5.1) is disabled unless stated otherwise. We
evaluate the performance of our planners based on the following 3 metrics:

• Coverage: total number of solved tasks

• Cost of the discovered plan

• Number of states expanded during search

6.1 Exact DDA Heuristics

In Section 5.2, we mentioned that the naive algorithm for computing DDA potential heuris-
tics is practically only applicable to planning tasks with very small transition systems. To
verify this claim and also to test the quality of the obtained heuristic we compare the
slack variable approach from Section 5.2 to the A* search equipped with the blind heuris-
tic hblind(s) = [γ 6⊆ s] as well as GBFS guided by the FF heuristic hFF (Hoffmann and
Nebel, 2001). As can be seen in Table 6.1, our configuration hDDA indeed possesses the
weakest coverage. In roughly 86% of all cases, the planner stops prematurely due to insuf-
ficient memory. Unsurprisingly, all tasks that were solved using hDDA could also be solved
optimally using the blind heuristic.

When looking at the solution costs (Figure 6.1) we see that quite a few planning tasks
are solved optimally using the exact DDA heuristic. Overall, out of the 157 computed
plans 104 (approx. 66%) have the same cost as optimal plans discovered by A* with the
blind heuristic. On average, the costs of plans computed using hDDA are greater than the
corresponding optimal costs by a factor of 1.21. A cost comparison with the FF heuristic

26

hDDA hblind hFF

coverage 157 516 1198

Table 6.1: Coverage results for the naively computed DDA potential heuristics compared to the
blind and FF heuristics.

10 20 30

10

20

30

optimal

D
D

A

cost

10 20 30

10

20

30

FF

D
D

A

cost

Figure 6.1: Comparison of plan costs of exact DDA planner to the optimal costs as well as the
FF heuristic. Not pictured are 9 data points with significantly higher costs.

shows that our planner finds a lower-cost solution for 12 tasks and higher-cost one in 47
cases.

Compared to the expansion numbers of GBFS with the FF heuristic (Figure 6.2), the
DDA heuristic causes the search to expand more states in 61 (approx. 39%) tasks. On the
other hand, when FF does outperform DDA, it does so by a significant margin. Indeed, in
cases where the FF heuristic does worse, it expands on average 8.4 times more states than
DDA. In the reverse case, where DDA performs worse, the average number of expansions
is approximately 83.7 times greater.

It should be mentioned, that the number of expansions greatly depends on the objective
used in the MIP formulation for computing feature weights. As already mentioned in
Section 5.2, minimizing the difference between h(I) and the minimum of h would be the
ideal objective for the purpose minimizing expansions. The mixed result when compared
to the FF heuristic can be explained by the fact that our MIP formulation accepts any
DDA heuristic as optimal.

Furthermore, all generated MIP models aim to compute a DDA potential heuristic of
dimension 2. In some cases, this dimensionality may be lower than the correlation com-
plexity of the given task, which means that there exists no 2-dimensional DDA potential
heuristic. As explained in Section 5.2, we employ slack variables to prevent the MIP from
becoming unsolvable in such cases. This, however, leads to potential heuristics that only
satisfy DDA properties for a subset of all alive states. Such ‘imperfect’ DDA heuristics
can lead to more expansions.

For example, Gripper is a domain that is known to be of correlation complexity
2 (Seipp et al., 2016). When trying to solve the first Gripper instance from the IPC
benchmarks, a 2-dimensional DDA heuristic finds a 15-step solution after 16 expansions,
which is expected, since greedy search with a DDA heuristic will never backtrack. A 1-

27

10−1 101 103 105 107
10−1

102

105

108

108

108

FF

D
D

A

expansions

Figure 6.2: Comparison of state expansions of hDDA and the FF heuristic.

dimensional approximation, on the other hand, finds a 13-step solution after expanding
144 states.

Additionally, sometimes the MIP solver exceeds the imposed time and memory limits.
Here, the planner proceeds using the heuristic representing the best MIP solution generated
until that point. This heuristic also acts as an approximation and leads to a non-ideal
expansion count. To illustrate this, we set a 15 second time limit for the MIP solver and
demanded that it computes a 2D DDA potential heuristic for the aforementioned Gripper
instance. In this time, the solver went from an initial solution with an objective value of
254 to a solution whose objective value is 6. It was, however, unable to reach the optimal
solution with the objective value of 0. The subsequent search then took 27 expansions to
discover a 13-step plan.

6.2 Sample-Based Approximations

One of the major differences between sample-based algorithms from Section 5.3 is the
procedure used for sampling. In the following sections, we evaluate the backward- as well
as forward-sampling approaches.

Backward Sampling

We first analyse the approach where the sampler starts at some goal state and proceeds
with a backward random walk for a random number of steps. Each random walk yields
only a single sample data point, consisting of a pair of states 〈s, s′〉 with s′ ∈ succ(s). As
already mentioned, the problem with this approach is in finding an appropriate goal state
that will serve as the starting point for the random walk. In the absence of user-provided
domain knowledge, the starting point is generated randomly. The problem with this, is
that such random goal states may be unreachable. On the other hand, however, generating
a new goal state for each random walk allows the sampler to collect data points from many
different parts of the transition system.

Thus, the main question when evaluating the backward walk approach is whether it is
better to walk backwards from a diverse set of potentially unreachable and mutex-violating

28

goal states, or to accept domain knowledge from the user in the form of a single goal state
that is guaranteed to be reachable.

To address this question, we tested two configurations, namely hbw
rnd, where goal states

are generated randomly, and hbw
usr, where the user provides a fixed goal state to the planner.

This injection of domain knowledge is simulated in our experiments by solving tasks using
the FF heuristic, dumping the discovered goal state, and subsequently providing it to our
planner. In cases where the FF planner fails to solve a task, hbw

usr reverts to hbw
rnd. In both

cases, we generate a sample of 1500 state pairs.
Our results show that hbw

rnd solves 474 planning tasks, while hbw
usr leads the search to a

goal in only 433 cases, which suggests that it is more beneficial to have a diverse pool of
goal states rather than a single fixed one that is guaranteed to be reachable. Hence, we
will focus on the hbw

rnd configuration for the remainder of this discussion.

Feature Selection for Backward Sampling

Generally, we see that hbw
rnd and hbw

usr already perform significantly better than the attempt
to compute exact DDA heuristics. This is due to the fact that setting a low limit on the
size of the sample evades the problem of having to deal with the entirety of the state
space. The sample-based configurations, however, still succumb to the second scalability
issue, namely that of the feature space growth. In the following we evaluate how the
feature filtering approach from Section 5.1 can help increase the coverage. Specifically, the
approach samples 1000 states as described in Section 5.1 and only keeps those features
that appear at least ft ∈ {0, 250, 500, 750} times within the sample. As for the sample for
which the LP model will be built, we use samples of size ssize ∈ {125, 250, 500, 1000}. In
addition to feature filtering, we explored a more aggressive approach: the feature selection
algorithm would randomly select 1000 of the systematically generated features and discard
all others. We refer to this configuration as flim1000.

Table 6.2 shows that filtering out rare features brings a significant improvement in
coverage when compared to the baseline configurations with ft = 0. Removing features
that do not appear in at least 25-50% of the sample seems to work best. Filtering out
features unless they are observed in 75% of the sampled states leads to worse coverage.
Nonetheless, even the ft = 750 configurations constitute an improvement over the baseline
without filtering, thus confirming that exhaustively generating all features results in a
performance bottleneck.

All feature filtering configurations, however, are outperformed by flim1000, which is
also the only configuration that is able to surpass A* search with the blind heuristic in
terms of coverage.

ft = 0 ft = 250 ft = 500 ft = 750 flim1000

ssize = 125 469 491 511 493 538
ssize = 250 477 503 506 495 560
ssize = 500 479 512 509 498 575
ssize = 1000 487 508 519 495 575

Table 6.2: Coverage for the backward-sampling approach with different minimal numbers of ap-
pearances ft needed to include a feature in the final feature set.

29

ft = 0 ft = 250 ft = 500 ft = 750 flim1000

ssize = 125 442 462 465 474 521
ssize = 250 431 463 454 468 512
ssize = 500 409 450 445 444 493
ssize = 1000 381 438 434 438 490

Table 6.3: Coverage for the forward-sampling approach hfwwith different minimal numbers of
appearances ft needed to include a feature in the final feature set.

Forward Sampling

The other sample-based method introduced in Section 5.3 is one we refer to as hfw. Here,
the sample set is generated via random walks that originate in the initial state. Because
the goal distance is unknown when using this approach, it is not possible to reduce the
associated MIP to an LP problem the way it is done with the backward-sampling method.
Here, the difference to the exact approach is simply that the MIP is formulated only over
the given sample and not the entire reachable and solvable portion of the transition system.
Analogously to the backward-sampling method, we evaluate how various sample sizes and
feature appearance thresholds influence the coverage.

Similarly to the backward-sampling case, the results in Table 6.3 show that, while the
filtering of rare features noticeably improves the performance of the planner, a simple
1000 feature limit leads to a significantly greater increase in coverage. For example, the
flim1000 configuration with 125 sampled states solves 47 more tasks than the analogous
configuration that discards features unless they appear in at least 750 out of 1000 states
sampled for feature selection.

Another interesting result is that an increase in the size of the sample leads a decrease
in coverage. A plausible explanation is that a larger sample implies a larger MIP model
that is more difficult to solve. The same observation can also be made in Section 6.3, where
we discuss abstract DDA potential heuristics.

Quality of Sample-Based Approximations

The final question we investigate in this section is that of heuristic quality. In the case of
the exact algorithm from the Section 6.1, an approximation represents the worst case result
that occurs either when the MIP solver exceeds its allocated resources or the correlation
complexity of the task is too high. In the case of the sample-based algorithms discussed
in this section, however, an approximation of a DDA heuristic is the only possible result.
To quantify the effect this has on heuristic quality we, again, compare the number of
expansions made by GBFS with the best backward-sampling (resp. best forward-sampling)
configuration to the expansions made using heuristics produced by the exact algorithm
(see Figure 6.3).

The comparison to hbw
rnd-flim1000 with a sample size of 500 shows that this configuration

expands fewer states in 33 cases and leads to more expansions in 117 tasks. In the case of
forward-sampling, we looked at the flim1000 configuration with a sample of size 125. Here,
the planner expands fewer states in 30 tasks and more in 123. In conclusion, heuristics
produced by the two sample-based approaches are usually of lower quality than heuristics
produced by the algorithm that aims to compute an exact DDA heuristic, even though it
may also sometimes produce approximations.

30

10−1 101 103 105 107 109
10−1

102

105

108

109

109

DDA

b
a
ck

w
a
rd

-s
a
m

p
li

n
g

expansions

10−1 101 103 105 107
10−1

102

105

108

108

108

DDA

fo
rw

ar
d

-s
a
m

p
li

n
g

expansions

Figure 6.3: Comparison of expansions of the exact DDA planner to the two sampling-based ap-
proaches.

6.3 Abstract DDA Heuristics

In Section 5.4, we introduced the concept of abstract DDA potential heuristics, where a
DDA heuristic is computed for some abstraction of the original task. In this section, we
first discuss the results of using only a single abstract DDA heuristic and then present the
results of employing a combination of multiple such heuristics.

Specifically, we begin by evaluating the performance of a planner that automatically
generates a single pattern using the greedy algorithm from Fast Downward and then com-
putes the corresponding abstract DDA heuristic. We tested 4 configurations hsabsk with
k ∈ {256, 512, 1024, 2048} as the maximum allowed number of states in the abstract tran-
sition system. When evaluating these heuristics, it is most interesting to compare them
to PDB heuristics computed from the same abstractions. This comparison is relevant not
only because abstract potential DDA heuristics and PDBs share the same underlying con-
cept of abstracting away variables, but also because PDB computation can be viewed as
another way to obtain a DDA heuristic. As already mentioned, a PDB heuristic repre-
sents the perfect heuristic of the abstract planning task which, in the absence of zero-cost
operators, is also DDA.

The coverage results in Table 6.4 show that, among abstract DDA heuristics, coverage
is highest for the configuration that uses the smallest abstract state spaces. We believe
that a plausible explanation for this is the inherent hardness of finding a DDA heuristic
even for small transition systems. Interestingly, the benefit of lowering the hardness of the
problem by selecting smaller transition systems seems to outweigh the loss in coverage
that is usually associated with coarse abstractions.

With PDBs, on the other hand, the opposite is the case. That is, abstractions with
larger transition systems lead to more tasks being solved. We believe that a major reason
for this is the fact that our approach to computing DDA heuristics involves solving a MIP,
which is an NP-hard problem. PDBs, on the other hand, are computed using Dijkstra’s
algorithm (Dijkstra, 1959; Sievers et al., 2012). Given a graph G = 〈V, E〉 where V is the
set of vertices and E is the set of edges, the worst-case complexity of Dijkstra’s algorithm
is O(|E| + |V| log |V|) (Barbehenn, 1998). Since |E| ≤ |V|2 and |V| is controlled by the

31

10−1 101 103 105 107 109
10−1

102

105

108

109

109

DDA

h
s
a
b
s

2
5
6

expansions

10−1 101 103 105 107 109
10−1

102

105

108

109

109

hsPDB
256

h
s
a
b
s

2
5
6

expansions

Figure 6.4: Expansion comparison of hsabs
256 and exact DDA (resp. hsPDB

256)

hsabsk hsPDB
k

k = 256 581 732
k = 512 561 747
k = 1024 513 758
k = 2048 455 768

Table 6.4: Coverage results for the various configurations using a single abstraction.

parameter k ≤ 2048, PDBs can be computed very efficiently in our experiments.
Overall, PDB heuristics show significantly better coverage for the tested transition

system sizes. A comparison of states expanded during search (Figure 6.4), however, shows
that the hsabs256 configuration has generally similar expansions to hsPDB

256 , which, again,
suggests that our planner solves fewer tasks not due to lacking heuristic quality, but rather
because the heuristic is expensive to compute. We also see that hsabs256 compares favorably
to the heuristics produced by the exact DDA algorithm.

For the evaluation of combinations of abstract DDA heuristics we tested 4 configura-
tions hmabs

k with k ∈ {128, 256, 512, 1024} (state-space size limit per abstraction) as well
as the special configuration hmabs

atomic. Pattern selection for the hmabs
k configurations is per-

formed by the iPDB algorithm (Haslum et al., 2007) under a time limit of 30 seconds.
Patterns for the atomic configuration are selected such that they only contain a single
variable v ∈ vars(γ). Thus, hmabs

atomic works with all distinct patterns containing nothing
but a single goal variable.

We compare these configurations to equivalent PDB configurations hmPDB
k . Here, the

pattern selection process as well as the method for combining individual heuristics is the
same as in the hmabs

k configurations.
The coverage comparison is given in Table 6.5. These results show that abstract po-

tential DDA heuristics vastly outperform the approaches from previous sections, solving
roughly twice as many tasks as the sample-based algorithms. The equivalent multiple-PDB
approaches, however, perform even better.

When looking at the scalability of the hmabs
k approaches, we see the same result as

32

hmabs
k hmPDB

k

atomic 1028 1107
k = 128 1005 1121
k = 256 1005 1130
k = 512 1005 1128
k = 1024 999 1130

Table 6.5: Coverage results for the various configurations using multiple abstractions. See Table
A.3 for a detailed overview.

10−1 101 103 105 107 109
10−1

102

105

108

109

109

hmPDB
128

h
m

a
b
s

1
2
8

expansions

10−1 101 103 105 107 109
10−1

102

105

108

109

109

hmPDB
1024

h
m

a
b
s

1
0
2
4

expansions

Figure 6.5: Expansion comparison of hmabs
128 and hmabs

1024 to the equivalent hmPDB approaches.

with the single-pattern version, that is, better coverage is obtained by choosing abstract
tasks with small transition systems. Surprisingly, however, in spite of the less efficient
computation, abstract DDA heuristics still perform noticeably better on certain domains,
such as Openstacks or TPP.

A look at the expansion comparison between hmabs
k and hmPDB

k for k ∈ {128, 1024}
(Figure 6.5), shows that the PDB heuristic often leads to fewer expansions, however, there
are quite a few instances where the opposite is the case. Specifically, out of the 871 cases
where both, hmPDB

1024 and hmabs
1024 could come up with a solution, hmPDB

1024 expanded fewer
search nodes in 436 tasks (approx. 50%). hmabs

1024 performed better in 262 cases (approx.
30%). When comparing hmPDB

128 and hmabs
128 we see that the former expands fewer states in

353 out of 876 cases (40%), while hmabs
128 performs better in 335 tasks (38%).

When comparing hmabs
128 to the algorithm that aims to produce exact DDA heuristics

(see Figure 6.6), the results are mixed. hmabs
128 leads to fewer expansions in 54 tasks. The

other algorithm, performs better in 56 instances. In the remaining 47 cases, both heuristics
result in the same number of expansions.

Compared to the best configuration of hbw
rnd from the previous section (flim1000 with

ssize = 500), however, hmabs
128 emerges victorious by solving the overwhelming majority of

planning tasks in fewer expansions.

33

10−1 101 103 105 107 109
10−1

102

105

108

109

109

DDA

h
m

a
b
s

1
2
8

expansions

10−1 101 103 105 107 109
10−1

102

105

108

109

109

hbwrnd

h
m

a
b
s

1
2
8

expansions

Figure 6.6: Expansion comparison of habs
128 to heuristics produced by the exact DDA algorithm and

to hbw
rnd with a sample size of 500 and a feature set limited to 1000 features.

34

Chapter 7

Future Work

In this thesis, the strongest of the introduced heuristics in terms of coverage turned out
to be the sum of many abstract DDA potential heuristics. A study by Röger and Helmert
(2010), however, shows that summation is one of the weakest ways of combining multiple
heuristics for satisficing planning. Thus, in future work, it would be interesting to see
whether these combined abstract DDA heuristics can be more effective given a more so-
phisticated way of combining them. This, however, would not address the main bottleneck,
that is, the need to solve MIP problems.

Next to the abstract DDA potential heuristics, we believe that the backward sampling
approach shows the most promise. Unlike heuristics generated by forward-sampling and
the abstract DDA heuristics, we saw the coverage of the backward-sampling approach
improve with a larger sample size. Thus, this algorithm has the potential to scale better
to larger samples and generate more informative heuristics.

In the thesis, this potential heuristic is learned by forcing an LP solver to choose
weights such that the resulting heuristic is able to replicate the correct ranking of points
in the sample. The same problem has been the subject of years-long research in the field of
machine-learned ranking (MLR) (Liu, 2009). Although most MLR research is focused on
developing ranking models for information retrieval systems such as web search engines,
we believe that parallels can be drawn between the problems of finding a heuristic and
finding such a ranking model for retrieved documents.

In multimedia retrieval, the user provides a query that is some vague representation
of the desired document and the task of the ranking model is to order available results
according to their relevance to the query, whereupon the user greedily chooses the top
result. A single step of a greedy search algorithm such as hillclimbing can be viewed in
the same setting: out of all immediately available states, the heuristic must recommend
the state that is closest to the desired goal.

To our knowledge, most prominent machine learning approaches to heuristic compu-
tation such as Bootstrapping (Arfaee et al., 2010) fall into a category known in MLR
literature as the pointwise approaches. Here, the states used for training come with some
cost measure that the heuristic should replicate, i.e. the heuristic is a regression model.

In MLR, this approach is outperformed by the listwise approach (Xia et al., 2008),
where the goal is to directly optimize the value of some evaluation metric such as Kendall’s
τ , which is already used by Wilt and Ruml (2015) to quantify the suitability of heuristics
for greedy search. Therefore, it would be interesting to investigate whether the listwise
approach could lead to better potential heuristics for satisficing planning.

35

Chapter 8

Conclusion

In this thesis, we have investigated the use of potential heuristics in satisficing planning.
Our main focus was on ensuring that these potential heuristics are descending and dead-
end avoiding (DDA). The results of our empirical evaluation show that potential heuristics
with these properties can guide greedy search towards the goal in a very small number of
expansions.

However, our theoretical and empirical analysis also shows that DDA heuristics are
generally prohibitively expensive to compute even for small planning tasks. Specifically,
we have proven that the computation of DDA heuristics is a PSPACE-complete problem
and, thus as hard as planning itself.

Following this result, we investigated the use of various approaches to approximating
DDA heuristics. These approaches include stopping heuristic computation prematurely
once time or memory limits have been reached, attempting to ensure the DDA set of
properties on a randomly selected sample of states, and using abstractions to downscale
planning tasks to sizes that can be handled by the exact DDA computation routine.

Our experiments show that, out of all introduced configurations, the sum of many
abstract DDA heuristics is by far the most powerful approach. Nonetheless, this approach
still falls short of the performance and scalability offered by equivalent PDB heuristics.
In terms of heuristic quality, however the two heuristics are comparable. The empirical
results suggest that the performance of the abstract DDA heuristic is mainly hampered
by the need to solve MIP problems.

36

Bibliography

Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. Bootstrap learning of heuristic
functions. In Proceedings of the Third Annual Symposium on Combinatorial Search,
pages 52–60, 2010.

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625–655, 1995.

Michael Barbehenn. A note on the complexity of Dijkstra’s Algorithm for graphs with
weighted vertices. IEEE Transactions on Computers, 47(2):263, 1998.

Blai Bonet. An admissible heuristic for SAS+ planning obtained from the state equa-
tion. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, pages 2268–2274, 2013.

Michael Buro. From simple features to sophisticated evaluation functions. In Computers
and Games, First International Conference, pages 126–145, 1998.

Tom Bylander. The computational complexity of propositional STRIPS planning. Artifi-
cial Intelligence, 69(1-2):165–204, 1994.

Augusto B. Corrêa and Florian Pommerening. An empirical study of perfect potential
heuristics. In Proceedings of the Twenty-Ninth International Conference on Automated
Planning and Scheduling, pages 114–118, 2019.

Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Computational Intelli-
gence, 14(3):318–334, 1998.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

Stefan Edelkamp. Planning with pattern databases. In Sixth European Conference on
Planning, pages 13–24, 2001.

Andreas Ferenczi. Berechnung von Potential-Heuristiken basierend auf Pattern–
Datenbanken, 2016. Bachelor’s Thesis.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, and Florian Pommerening. Gen-
eralized potential heuristics for classical planning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, pages 5554–5561, 2019.

37

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-
independent construction of pattern database heuristics for cost-optimal planning. In
Proceedings of the Twenty-Second Conference on Artificial Intelligence, pages 1007–
1012, 2007.

Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

Jörg Hoffmann. Local search topology in planning benchmarks: A theoretical analysis.
In Proceedings of the Sixth International Conference on Artificial Intelligence Planning
Systems, pages 92–100, 2002.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

Maurice George Kendall. Rank correlation methods. Charles Griffin & Co. Ltd., 1948.

Hans Kleine Büning and Uwe Bubeck. Theory of quantified boolean formulas. In Handbook
of Satisfiability, pages 735–760. 2009.

Donald E. Knuth. Two notes on notation. The American Mathematical Monthly, 99(5):
403–422, 1992.

Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Ar-
tificial Intelligence, 27(1):97–109, 1985.

Richard E. Korf, Michael Reid, and Stefan Edelkamp. Time complexity of iterative-
deepening-A∗. Artificial Intelligence, 129(1-2):199–218, 2001.

Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331, 2009.

Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Thirteenth Annual Symposium on Switching
and Automata Theory, pages 125–129, 1972.

Florian Pommerening and Malte Helmert. A normal form for classical planning tasks. In
Proceedings of the Twenty-Fifth International Conference on Automated Planning and
Scheduling, pages 188–192, 2015.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, pages 3335–3341, 2015.

Florian Pommerening, Malte Helmert, and Blai Bonet. Higher-dimensional potential
heuristics for optimal classical planning. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, pages 3636–3643, 2017.

Gabriele Röger and Malte Helmert. The more, the merrier: Combining heuristic estimators
for satisficing planning. In Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling, pages 246–249, 2010.

38

Stuart J. Russell and Peter Norvig. Artificial Intelligence – A Modern Approach. Prentice
Hall, 1995.

Jendrik Seipp, Florian Pommerening, and Malte Helmert. New optimization functions for
potential heuristics. In Proceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling, pages 193–201, 2015.

Jendrik Seipp, Florian Pommerening, Gabriele Röger, and Malte Helmert. Correlation
complexity of classical planning domains. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, pages 3242–3250, 2016.

Jendrik Seipp, Thomas Keller, and Malte Helmert. A comparison of cost partitioning
algorithms for optimal classical planning. In Proceedings of the Twenty-Seventh Inter-
national Conference on Automated Planning and Scheduling, pages 259–268, 2017.

Silvan Sievers, Manuela Ortlieb, and Malte Helmert. Efficient implementation of pattern
database heuristics for classical planning. In Proceedings of the Fifth Annual Symposium
on Combinatorial Search, pages 105–111, 2012.

Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):
1–22, 1976.

Christopher M. Wilt and Wheeler Ruml. Building a heuristic for greedy search. In Eighth
Annual Symposium on Combinatorial Search, pages 131–140, 2015.

Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3(1):23–33, 1976.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach
to learning to rank: theory and algorithm. In Machine Learning, Proceedings of the
Twenty-Fifth International Conference, pages 1192–1199, 2008.

39

Appendix A

Detailed Coverage Results

Coverage blind FF hDDA

agricola-sat18-strips (20) 1 10 0
airport (50) 23 36 1
barman-sat11-strips (20) 0 6 0
barman-sat14-strips (20) 0 11 0
blocks (35) 21 35 9
childsnack-sat14-strips (20) 0 1 0
data-network-sat18-strips (20) 0 4 0
depot (22) 6 17 1
driverlog (20) 8 18 1
elevators-sat08-strips (30) 2 11 0
elevators-sat11-strips (20) 0 0 0
floortile-sat11-strips (20) 0 8 0
floortile-sat14-strips (20) 0 2 0
freecell (80) 20 79 0
ged-sat14-strips (20) 0 0 0
grid (5) 2 4 0
gripper (20) 8 20 3
hiking-sat14-strips (20) 3 20 0
logistics00 (28) 11 28 3
logistics98 (35) 2 29 0
miconic (150) 55 150 25
movie (30) 30 30 30
mprime (35) 20 32 0
mystery (30) 15 17 1
nomystery-sat11-strips (20) 4 10 1
openstacks-sat08-strips (30) 13 6 3
openstacks-sat11-strips (20) 0 0 0
openstacks-sat14-strips (20) 0 0 0
openstacks-strips (30) 7 28 5
organic-synthesis-sat18-strips (20) 3 3 0
organic-synthesis-split-sat18-strips (20) 4 14 0
parcprinter-08-strips (30) 11 23 3
parcprinter-sat11-strips (20) 0 7 0
parking-sat11-strips (20) 0 20 0
parking-sat14-strips (20) 0 14 0

40

Coverage blind FF hDDA

pathways-noneg (30) 4 10 1
pegsol-08-strips (30) 28 30 2
pegsol-sat11-strips (20) 18 20 0
pipesworld-notankage (50) 18 31 0
pipesworld-tankage (50) 13 23 0
psr-small (50) 50 50 38
rovers (40) 6 26 4
satellite (36) 6 29 2
scanalyzer-08-strips (30) 12 28 3
scanalyzer-sat11-strips (20) 4 18 0
snake-sat18-strips (20) 3 5 0
sokoban-sat08-strips (30) 18 28 0
sokoban-sat11-strips (20) 8 18 0
spider-sat18-strips (20) 1 18 0
storage (30) 15 19 7
termes-sat18-strips (20) 0 14 0
tetris-sat14-strips (20) 0 9 0
thoughtful-sat14-strips (20) 5 8 0
tidybot-sat11-strips (20) 4 16 0
tpp (30) 6 23 4
transport-sat08-strips (30) 6 13 3
transport-sat11-strips (20) 0 0 0
transport-sat14-strips (20) 0 0 0
trucks-strips (30) 7 15 2
visitall-sat11-strips (20) 0 3 0
visitall-sat14-strips (20) 0 0 0
woodworking-sat08-strips (30) 6 29 2
woodworking-sat11-strips (20) 1 14 1
zenotravel (20) 8 20 2

Sum (1816) 516 1210 157

Table A.1: Coverage comparison between hDDA, A* equipped with a blind heuristic, and FF.

41

Coverage hsabs
256 hsabs

512 hsabs
1024 hsabs

2048 hsPDB
256 hsPDB

512 hsPDB
1024 hsPDB

2048

agricola-sat18-strips (20) 8 8 5 0 12 12 12 12
airport (50) 27 26 26 17 27 29 29 29
barman-sat11-strips (20) 0 0 0 0 4 4 4 0
barman-sat14-strips (20) 0 0 0 0 0 0 0 0
blocks (35) 20 16 16 15 23 23 23 24
childsnack-sat14-strips (20) 0 0 0 0 0 0 0 0
data-network-sat18-strips (20) 1 1 0 0 1 1 1 1
depot (22) 7 7 6 6 7 7 7 7
driverlog (20) 8 8 3 2 11 11 11 11
elevators-sat08-strips (30) 3 3 2 2 2 2 2 2
elevators-sat11-strips (20) 0 0 0 0 0 0 0 0
floortile-sat11-strips (20) 0 0 0 0 0 0 0 0
floortile-sat14-strips (20) 0 0 0 0 0 0 0 0
freecell (80) 40 40 32 26 63 63 65 72
ged-sat14-strips (20) 0 0 0 0 0 0 0 0
grid (5) 3 3 3 2 3 3 3 3
gripper (20) 10 10 6 7 11 11 11 11
hiking-sat14-strips (20) 12 9 7 5 16 20 20 20
logistics00 (28) 15 8 3 3 15 15 16 16
logistics98 (35) 3 3 3 3 3 3 3 3
miconic (150) 75 78 79 81 75 80 84 85
movie (30) 30 30 30 30 30 30 30 30
mprime (35) 24 19 16 12 24 24 24 24
mystery (30) 14 12 10 6 17 17 17 17
nomystery-sat11-strips (20) 6 6 4 4 6 6 6 6
openstacks-sat08-strips (30) 12 12 12 12 6 6 6 6
openstacks-sat11-strips (20) 0 0 0 0 0 0 0 0
openstacks-sat14-strips (20) 0 0 0 0 0 0 0 0
openstacks-strips (30) 14 14 15 15 15 15 16 16
organic-synthesis-sat18-strips (20) 1 1 2 2 3 3 3 3
organic-synthesis-split-sat18-strips (20) 2 3 2 1 5 5 5 5
parcprinter-08-strips (30) 17 17 17 17 17 18 18 18
parcprinter-sat11-strips (20) 2 3 3 3 2 3 3 3
parking-sat11-strips (20) 0 0 0 0 0 0 0 0
parking-sat14-strips (20) 0 0 0 0 0 0 0 0
pathways-noneg (30) 5 5 5 6 5 5 5 6
pegsol-08-strips (30) 17 21 24 19 28 28 28 28
pegsol-sat11-strips (20) 4 10 13 9 18 18 18 18
pipesworld-notankage (50) 9 7 10 12 40 40 40 40
pipesworld-tankage (50) 8 5 6 4 15 13 14 14
psr-small (50) 50 48 46 45 50 50 50 50
rovers (40) 17 17 17 12 17 18 18 19
satellite (36) 9 10 9 12 9 10 11 12
scanalyzer-08-strips (30) 11 11 10 8 15 15 15 15
scanalyzer-sat11-strips (20) 3 3 2 2 6 6 6 6
snake-sat18-strips (20) 0 2 1 0 4 5 5 4
sokoban-sat08-strips (30) 19 16 8 3 24 24 24 25
sokoban-sat11-strips (20) 11 10 5 1 15 15 15 15
spider-sat18-strips (20) 4 2 2 0 1 1 1 1
storage (30) 14 13 14 13 19 19 19 19
termes-sat18-strips (20) 0 0 0 0 0 0 0 1
tetris-sat14-strips (20) 0 0 0 0 1 1 0 0
thoughtful-sat14-strips (20) 5 4 1 2 5 5 5 6

42

Coverage hsabs
256 hsabs

512 hsabs
1024 hsabs

2048 hsPDB
256 hsPDB

512 hsPDB
1024 hsPDB

2048

tidybot-sat11-strips (20) 1 4 2 2 19 19 20 20
tpp (30) 11 11 12 12 11 11 12 12
transport-sat08-strips (30) 6 6 6 6 6 7 7 7
transport-sat11-strips (20) 0 0 0 0 0 0 0 0
transport-sat14-strips (20) 0 0 0 0 0 0 0 0
trucks-strips (30) 9 9 9 8 9 9 9 9
visitall-sat11-strips (20) 0 0 0 0 0 0 0 0
visitall-sat14-strips (20) 0 0 0 0 0 0 0 0
woodworking-sat08-strips (30) 6 5 5 4 6 6 6 6
woodworking-sat11-strips (20) 1 1 1 1 1 1 1 1
zenotravel (20) 7 4 3 3 10 10 10 10

Sum (1816) 581 561 513 455 732 747 758 768

Table A.2: Coverage of single abstract DDA heuristics and corresponding PDBs.

Coverage hmPDB
atomic hmPDB

128 hmPDB
256 hmPDB

512 hmPDB
1024 hmabs

atomic hmabs
128 hmabs

256 hmabs
512 hmabs

1024

agricola18 (20) 10 14 15 16 16 9 13 15 15 15
airport (50) 29 29 29 29 28 32 32 33 34 35
barman11 (20) 4 14 14 14 16 4 0 0 0 0
barman14 (20) 0 3 3 3 4 0 0 0 0 0
blocks (35) 35 35 35 35 35 35 35 35 35 35
childsnack14 (20) 0 0 0 0 0 0 0 0 0 0
data-network18 (20) 1 1 1 1 1 1 0 0 0 0
depot (22) 12 12 14 14 14 9 10 10 9 10
driverlog (20) 16 16 17 16 17 13 12 13 13 12
elevators08 (30) 2 7 8 8 6 7 8 8 8 7
elevators11 (20) 0 0 0 0 0 0 0 0 0 0
floortile11 (20) 1 1 0 0 2 2 2 2 2 2
floortile14 (20) 0 0 1 1 0 2 2 2 2 2
freecell (80) 75 76 76 76 76 78 73 77 77 77
ged14 (20) 0 0 0 0 0 0 0 0 0 0
grid (5) 4 4 4 4 4 3 3 3 3 3
gripper (20) 20 20 20 20 20 11 11 11 11 11
hiking14 (20) 20 20 20 20 20 20 14 13 12 12
logistics00 (28) 28 28 28 28 28 22 22 22 22 22
logistics98 (35) 35 35 35 35 35 8 8 7 7 7
miconic (150) 150 150 150 150 150 150 150 150 150 150
movie (30) 30 30 30 30 30 30 30 30 30 30
mprime (35) 25 25 25 25 25 25 23 20 22 23
mystery (30) 17 17 17 17 16 16 14 16 15 13
nomystery11 (20) 14 12 7 7 7 13 14 12 11 8
openstacks08 (30) 6 6 6 6 6 30 30 30 30 30
openstacks11 (20) 0 0 0 0 0 16 16 16 16 16
openstacks14 (20) 0 0 0 0 0 11 10 10 10 10
openstacks (30) 26 27 27 27 27 26 27 27 27 27
organic-synthesis18 (20) 3 3 3 3 3 3 3 3 3 3
organic-synthesis-split18 (20) 5 5 5 5 5 5 5 5 5 5
parcprinter-08 (30) 12 12 12 12 12 22 22 22 22 22
parcprinter11 (20) 0 0 0 0 0 12 13 13 13 13
parking11 (20) 0 0 0 0 0 0 0 0 0 0

43

Coverage hmPDB
atomic hmPDB

128 hmPDB
256 hmPDB

512 hmPDB
1024 hmabs

atomic hmabs
128 hmabs

256 hmabs
512 hmabs

1024

parking14 (20) 0 0 0 0 0 0 0 0 0 0
pathways-noneg (30) 6 6 6 6 6 6 6 6 6 6
pegsol-08 (30) 28 29 30 30 30 30 30 30 30 30
pegsol11 (20) 18 19 20 20 20 20 20 20 20 20
pipesworld-notankage (50) 40 39 39 38 38 39 37 37 37 37
pipesworld-tankage (50) 16 17 17 15 14 17 15 15 16 16
psr-small (50) 50 50 50 50 50 50 50 50 50 50
rovers (40) 21 29 29 29 29 21 28 26 24 24
satellite (36) 18 18 18 18 18 16 14 14 15 14
scanalyzer-08 (30) 30 28 29 30 30 14 14 14 14 14
scanalyzer11 (20) 20 18 20 20 20 5 5 5 5 5
snake18 (20) 5 7 7 7 7 5 6 5 6 5
sokoban08 (30) 25 17 17 17 17 23 22 22 22 22
sokoban11 (20) 15 7 7 7 7 14 12 12 12 12
spider18 (20) 9 9 9 9 9 7 9 9 9 8
storage (30) 19 18 18 18 18 18 16 16 16 16
termes18 (20) 10 11 11 11 12 5 5 5 5 5
tetris14 (20) 20 18 19 19 19 20 17 17 17 16
thoughtful14 (20) 5 9 12 12 14 5 7 7 7 7
tidybot11 (20) 19 19 19 19 19 19 14 14 14 15
tpp (30) 9 9 9 9 9 29 29 29 29 29
transport08 (30) 30 30 30 30 30 12 12 12 12 12
transport11 (20) 20 20 20 20 20 0 0 0 0 0
transport14 (20) 17 17 17 17 17 0 0 0 0 0
trucks (30) 9 9 9 9 8 9 7 7 7 7
visitall11 (20) 20 20 20 20 20 5 4 4 5 5
visitall14 (20) 20 20 20 20 20 0 0 0 0 0
woodworking08 (30) 11 9 9 9 9 10 10 10 10 10
woodworking11 (20) 1 1 1 1 1 1 1 1 1 1
zenotravel (20) 16 16 16 16 16 13 13 13 12 13

Sum (1816) 1107 1121 1130 1128 1130 1028 1005 1005 1005 999

Table A.3: Coverage of configurations using multiple abstract DDA heuristics and compared to analogous PDB configurations.

44

Coverage hDDA hbw
rnd-flim1k(ssize=500) hfw-flim1k(ssize=125) hsabs

256 hmabs
atomic

agricola-sat18-strips (20) 0 11 13 8 9
airport (50) 1 18 22 27 32
barman-sat11-strips (20) 0 0 0 0 4
barman-sat14-strips (20) 0 0 0 0 0
blocks (35) 9 21 21 20 35
childsnack-sat14-strips (20) 0 0 0 0 0
data-network-sat18-strips (20) 0 0 0 1 1
depot (22) 1 6 5 7 9
driverlog (20) 1 6 7 8 13
elevators-sat08-strips (30) 0 3 2 3 7
elevators-sat11-strips (20) 0 0 0 0 0
floortile-sat11-strips (20) 0 0 0 0 2
floortile-sat14-strips (20) 0 1 0 0 2
freecell (80) 0 25 19 40 78
ged-sat14-strips (20) 0 0 0 0 0
grid (5) 0 2 0 3 3
gripper (20) 3 9 9 10 11
hiking-sat14-strips (20) 0 7 11 12 20
logistics00 (28) 3 10 10 15 22
logistics98 (35) 0 3 2 3 8
miconic (150) 25 80 63 75 150
movie (30) 30 30 30 30 30
mprime (35) 0 20 18 24 25
mystery (30) 1 10 7 14 16
nomystery-sat11-strips (20) 1 6 4 6 13
openstacks-sat08-strips (30) 3 8 6 12 30
openstacks-sat11-strips (20) 0 0 0 0 16
openstacks-sat14-strips (20) 0 0 0 0 11
openstacks-strips (30) 5 7 7 14 26
organic-synthesis-sat18-strips (20) 0 3 2 1 3
organic-synthesis-split-sat18-strips (20) 0 1 3 2 5
parcprinter-08-strips (30) 3 11 10 17 22
parcprinter-sat11-strips (20) 0 0 0 2 12
parking-sat11-strips (20) 0 0 0 0 0
parking-sat14-strips (20) 0 0 0 0 0
pathways-noneg (30) 1 4 4 5 6
pegsol-08-strips (30) 2 30 29 17 30
pegsol-sat11-strips (20) 0 20 19 4 20
pipesworld-notankage (50) 0 21 14 9 39
pipesworld-tankage (50) 0 15 13 8 17
psr-small (50) 38 50 50 50 50
rovers (40) 4 15 8 17 21
satellite (36) 2 8 7 9 16
scanalyzer-08-strips (30) 3 12 12 11 14
scanalyzer-sat11-strips (20) 0 4 4 3 5
snake-sat18-strips (20) 0 18 5 0 5
sokoban-sat08-strips (30) 0 15 18 19 23
sokoban-sat11-strips (20) 0 6 9 11 14
spider-sat18-strips (20) 0 2 1 4 7
storage (30) 7 17 16 14 18
termes-sat18-strips (20) 0 0 0 0 5
tetris-sat14-strips (20) 0 0 1 0 20
thoughtful-sat14-strips (20) 0 3 3 5 5

45

Coverage hDDA hbw
rnd-flim1k(ssize=500) hfw-flim1k(ssize=125) hsabs

256 hmabs
atomic

tidybot-sat11-strips (20) 0 0 3 1 19
tpp (30) 4 8 7 11 29
transport-sat08-strips (30) 3 6 6 6 12
transport-sat11-strips (20) 0 0 0 0 0
transport-sat14-strips (20) 0 0 0 0 0
trucks-strips (30) 2 8 7 9 9
visitall-sat11-strips (20) 0 0 0 0 5
visitall-sat14-strips (20) 0 0 0 0 0
woodworking-sat08-strips (30) 2 5 5 6 10
woodworking-sat11-strips (20) 1 1 1 1 1
zenotravel (20) 2 9 8 7 13

Sum (1816) 157 575 521 581 1028

Table A.4: Coverage comparison of best configurations of each approach.

46

Declaration on Scientific
Integrity
Erklärung zur
wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud
beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Alexander Rovner

Matriculation number — Matrikelnummer

2015-050-289

Title of work — Titel der Arbeit

Potential Heuristics for Satisficing Planning

Type of work — Typ der Arbeit

Master’s Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged
the assistance received in completing this work and that it contains no material that has
not been formally acknowledged. I have mentioned all source materials used and have cited
these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene
Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln
verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten
wissenschaftlichen Regeln zitiert.

Basel, February 4, 2020

Signature — Unterschrift

47

