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Classical Planning

SAS+ Planning Task Π = 〈V , I , γ,O〉:

state variables V = {player-pos, box-pos}

initial state I goal state s? ⊇ γ

set of operators O, where each o ∈ O has a precondition, effect,
and a cost
Goal: find a sequence of actions that transforms I into a goal state
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Potential Heuristics

Task induces a graph called transition system/state space.

Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

Search algorithms are guided towards the goal by heuristic
functions.

In this thesis: potential heuristics.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Task induces a graph called transition system/state space.

Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

Search algorithms are guided towards the goal by heuristic
functions.

In this thesis: potential heuristics.



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F ∈ F that are present in the given
state s:

hpot(s) :=
∑
F∈F

w(F )[F ⊆ s]

where w(F ) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F ) for each F ∈ F?

In Optimal Planning: choose w(F ) such that hpot is admissible

In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

DDA Heuristics

s0start

s1 s2

s3

s4 s5

s6



Definitions DDA Complexity Approximation Algorithms Results Conclusion

DDA Heuristics
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States that are reachable and solvable are called alive.
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DDA Heuristics
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A heuristic is descending if every alive non-goal state has an
improving successor.
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DDA Heuristics
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A heuristic is dead-end avoiding if only alive successors are
improving.
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Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: IsDDA decision problem

Given: heuristic h and task Π
Question: is h DDA in task Π?

Claim

IsDDA is a PSPACE-complete problem.

Proof idea: show that NotDDA (complement of IsDDA) is
PSPACE-complete and use the fact that PSPACE=coPSPACE.
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PSPACE-hardness of NotDDA

Key Observations

1 If task Π is unsolvable then it has no alive states.

2 In tasks without alive states, any heuristic is DDA.

Proof: NotDDA is PSPACE-hard

Reduction from PlanEx: given task Π...

construct a heuristic that is never DDA (e.g. ĥ(s) = 0 ∀s)

Π ∈ PlanEx iff 〈Π, ĥ〉 ∈ NotDDA.

Π 6∈ PlanEx iff 〈Π, ĥ〉 6∈ NotDDA.
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PSPACE-membership of NotDDA

PSPACE algorithm sketch

For each state s of the planning task:

1 if s is not alive ⇒ continue
2 for all successors s ′ of s:

1 if s ′ is not alive and h(s ′) < h(s) ⇒ accept

3 if there exists no s ′ with h(s ′) < h(s) ⇒ accept

otherwise fail

DDA computation is as hard as planning itself!
⇒ Need approximation algorithms.
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Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0 (1)

s.t.
∨

s′∈succ(s)

h(s ′) + 1 ≤ h(s) for s ∈ SA (2)

h(s ′) ≥ h(s) for 〈s, s ′〉 ∈ TD (3)

SA: set of all alive states
TD : set of all transitions from an alive state to an unsolvable one
Problem: Solver usually fails to find an initial solution.
⇒ Add slack variables to the model.
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Naive Approach

MIP model with slack variables:

min
∑
s∈SA

αs +
∑

〈s,s′〉∈TD

β(s,s′) (4)

s.t.
∨

s′∈succ(s)

h(s ′) + 1− αs ≤ h(s) for s ∈ SA (5)

h(s ′)+β〈s,s′〉 ≥ h(s) for 〈s, s ′〉 ∈ TD (6)

αs ≥ 0 for s ∈ SA (7)

β〈s,s′〉 ≥ 0 for 〈s, s ′〉 ∈ TD (8)

Simple first solution: assign large values to all α and β

Can stop MIP solver early and work with an approximation.

Problem: this does not scale!
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Forward-Sampling

Simple Alternative: construct the same MIP over a random
subset of all states.

Main Question: how to generate the subset?
⇒ perform a random walk starting in the initial state

The sample will only contain reachable states
⇒ can only assume that they are also solvable
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Backward-Sampling

Can also generate the sample by walking backwards from
some goal

This also gives us the goal-distance of each state

Idea: sample a pair of states where one is closer to the goal
than the other

⇒ can formulate an LP instead of a MIP

min
∑

(s,s′)∈Ssample

α(s,s′) (9)

s.t. h(s)− h(s ′) + α(s,s′) ≥ 1 (10)

α(s,s′) ≥ 0 for (s, s ′) ∈ Ssample (11)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Backward-Sampling

Can also generate the sample by walking backwards from
some goal

This also gives us the goal-distance of each state

Idea: sample a pair of states where one is closer to the goal
than the other
⇒ can formulate an LP instead of a MIP

min
∑

(s,s′)∈Ssample

α(s,s′) (9)

s.t. h(s)− h(s ′) + α(s,s′) ≥ 1 (10)

α(s,s′) ≥ 0 for (s, s ′) ∈ Ssample (11)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Backward-Sampling

Can also generate the sample by walking backwards from
some goal

This also gives us the goal-distance of each state

Idea: sample a pair of states where one is closer to the goal
than the other
⇒ can formulate an LP instead of a MIP

min
∑

(s,s′)∈Ssample

α(s,s′) (9)

s.t. h(s)− h(s ′) + α(s,s′) ≥ 1 (10)

α(s,s′) ≥ 0 for (s, s ′) ∈ Ssample (11)



Definitions DDA Complexity Approximation Algorithms Results Conclusion

Abstract DDA Potential Heuristics

Naive algorithm does not scale due to the large state space

Idea: use abstractions to obtain a smaller state space

Abstract DDA Potential Heuristics:
1 use pattern selection algorithm to select an abstraction P
2 create corresponding abstract task ΠP

3 use exact algorithm to compute DDA heuristic hDDA
P for ΠP

4 use hDDA
P for searching the original state space

we can combine multiple such heuristics by summation
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Experimental Setup

Setup:

1816 planning tasks

8 GB memory limit

30 min time limit

systematically generate all features up to dimension 2
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Coverage: Naive Approach

157 out of 1816 tasks solved

Scalability issues:

too many constraints
too many features
MIP hardness
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Coverage: Forward-Sampling

Scalability issues:

too many constraints
⇒ formulate MIP over a sample (sz ∈ {125, 250, 500, 1000})
too many features
⇒ use all features vs. use only 1000 randomly selected ones

MIP hardness ⇒ unaddressed

all features 1000 features
sz = 125 442 521

sz = 250 431 512

sz = 500 409 493

sz = 1000 381 490
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Coverage: Single Abstract DDA Heuristic

Scalability issues:

too many constraints
⇒ formulate MIP for an abstraction
(sz ∈ {256, 512, 1024, 2048})
too many features ⇒ resolved due to abstraction

MIP hardness ⇒ unaddressed

single abs-DDA single PDB
sz = 256 581 732

sz = 512 561 747

sz = 1024 513 758

sz = 2048 455 768
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Coverage: Multiple Abstract DDA Heuristics

Scalability issues:

too many constraints
⇒ formulate MIP for an abstraction
(sz ∈ {128, 256, 512, 1024}) and atomic abstractions

too many features ⇒ resolved due to abstraction

MIP hardness ⇒ unaddressed

multiple abs-DDA multiple PDB
atomic 1028 1107
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Coverage

bw-sampling multiple abs-DDA multiple PDBs

logistics98 3 8 35
visitall14 0 0 20

openstacks08 8 30 6
parcprinter11 0 12 0

tpp 8 29 9
snake18 18 5 7
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Heuristic Quality
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Conclusion

DDA heuristics are PSPACE-hard to compute

approximation algorithms are necessary
⇒ most promising approach: abs-DDA potential heuristics

outscaled by PDBs (PDB computation is more efficient)

Heuristic quality is comparable to PDBs
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