
Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics in Satisficing Planning

Alexander Rovner

University of Basel

February 12, 2020



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Classical Planning

SAS+ Planning Task Π = 〈V , I , γ,O〉:

state variables V = {player-pos, box-pos}

initial state I goal state s? ⊇ γ

set of operators O, where each o ∈ O has a precondition, effect,
and a cost
Goal: find a sequence of actions that transforms I into a goal state



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Classical Planning

SAS+ Planning Task Π = 〈V , I , γ,O〉:
state variables V = {player-pos, box-pos}

initial state I goal state s? ⊇ γ

set of operators O, where each o ∈ O has a precondition, effect,
and a cost
Goal: find a sequence of actions that transforms I into a goal state



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Classical Planning

SAS+ Planning Task Π = 〈V , I , γ,O〉:
state variables V = {player-pos, box-pos}

initial state I goal state s? ⊇ γ

set of operators O, where each o ∈ O has a precondition, effect,
and a cost
Goal: find a sequence of actions that transforms I into a goal state



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Classical Planning

SAS+ Planning Task Π = 〈V , I , γ,O〉:
state variables V = {player-pos, box-pos}

initial state I goal state s? ⊇ γ

set of operators O, where each o ∈ O has a precondition, effect,
and a cost

Goal: find a sequence of actions that transforms I into a goal state



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Classical Planning

SAS+ Planning Task Π = 〈V , I , γ,O〉:
state variables V = {player-pos, box-pos}

initial state I goal state s? ⊇ γ

set of operators O, where each o ∈ O has a precondition, effect,
and a cost
Goal: find a sequence of actions that transforms I into a goal state



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Task induces a graph called transition system/state space.

Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

Search algorithms are guided towards the goal by heuristic
functions.

In this thesis: potential heuristics.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Task induces a graph called transition system/state space.

Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

Search algorithms are guided towards the goal by heuristic
functions.

In this thesis: potential heuristics.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

DDA Heuristics

s0start

s1 s2

s3

s4 s5

s6



Definitions DDA Complexity Approximation Algorithms Results Conclusion

DDA Heuristics

s0start

s1 s2

s3

s4 s5

s6

States that are reachable and solvable are called alive.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

DDA Heuristics

5start

6 3

6

4 0

0

A heuristic is descending if every alive non-goal state has an
improving successor.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

DDA Heuristics

5start

6 3

6

4 3

0

A heuristic is dead-end avoiding if only alive successors are
improving.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: IsDDA decision problem

Given: heuristic h and task Π
Question: is h DDA in task Π?

Claim

IsDDA is a PSPACE-complete problem.

Proof idea: show that NotDDA (complement of IsDDA) is
PSPACE-complete and use the fact that PSPACE=coPSPACE.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: IsDDA decision problem

Given: heuristic h and task Π
Question: is h DDA in task Π?

Claim

IsDDA is a PSPACE-complete problem.

Proof idea: show that NotDDA (complement of IsDDA) is
PSPACE-complete and use the fact that PSPACE=coPSPACE.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: IsDDA decision problem

Given: heuristic h and task Π
Question: is h DDA in task Π?

Claim

IsDDA is a PSPACE-complete problem.

Proof idea: show that NotDDA (complement of IsDDA) is
PSPACE-complete and use the fact that PSPACE=coPSPACE.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: IsDDA decision problem

Given: heuristic h and task Π
Question: is h DDA in task Π?

Claim

IsDDA is a PSPACE-complete problem.

Proof idea: show that NotDDA (complement of IsDDA) is
PSPACE-complete and use the fact that PSPACE=coPSPACE.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

PSPACE-hardness of NotDDA

Key Observations

1 If task Π is unsolvable then it has no alive states.

2 In tasks without alive states, any heuristic is DDA.

Proof: NotDDA is PSPACE-hard

Reduction from PlanEx: given task Π...

construct a heuristic that is never DDA (e.g. ĥ(s) = 0 ∀s)

Π ∈ PlanEx iff 〈Π, ĥ〉 ∈ NotDDA.

Π 6∈ PlanEx iff 〈Π, ĥ〉 6∈ NotDDA.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

PSPACE-hardness of NotDDA

Key Observations

1 If task Π is unsolvable then it has no alive states.

2 In tasks without alive states, any heuristic is DDA.

Proof: NotDDA is PSPACE-hard

Reduction from PlanEx: given task Π...

construct a heuristic that is never DDA (e.g. ĥ(s) = 0 ∀s)

Π ∈ PlanEx iff 〈Π, ĥ〉 ∈ NotDDA.

Π 6∈ PlanEx iff 〈Π, ĥ〉 6∈ NotDDA.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

PSPACE-hardness of NotDDA

Key Observations

1 If task Π is unsolvable then it has no alive states.

2 In tasks without alive states, any heuristic is DDA.

Proof: NotDDA is PSPACE-hard

Reduction from PlanEx: given task Π...

construct a heuristic that is never DDA (e.g. ĥ(s) = 0 ∀s)

Π ∈ PlanEx iff 〈Π, ĥ〉 ∈ NotDDA.

Π 6∈ PlanEx iff 〈Π, ĥ〉 6∈ NotDDA.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

PSPACE-hardness of NotDDA

Key Observations

1 If task Π is unsolvable then it has no alive states.

2 In tasks without alive states, any heuristic is DDA.

Proof: NotDDA is PSPACE-hard

Reduction from PlanEx: given task Π...

construct a heuristic that is never DDA (e.g. ĥ(s) = 0 ∀s)

Π ∈ PlanEx iff 〈Π, ĥ〉 ∈ NotDDA.

Π 6∈ PlanEx iff 〈Π, ĥ〉 6∈ NotDDA.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

PSPACE-membership of NotDDA

PSPACE algorithm sketch

For each state s of the planning task:

1 if s is not alive ⇒ continue
2 for all successors s ′ of s:

1 if s ′ is not alive and h(s ′) < h(s) ⇒ accept

3 if there exists no s ′ with h(s ′) < h(s) ⇒ accept

otherwise fail

DDA computation is as hard as planning itself!
⇒ Need approximation algorithms.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

PSPACE-membership of NotDDA

PSPACE algorithm sketch

For each state s of the planning task:

1 if s is not alive ⇒ continue
2 for all successors s ′ of s:

1 if s ′ is not alive and h(s ′) < h(s) ⇒ accept

3 if there exists no s ′ with h(s ′) < h(s) ⇒ accept

otherwise fail

DDA computation is as hard as planning itself!
⇒ Need approximation algorithms.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0 (1)

s.t.
∨

s′∈succ(s)

h(s ′) + 1 ≤ h(s) for s ∈ SA (2)

h(s ′) ≥ h(s) for 〈s, s ′〉 ∈ TD (3)

SA: set of all alive states
TD : set of all transitions from an alive state to an unsolvable one
Problem: Solver usually fails to find an initial solution.
⇒ Add slack variables to the model.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0 (1)

s.t.
∨

s′∈succ(s)

h(s ′) + 1 ≤ h(s) for s ∈ SA (2)

h(s ′) ≥ h(s) for 〈s, s ′〉 ∈ TD (3)

SA: set of all alive states
TD : set of all transitions from an alive state to an unsolvable one

Problem: Solver usually fails to find an initial solution.
⇒ Add slack variables to the model.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0 (1)

s.t.
∨

s′∈succ(s)

h(s ′) + 1 ≤ h(s) for s ∈ SA (2)

h(s ′) ≥ h(s) for 〈s, s ′〉 ∈ TD (3)

SA: set of all alive states
TD : set of all transitions from an alive state to an unsolvable one
Problem: Solver usually fails to find an initial solution.
⇒ Add slack variables to the model.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Naive Approach

MIP model with slack variables:

min
∑
s∈SA

αs +
∑

〈s,s′〉∈TD

β(s,s′) (4)

s.t.
∨

s′∈succ(s)

h(s ′) + 1− αs ≤ h(s) for s ∈ SA (5)

h(s ′)+β〈s,s′〉 ≥ h(s) for 〈s, s ′〉 ∈ TD (6)

αs ≥ 0 for s ∈ SA (7)

β〈s,s′〉 ≥ 0 for 〈s, s ′〉 ∈ TD (8)

Simple first solution: assign large values to all α and β

Can stop MIP solver early and work with an approximation.

Problem: this does not scale!



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Naive Approach

MIP model with slack variables:

min
∑
s∈SA

αs +
∑

〈s,s′〉∈TD

β(s,s′) (4)

s.t.
∨

s′∈succ(s)

h(s ′) + 1− αs ≤ h(s) for s ∈ SA (5)

h(s ′)+β〈s,s′〉 ≥ h(s) for 〈s, s ′〉 ∈ TD (6)

αs ≥ 0 for s ∈ SA (7)

β〈s,s′〉 ≥ 0 for 〈s, s ′〉 ∈ TD (8)

Simple first solution: assign large values to all α and β

Can stop MIP solver early and work with an approximation.

Problem: this does not scale!



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Forward-Sampling

Simple Alternative: construct the same MIP over a random
subset of all states.

Main Question: how to generate the subset?
⇒ perform a random walk starting in the initial state

The sample will only contain reachable states
⇒ can only assume that they are also solvable



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Backward-Sampling

Can also generate the sample by walking backwards from
some goal

This also gives us the goal-distance of each state

Idea: sample a pair of states where one is closer to the goal
than the other

⇒ can formulate an LP instead of a MIP

min
∑

(s,s′)∈Ssample

α(s,s′) (9)

s.t. h(s)− h(s ′) + α(s,s′) ≥ 1 (10)

α(s,s′) ≥ 0 for (s, s ′) ∈ Ssample (11)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Backward-Sampling

Can also generate the sample by walking backwards from
some goal

This also gives us the goal-distance of each state

Idea: sample a pair of states where one is closer to the goal
than the other
⇒ can formulate an LP instead of a MIP

min
∑

(s,s′)∈Ssample

α(s,s′) (9)

s.t. h(s)− h(s ′) + α(s,s′) ≥ 1 (10)

α(s,s′) ≥ 0 for (s, s ′) ∈ Ssample (11)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Backward-Sampling

Can also generate the sample by walking backwards from
some goal

This also gives us the goal-distance of each state

Idea: sample a pair of states where one is closer to the goal
than the other
⇒ can formulate an LP instead of a MIP

min
∑

(s,s′)∈Ssample

α(s,s′) (9)

s.t. h(s)− h(s ′) + α(s,s′) ≥ 1 (10)

α(s,s′) ≥ 0 for (s, s ′) ∈ Ssample (11)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Abstract DDA Potential Heuristics

Naive algorithm does not scale due to the large state space

Idea: use abstractions to obtain a smaller state space

Abstract DDA Potential Heuristics:
1 use pattern selection algorithm to select an abstraction P
2 create corresponding abstract task ΠP

3 use exact algorithm to compute DDA heuristic hDDA
P for ΠP

4 use hDDA
P for searching the original state space

we can combine multiple such heuristics by summation



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Abstract DDA Potential Heuristics

Naive algorithm does not scale due to the large state space

Idea: use abstractions to obtain a smaller state space

Abstract DDA Potential Heuristics:
1 use pattern selection algorithm to select an abstraction P
2 create corresponding abstract task ΠP

3 use exact algorithm to compute DDA heuristic hDDA
P for ΠP

4 use hDDA
P for searching the original state space

we can combine multiple such heuristics by summation



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Abstract DDA Potential Heuristics

Naive algorithm does not scale due to the large state space

Idea: use abstractions to obtain a smaller state space

Abstract DDA Potential Heuristics:
1 use pattern selection algorithm to select an abstraction P
2 create corresponding abstract task ΠP

3 use exact algorithm to compute DDA heuristic hDDA
P for ΠP

4 use hDDA
P for searching the original state space

we can combine multiple such heuristics by summation



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Abstract DDA Potential Heuristics

Naive algorithm does not scale due to the large state space

Idea: use abstractions to obtain a smaller state space

Abstract DDA Potential Heuristics:
1 use pattern selection algorithm to select an abstraction P
2 create corresponding abstract task ΠP

3 use exact algorithm to compute DDA heuristic hDDA
P for ΠP

4 use hDDA
P for searching the original state space

we can combine multiple such heuristics by summation



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Experimental Setup

Setup:

1816 planning tasks

8 GB memory limit

30 min time limit

systematically generate all features up to dimension 2



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Naive Approach

157 out of 1816 tasks solved

Scalability issues:

too many constraints
too many features
MIP hardness



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Naive Approach

157 out of 1816 tasks solved

Scalability issues:

too many constraints
too many features
MIP hardness



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Forward-Sampling

Scalability issues:

too many constraints
⇒ formulate MIP over a sample (sz ∈ {125, 250, 500, 1000})
too many features
⇒ use all features vs. use only 1000 randomly selected ones

MIP hardness ⇒ unaddressed

all features 1000 features
sz = 125 442 521

sz = 250 431 512

sz = 500 409 493

sz = 1000 381 490



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Forward-Sampling

Scalability issues:

too many constraints
⇒ formulate MIP over a sample (sz ∈ {125, 250, 500, 1000})
too many features
⇒ use all features vs. use only 1000 randomly selected ones

MIP hardness ⇒ unaddressed

all features 1000 features
sz = 125 442 521

sz = 250 431 512

sz = 500 409 493

sz = 1000 381 490



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Backward-Sampling

Scalability issues:

too many constraints
⇒ formulate LP over a sample (sz ∈ {125, 250, 500, 1000})
too many features
⇒ use all features vs. use only 1000 randomly selected ones

MIP hardness ⇒ use an LP model

all features 1000 features
sz = 125 469 538

sz = 250 477 560

sz = 500 479 575

sz = 1000 487 575



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Backward-Sampling

Scalability issues:

too many constraints
⇒ formulate LP over a sample (sz ∈ {125, 250, 500, 1000})
too many features
⇒ use all features vs. use only 1000 randomly selected ones

MIP hardness ⇒ use an LP model

all features 1000 features
sz = 125 469 538

sz = 250 477 560

sz = 500 479 575

sz = 1000 487 575



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Single Abstract DDA Heuristic

Scalability issues:

too many constraints
⇒ formulate MIP for an abstraction
(sz ∈ {256, 512, 1024, 2048})
too many features ⇒ resolved due to abstraction

MIP hardness ⇒ unaddressed

single abs-DDA single PDB
sz = 256 581 732

sz = 512 561 747

sz = 1024 513 758

sz = 2048 455 768



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Single Abstract DDA Heuristic

Scalability issues:

too many constraints
⇒ formulate MIP for an abstraction
(sz ∈ {256, 512, 1024, 2048})
too many features ⇒ resolved due to abstraction

MIP hardness ⇒ unaddressed

single abs-DDA single PDB
sz = 256 581 732

sz = 512 561 747

sz = 1024 513 758

sz = 2048 455 768



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Multiple Abstract DDA Heuristics

Scalability issues:

too many constraints
⇒ formulate MIP for an abstraction
(sz ∈ {128, 256, 512, 1024}) and atomic abstractions

too many features ⇒ resolved due to abstraction

MIP hardness ⇒ unaddressed

multiple abs-DDA multiple PDB
atomic 1028 1107

sz = 128 1005 1121

sz = 256 1005 1130

sz = 512 1005 1128

sz = 1024 999 1130



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage: Multiple Abstract DDA Heuristics

Scalability issues:

too many constraints
⇒ formulate MIP for an abstraction
(sz ∈ {128, 256, 512, 1024}) and atomic abstractions

too many features ⇒ resolved due to abstraction

MIP hardness ⇒ unaddressed

multiple abs-DDA multiple PDB
atomic 1028 1107

sz = 128 1005 1121

sz = 256 1005 1130

sz = 512 1005 1128

sz = 1024 999 1130



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Coverage

bw-sampling multiple abs-DDA multiple PDBs

logistics98 3 8 35
visitall14 0 0 20

openstacks08 8 30 6
parcprinter11 0 12 0

tpp 8 29 9
snake18 18 5 7



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Heuristic Quality

10−1 101 103 105 107 109
10−1

102

105

108

109

109

single PDB (256)

si
n

gl
e

ab
s-

D
D

A
(2

56
)

expansions



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Heuristic Quality

10−1 101 103 105 107 109
10−1

102

105

108

109

109

multiple PDB (128)

m
u

lt
ip

le
ab

s-
D

D
A

(1
28

)
expansions



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Conclusion

DDA heuristics are PSPACE-hard to compute

approximation algorithms are necessary
⇒ most promising approach: abs-DDA potential heuristics

outscaled by PDBs (PDB computation is more efficient)

Heuristic quality is comparable to PDBs


	Definitions
	subsec

	DDA Complexity
	subsec

	Approximation Algorithms
	Results
	subsec

	Conclusion
	subsec


