
Pattern Selection using
Counterexample-guided Abstraction

Refinement
Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

http://ai.cs.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Silvan Sievers

Alexander Rovner

alex.rovner@stud.unibas.ch

2015-050-289

12.08.2018

Acknowledgments

I would like to thank Prof. Dr. Malte Helmert for the opportunity to write this thesis

as well as Dr. Silvan Sievers for supervising the project and providing valuable insight and

feedback. I also want to thank Dr. Pascal Bercher for his input on the complexity of the plan

interleaving problem. Calculations were performed at sciCORE (http://scicore.unibas.ch/)

scientific computing center at University of Basel.

Abstract

Pattern Databases are a powerful class of abstraction heuristics which provide admissible

path cost estimates by computing exact solution costs for all states of a smaller task. Said

task is obtained by abstracting away variables of the original problem. Abstractions with

few variables offer weak estimates, while introduction of additional variables is guaranteed

to at least double the amount of memory needed for the pattern database. In this thesis,

we present a class of algorithms based on counterexample-guided abstraction refinement

(CEGAR), which exploit additivity relations of patterns to produce pattern collections from

which we can derive heuristics that are both informative and computationally tractable.

We show that our algorithms are competitive with already existing pattern generators by

comparing their performance on a variety of planning tasks.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Planning Tasks . 3

2.2 Heuristic Functions . 4

2.3 Pattern Database Heuristics . 4

2.3.1 Additivity of Patterns . 5

2.3.2 Causal Graph . 6

2.3.3 Canonical Heuristic . 6

3 Constructing Pattern Collections with CEGAR 8

3.1 CEGAR for Pattern Databases . 8

3.2 The Initial Pattern Collection . 9

3.3 Flaws . 10

3.3.1 Solving Abstract Tasks . 11

3.3.2 Abstract Plan Validation . 11

3.3.3 Flaw Retrieval for CEGARfadd . 12

3.3.4 Flaw Retrieval for CEGARnadd . 12

3.4 Pattern Refinement . 13

3.4.1 Refinement in CEGARnadd . 13

3.4.2 Refinement in CEGARfadd . 14

3.5 Convergence . 14

4 Merge Avoidance 16

4.1 Least-Common-First Flaw Selection . 16

4.2 Blacklisting . 17

4.3 Partial Additivity . 18

5 Evaluation 21

5.1 Initial Collections and Flaw Selection . 21

5.2 Blacklisting . 24

Table of Contents v

5.3 iPDB . 26

6 Conclusion and Future Work 28

Bibliography 29

Declaration on Scientific Integrity 31

1
Introduction

Consider a problem from the logistics domain (McDermott, 2000). Here the goal is to

transport a number of packages by truck or plane between and inside cities. Solving such

a task usually boils down to finding an appropriate set of travel instructions, also called a

plan, whose execution will result in all packages being delivered to their destinations.

All actions, however, are associated with certain costs, as trucks and planes need to be

refueled and workers must be paid. For this reason, the goal in cost-optimal planning is

to find a plan that not only solves the given task, but also does so as cheaply as possible.

In practice, the search for a solution implies the need to evaluate many different courses of

action until the best plan has been found. In planning, a state is defined as a set of variables

whose values describe the current situation (e.g. location of packages, trucks and airplanes).

All possible states of a task describe a state space. For large problems, i.e. problems with

many variables that can take on many different values, the state space is so big that it is

not feasible to exhaustively evaluate all possibilies.

Heuristic search algorithms alleviate this problem by expanding the most promising

states first. To this end, they use heuristic functions which estimate the cost of solving the

given task from all states.

The main focus of this thesis are pattern database (PDB) heuristics (Culberson and

Schaeffer, 1998) for domain-independent cost-optimal planning. These heuristics provide

plan cost estimates for the original problem by computing the exact plan cost for subprob-

lems. Each subproblem is induced by a pattern, which determines which variables from the

original problem are to be considered part of the subtask and which are to be discarded.

Because PDBs must compute cost estimates for the entire state space of a subproblem,

it is usually only feasible to generate PDBs for small subtasks, which lack many details

of the original problem. Due to this lack of knowledge, resulting PDBs tend to greatly

underestimate the real plan cost.

To address this issue, modern planners work with multiple different PDBs that are com-

bined into a single informative heuristic using cost partitioning. For a detailed overview of

various cost partitioning techniques, we refer to Seipp et al. (2017). In this thesis, we are

interested in combining PDBs by adding together their individual estimates whenever pos-

sible. Since PDBs are generated from subtasks which, in turn, are induced by patterns, the

Introduction 2

choice of a good pattern collection is essential for the construction of an accurate heuristic.

For this purpose Haslum et al. (2007) introduced the iPDB algorithm, which starts

with a set of small patterns with often uninformative corresponding PDB heuristics and

uses hillclimbing to incrementally improve the pattern collection. Heuristics derived from

this collection are combined in the canonical heuristic function, which identifies subsets of

additive patterns, adds their corresponding PDB estimates and returns the largest estimate

that resulted from the aforementioned summation over additive subsets. Because the nature

of local search precludes some patterns from being reached by iPDB (namely patterns that

are not immediate improvements), Pommerening et al. (2013) presented an algorithm that

systematically generates all interesting patterns up to a certain size.

Counterexample-guided abstraction refinement (CEGAR) (Clarke et al., 2000) is a gen-

eral technique used in model checking to refine abstractions only in necessary places. The

idea is to check an abstraction against the concrete planning problem and indentify critical

information that the abstraction is missing and only then refine the abstraction with said

missing knowledge. In planning, CEGAR was impelemented for Cartesian abstractions by

Seipp and Helmert (2013).

In this thesis, we apply the CEGAR principle to the generation of pattern collections.

Specifically, we present two CEGAR algorithms in Chapter 3: CEGARfadd generates pat-

tern collections where all patterns are pairwise additive, so that their corresponding PDB

estimates can always be added together. CEGARnadd on the other hand, does not force

additivity relations between patterns and relies on the canonical heuristic for combining

resulting patterns.

Unlike Cartesian abstractions, PDBs do not allow for fine-grained refinement. A single

pattern refinement step is guaranteed to at least double the size of the corresponding PDB.

For this reason, CEGAR algorithms for PDBs can run into memory issues. In Chapter 4, we

discuss three techniques for addressing this problem. In Chapter 5, we present the results

of experimental evaluation of our algorithms and compare them to iPDB.

2
Background

In this section we present underlying concepts that are crucial for understanding the algo-

rithms in Chapter 3.

2.1 Planning Tasks
Planning tasks discussed in this thesis will be expressed in the SAS+ planning formalism

(Bäckström and Nebel, 1995). A SAS+ task Π is given by a 4-tuple 〈V, I,G,A〉 with the

following components:

• V: finite set of variables of the planning task. Each variable v ∈ V is associated with a

finite domain Dv. A partial assignment s : Vars(s)→
⋃

v∈Vars(s)Dv is a function that

maps variables v ∈ Vars(s) ⊆ V to values of their respective domains. Furthermore,

we define s[v] as the value of variable v ∈ Vars(s) in partial assignment s. Two partial

assignments s, s′ are said to agree iff s[v] = s′[v] for all variables v ∈ Vars(s) ∩Vars(s′).

• I: initial assignment of the planning task that describes initial values of all variables,

i.e. Vars(I) = V

• G: partial assignment that defines the goal of the planning task. Variables v ∈ Vars(G)

will be referred to as goal variables in cases where this distinction helps to clarify

concepts.

• A: set of actions where each action a ∈ A consists of:

- partial assignment pre(a) that defines preconditions of a.

- effects eff(a), which are also given as a partial assignment.

- cost(a) ∈ R+
0 : the cost of performing action a.

The SAS+ planning task induces the state-space S(Π) = 〈S,A, cost, T, s0, S∗〉 with

• S = Dv1×Dv2× ...×Dvn
with vi ∈ V: Set of all possible assignments s with Vars(s) =

V. These total assignments are called states.

Background 4

• A: set of all actions as defined in Π.

• cost: cost of performing an action

• T ⊆ S ×A×S: set of transitions of the form s
a−→ s′ with s, s′ ∈ S and a is applicable

in s. An action a is applicable in state s iff pre(a) and s agree. The state s′ with

s′[v] = s[v] for all v 6∈ Vars(eff(a)) that agrees with eff(a) is called a successor of s.

• s0: initial state. Corresponds to the initial variable assignment I.

• S∗ ⊆ S: set of goal states: states which agree with the goal assignment G.

A sequence of transitions is called a path. The cost of a path is the sum of costs of its

actions. A path which leads from the initial state to some goal state s∗ ∈ S∗, is called a

plan. In cost-optimal planning, the goal is to find a plan with minimal total cost.

2.2 Heuristic Functions
The problem of finding a plan for the given planning task Π, is equivalent to that of finding a

path from the initial state to some goal state in S(Π). While it is possible to find the optimal

plan by performing an exhaustive search over the entire state-space with, e.g. Dijkstra’s

Algorithm (Dijkstra, 1959), this approach is infeasible for large state-spaces.

Efficient search algorithms like A* (Hart et al., 1968) or IDA* (Korf, 1985) use heuristic

functions to identify and expand only promising successor states. Let S be the set of states

of S(Π) of some planning task Π, then a heuristic is a function h : S → R+
0 . Such a function

provides the estimated cost of reaching a goal from any given state of the state-space. The

perfect heuristic h∗ is a function that always returns the exact plan cost for all states. A

heuristic h that never overestimates the exact cost, i.e. h(s) ≤ h∗(s) for all s, is called

admissible.

Admissible heuristics are an important class of heuristics in cost-optimal planning, since

plans found by A* equipped with such a heuristic are guaranteed to be optimal. The amount

of time and memory that is needed to find an optimal solution with A* search largely depends

on the quality of the estimates generated by the heuristic. Given two admissible heuristics

h1 and h2, we say that h2 dominates h1 if h1(s) ≤ h2(s) for all s ∈ S. This means that cost

estimates provided by h1 are never better than those returned by h2.

In most cases, the more precise the estimator used, the fewer search node expansions

will A* need to find a solution. Therefore, we are generally interested in finding the most

dominant admissible heuristic that can still be realistically computed under the given time

and memory constraints.

2.3 Pattern Database Heuristics
One way of obtaining admissible heuristics is to use pattern abstractions. Here, the goal is

to reduce the original planning task to a smaller task by abstracting away variables of the

original problem. Since the number of states in a state-space is given as

|S| = |Dv1 ×Dv2 × ...×Dvn | = |Dv1 | · |Dv2 | · ... · |Dvn | (2.1)

Background 5

omitting even a single variable will result in an abstract task which induces a significantly

smaller state-space. For example, removing only a single variable with a binary domain will

lead to a state-space with 50% fewer states than the original.

The goal is to reduce the number of states to the point where it becomes feasible to

compute the perfect heuristic for all states of the abstract task and store these values in a

look-up table in memory. Said look-up tables are called pattern databases (PDB) and we

can use their entries as path-cost estimates when solving the original problem.

Given a concrete task Π = 〈V, I,G,A〉 let P ⊆ V be a subset of its variables. The

abstract task ΠP = 〈VP , IP ,GP ,AP 〉 induced by P is constructed by setting VP := P and

discarding from I, G as well as from pre(a) and eff(a) of all a ∈ A all variables that are not

included in P . The set P which induces this projection from Π to ΠP is called a pattern.

A PDB for ΠP is constructed by traversing the entire abstract state space S(ΠP) back-

wards (i.e. starting with the goal states) using Dijkstra’s Algorithm, which computes the

optimal path-cost for all abstract states s from S(ΠP). The resulting PDB heuristic hP is

defined as the perfect heuristic h∗ of ΠP .

In order to obtain a PDB heuristic value for some state s ∈ S of the concrete task, a

perfect hash function is used. This function maps the concrete state to the index under

which the estimate for the corresponding abstract state is saved. For a detailed description

of how pattern databases are implemented in practice, we refer to Sievers et al. (2012).

PDB heuristics are guaranteed to be admissible for the concrete task because pattern

database abstractions preserve paths of the concrete state-space, i.e. transitions that exist

in S(Π) also exist S(ΠP). However, due to some action preconditions being abstracted away,

new transitions may become possible in the abstract task, thus lowering the optimal plan

cost for some states in S(ΠP). Therefore, in summary, PDB estimates are always equal to

or lower than the perfect heuristic of the concrete task.

2.3.1 Additivity of Patterns
Different patterns result in different abstractions, from which, in turn, different pattern

databases are generated. Therefore, the choice of a pattern also influences the quality of the

resulting heuristic. Small patterns result in heuristics that offer weak estimates, while large

patterns frequently lead to pattern databases that are prohibitively expensive to compute

and store in memory. We are interested in circumventing this dilemma by combining several

small and therefore computationally inexpensive heuristic functions into a single admissible

heuristic that dominates the individual functions it is composed of.

A possible approach is to take the maximum over all heuristics, i.e. given n admissible

heuristics h1, h2, ..., hn, we combine them as hmax(s) := max{h1(s), h2(s), ..., hn(s)}. Here,

hmax clearly dominates the individual heuristics.

We can obtain an even stronger heuristic by adding the estimates of multiple heuristics.

Addition, however, only results in an admissible heuristic if the individual heuristics are

additive with each other. To define additivity for patterns, we first define what it means for

two variables of a planning task to be correlated :

Let Π = 〈V, I,G,A〉 be a planning task. Two variables vi, vj ∈ V are correlated if one of

Background 6

the following two conditions holds for at least one action a ∈ A:

1. vi ∈ Vars(pre(a)) and vj ∈ Vars(eff(a)) (pre-eff correlation)

2. vi ∈ Vars(eff(a)) and vj ∈ Vars(eff(a)) (eff-eff correlation)

Informally, vi and vj are correlated either if the action that changes vj can only be executed

when vi has a certain value, or if vi and vj are both changed by the same action.

Now we define additivity of patterns as follows: Two disjoint patterns P1 and P2 are

additive if no variable from P1 is correlated with any of the variables in P2.

Intuitively, two additive patterns describe two distinct subproblems of the original task.

Additivity between two such patterns guarantees that no part of one such subproblem de-

pends on any part of the other problem. Because these tasks are independent, we can solve

them in any order and even arbitrarily interleave plans for each subtask.

2.3.2 Causal Graph
In this thesis, we visualize correlations between variables of a planning task in the causal

graph (Knoblock, 1994) which we define for a task Π with the set of variables V as a graph

G = 〈E, V 〉. This graph holds a vertex for each variable v ∈ V and an edge between each

pair of correlated variables. We define G to be undirected because correlations that we

intend to visualize are bidirectional.

To illustrate this, we introduce the following task: Two robots rg and rp are tasked with

collecting waste for recycling. Specifically, rg must collect items g1, g2, g3, which are made

of glass and the goal of robot rp is to collect plastic objects p1, p2 and p3. These items are

scattered in a 3× 3 grid which represents rooms that the robots can move in. An item can

either be located in one of the rooms, or be picked up and stored inside a robot. Robots

can only collect items that are in the same room as them. The causal graph of this task is

visualized in Figure 2.1. gn and pn for n ∈ {1, 2, 3} are goal variables.

rg

g1

g2

g3 p1

rp

p2

p3

Figure 2.1: Causal graph of the recycling robots task.

2.3.3 Canonical Heuristic
Not all algorithms we present in this paper are guaranteed to output a pattern collection

in which all patterns are additive. A more differentiated approach to deriving admissible

heuristics from pattern collections is the canonical heuristic function (Haslum et al., 2007),

Background 7

which is defined as follows: Given a collection of patterns C and the set A of maximal

additive subsets of C, the canonical heuristic hC is the function

hC(s) = max
S∈A

∑
P∈S

hP (s) (2.2)

For example, in the case C = {P1, P2, P3}, where P2 is additive with P1 and P3, which,

however, are not additive with each other, we get A = {{P1, P2}, {P2, P3}} as the set of

maximal additive subsets and the canonical heuristic is

hC(s) = max{hP1(s) + hP2(s), hP2(s) + hP3(s) } (2.3)

Intuitively, the canonical heuristic tries to add for as long as admissibility is guaranteed and

takes the maximum of all heuristics that cannot be added. Because of this versatility, the

canonical heuristic is used with the output of all pattern collection generation algorithms

that are presented in this paper.

3
Constructing Pattern Collections with CEGAR

Counterexample Guided Abstraction Refinement, also abbreviated as CEGAR, is an it-

erative technique for generating abstraction heuristics which provide accurate path cost

estimates for states of the original problem.

The idea of the algorithm is to start with a trivial, weak abstraction and solve the cor-

responding abstract planning task. Upon having obtained an optimal plan for the abstract

task, the algorithm tests whether the sequence of actions from the plan can also be used to

solve the concrete task. If the abstract plan is not applicable in the concrete case, then the

algorithm will detect a flaw, which is a packet of information that states the reason why

the abstract plan could not be executed in the concrete setting. Based on the information

contained in the flaw, the algorithm is able to refine the abstraction such that said flaw

does not occur again. After refinement, the algorithm repeats at the next iteration. This

process ends if an abstraction is found whose plan could be applied on the original problem

without flaws or some other implementation-specific termination condition is met. In the

former case, CEGAR has managed to find an optimal solution for the concrete planning

task, while in the latter case, the algorithm returns an admissible heuristic which can then

be used by a search algorithm like A* for finding the plan.

3.1 CEGAR for Pattern Databases
The goal of CEGAR for PDBs is to generate a pattern collection whose corresponding

canonical heuristic offers accurate plan cost estimates. Algorithm 1 illustrates the general

framework of the CEGAR approach to pattern construction.

The main difference of this algorithm compared to the general idea described at the

beginning of this chapter is that CEGAR for PDBs works with several abstractions as

opposed to just a single one. This is due to the fact that the heuristic we are looking to

construct is based on a collection of abstractions. Furthermore, the plan of each abstraction

can fail to execute on the concrete task Π, which would give rise to a set of flaws, instead of a

single one. With multiple flaws present, it is no longer unambigously clear which flaw should

be repaired during a single iteration, which is why our algorithms can employ different flaw

selection strategies.

Constructing Pattern Collections with CEGAR 9

Algorithm 1: General CEGAR algorithm for pattern collection generation

Input: concrete task Π
Output: pattern collection C

C ← InitialCollection(Π);
while ¬Terminate() do

F ← GetFlaws(C, Π);
if |F| = 0 then

ExtractPlan();
else

f ← SelectFlaw(F);
Refine(Π, f);

end

end
return C;

In this chapter, we introduce two CEGAR algorithms for pattern databases, which both

share the same general structure as presented in Algorithm 1, but generate pattern collec-

tions with different properties.

CEGARfadd (fadd stands for forced additivity) only outputs pattern collections where all

patterns are pairwise additive. As such, this algorithm attempts to decompose the original

planning task into a set of pairwise independent subtasks, which would allow the canonical

heuristic to simply return the sum of all PDB estimates.

In order to ensure additivity for all patterns, it is often necessary to merge two non-

additive patterns together. Because this merging threatens to dramatically increase PDB

memory requirements, we introduce CEGARnadd as an alternative to CEGARfadd.

This algorithm does not try to always produce a set of pairwise additive patterns. In-

stead, its goal is merely to ensure that all patterns are disjoint, i.e. a variable is not allowed

to be included in more than one pattern at the same time. This requirement was put in

place because, while the algorithm does not aggressively attempt to ensure that additivity

holds between all patterns, we are still interested in obtaining a collection of patterns with

additivity relations between as many patterns as possible, as this would yield a stronger

canonical heuristic. Patterns with overlapping variables, however, are automatically not

additive as each variable is always trivially correlated with itself.

Both algorithms are signaled to terminate by the Terminate function once at least one

PDB has reached the maximum allowed size limit, or if an optimal concrete plan could be

found (i.e. the list of flaws is empty).

In practice, the two algorithms differ in their respective implementations of GetFlaws

and Refine functions. In the following sections, we present building blocks that CEGARnadd

and CEGARfadd consist of.

3.2 The Initial Pattern Collection
The starting point of our CEGAR algorithms is described by an initial collection of patterns.

In our framework, this is handled by the InitialCollection function. Because the choice of

initial patterns has the potential to negatively influence the convergence of CEGAR, we focus

Constructing Pattern Collections with CEGAR 10

on two general options which are known to be unproblematic and also carry the advantage of

being easy to implement. In this thesis, the initial C holds either a single pattern, with one

randomly selected goal variable, or a separate pattern for each goal variable of the planning

task.

Generally, unproblematic initial collections are collections whose patterns only contain

variables that are at least indirectly correlated with each other, i.e. for each pair of variables

vi, vj of some pattern, the causal graph of the planning task must contain a path from vi

to vj . It is easy to see that the two approaches we employ to generate the initial collection

trivially fulfill this criterion, since all patterns contain only one variable. The reason for

this requirement will be discussed in greater detail in Section 3.5 where we characterize the

convergence of our algorithms.

3.3 Flaws
Understanding what a flaw is in context of pattern database heuristics is crucial for under-

standing how the CEGAR algorithm operates. For this reason this section discusses the

two types of flaws that can arise. We also provide a detailed overview of the GetFlaws

function whose task is to detect said flaws.

As previously established, the state space generated by a pattern abstraction P is ob-

tained by joining all states with identical values for all variables v ∈ P . Differences in values

of variables that are not in P are ignored. Since these variables are also removed from

pre(a) for all actions a of the planning task, it is possible for the abstract state-space to

have transitions that do not exist in the concrete state-space. If the optimal plan for said

abstract state-space involves any such transition, then it can not be applied to the concrete

task. We refer to this kind of flaw as precondition violation flaw because it is caused by an

action not being applicable.

A different problem arises when a pattern is missing a goal variable. In this case, it is

possible to obtain a flawlessly applicable plan, which, however, does not lead to a concrete

goal state. This type of flaw will be referred to as a goal violation flaw.

To illustrate these two cases on the recycling robots task from Section 2.3.2, we construct

abstract tasks induced by the patterns P1 = {p1, p2, p3} and P2 = {rp, p1, p2, p3}. In the case

of P1, the abstract task is missing information about the position of the plastic collecting

robot rp. Thus preconditions that ensure that an item can be picked up only when it is in

the same room as the robot, are also missing. Therefore the optimal plan of the abstract

task will consist only of instructions for picking up each of the three plastic objects and

no movement instructions for the robot. This plan will always fail on the concrete task if

at least one item is not located in the same room as robot rp, thus raising a precondition

violation flaw.

The task induced by pattern P2 has knowledge about the plastic collecting robot as well

as all plastic waste, but contains no information about glass items or the robot that must

collect them. This means that this subtask is concerned only with the collection of plastic.

Here, the optimal plan contains both, the necessary movement and collection actions for

robot rp. For this reason, this sequence of operations can indeed be executed in the original

Constructing Pattern Collections with CEGAR 11

problem, however, it leads to a state where all plastics have been collected and all glass

objects are still scattered around the different rooms. Because this state does not agree

with the goal state, this situation constitutes a goal violation flaw.

3.3.1 Solving Abstract Tasks
As shown in the above example, in order to find flaws of an abstraction P , one needs the

corresponding abstract plan, which can be obtained by solving the abstract task. Because

there are no conceptual differences between the concrete task Π and its abstracted version

ΠP , we could employ the same technique, specifically the A* algorithm, for finding the

abstract plan. This approach, however, comes with unnecessary overhead, as it requires

maintaining a priority queue of yet unvisited search nodes, whose associated actions may or

may not be part of the optimal plan. Algorithm 2 is a greedy algorithm which is guaranteed

to return optimal abstract solutions.

Algorithm 2: FindPlan

Input: task ΠP and its perfect heuristic h∗P
Output: optimal plan τ of ΠP

τ ← ∅;
s ← GetInitialState(ΠP);

if h∗P (s) =∞ then
return unsolvable;

end
while h∗P (s) 6= 0 do

A ← GetApplicableActions(s);
â ← arg min

a∈A
h∗P (Successor(s, a));

s ← Successor(s, â);
τ ← τ ∪ {â};

end
return τ ;

The optimality guarantee of this algorithm stems from the fact that it uses the perfect

heuristic h∗P of ΠP . This means that FindPlan will always select the correct node for

expansion.

This algorithm, however, does not work for tasks which have zero-cost operators, because

those tasks may have a zero-cost optimal plan (i.e. h∗P (s) = 0 for the initial state s). In this

case, our CEGAR implementation falls back to the A* approach.

3.3.2 Abstract Plan Validation
An algorithm for validating abstract plans in the concrete state-space is an essential part of

both flaw retrieval routines that will be introduced in the next two sections. In this section

we describe the ApplySolution function, whose purpose is precisely the validation of the

aforementioned abstract solutions. The function iterates over all actions from the given plan

τ and verifies for each action a whether it can be applied to the current concrete state s.

Constructing Pattern Collections with CEGAR 12

This is accomplished by comparing variable values of s to the ones specified in pre(a) and

collecting those variables which do not satisfy the preconditions. If s agrees with pre(a) then

operator a is applicable and plan validation may continue, otherwise the algorithm aborts

and returns the last state it could reach along with the list of variables that prevent action

a from being applicable. This list is precisely the set of flaws of τ .

3.3.3 Flaw Retrieval for CEGARfadd

As already established in Section 2.3.1, a collection which consists only of additive heuristics

describes a set of independent subtasks. Individually, solutions to these subtasks are unlikely

to solve the original planning task. However, the additivity property makes it possible to

arbitrarily combine these solutions. The GetFlaws function shown in Algorithm 3 starts

with the initial state of the concrete state space S(Π) and iterates over all patterns from

the given pattern collection. The function then tries to apply the plan of the corresponding

abstract task to the concrete state s.

Algorithm 3: GetFlaws(C, Π) for CEGARfadd

Input: pattern collection C and task Π
Output: list of flaws F

F ← ∅;
s ← GetInitialState(Π);
for P ∈ C do

τ ← FindPlan(ΠP , h∗P);
(s, Fnew) ← ApplySolution(s, τ);
F ← F ∪ Fnew;

end

if F = ∅ ∧ ¬IsGoal(s) then
F ← {RandomUnusedGoalVariable(Π)};

end
return F;

If the algorithm has processed all P ∈ C and the list of flaws is empty, but s is not

a goal state, then this means that the combination of all plans associated with already

existing patterns was unable to satisfy some goal condition. From this we can conclude that

there is a goal violation. As already mentioned, flaws of this type are caused by at least

one goal variable not being included in any pattern P ∈ C. However, if CEGARfadd has

indeed arrived at a goal state, then a combination of plans associated with patterns P ∈ C
constitutes a solution. In this case, the algorithm will return an empty flaw list that will

prompt Algorithm 1 to extract the optimal plan with the ExtractPlan function and

terminate.

3.3.4 Flaw Retrieval for CEGARnadd

If we construct patterns which are not necessarily pairwise additive, we can no longer arbi-

trarily interleave their respective plans. In this case, the GetFlaws function processes all

abstract solutions in isolation, as shown in Algorithm 4.

Constructing Pattern Collections with CEGAR 13

Algorithm 4: GetFlaws(C, Π) for CEGARnadd

Input: pattern collection C and task Π
Output: list F of flaws

F ← ∅;
for P ∈ C do

s ← GetInitialState(Π);

τ ← FindPlan(ΠP , h∗P);
(s, Fnew) ← ApplySolution(s, τ);

if Fnew = ∅ then
if ¬IsGoal(s) then

Fnew ← {RandomUnusedGoalVariable(Π)};
else

MarkSolution(P);
return ∅;

end

end

F ← F ∪ Fnew;

end
return F;

The main difference of this version of GetFlaws to the one from Algorithm 3 is that all

plans are applied to the concrete initial state rather than to the state returned by the previous

ApplySolution call. Furthermore, since abstract plans can no longer be combined, a goal

violation can occur on each iteration. The algorithm terminates prematurely if it finds

a single plan that did not generate any flaws and led to a goal state. A plan like this

describes a solution of the concrete task, which makes further iterations of the CEGAR loop

(see Algorithm 1) unnecessary. The pattern that induced this plan is marked such that

ExtractPlan is able to extract the correct solution.

3.4 Pattern Refinement
In Section 3.3, we established that flaws are generally caused by an abstraction not hav-

ing information about either a variable for which some action of the concrete task has a

precondition, or a variable for which there exists an assignment in G of the given planning

task Π. For this reason, abstraction refinement can be viewed as the act of extending an

abstract task with knowledge about the variable that caused the flaw. In the case of a PDB

abstraction, this is done by adding the offending variable to the pattern.

Similarly to flaw retrieval, details of the refinement process vary between our two varia-

tions of CEGAR for PDBs.

3.4.1 Refinement in CEGARnadd

Given a collection C, a flaw f with the corresponding variable vf the Refine function of

CEGARnadd repairs said flaws according to the following rules: If f is a goal violation flaw,

then pattern {vf} is added to the pattern collection (i.e. C = C ∪ {{vf}}). On the other

Constructing Pattern Collections with CEGAR 14

hand, if f is a precondition violation flaw raised by the abstract plan of pattern Pf , then

the refinement algorithm checks whether the variable vf is not already part of some other

pattern P . If it is, then the only way to repair the flaw while also preserving disjointedness

of P and Pf is to merge the two patterns. If vf is not included in any pattern of C yet,

then it is added to Pf .

3.4.2 Refinement in CEGARfadd

The set of all pattern collections in which all patterns are pairwise additive is a subset of

all pattern collections with disjunct patterns. Therefore CEGARfadd can be viewed as a

special case of CEGARnadd. Despite this fact, the additivity restriction makes for a simpler

refinement algorithm, where it is not necessary to differentiate between goal and constraint

violations.

Here, the refinement function creates a separate pattern for the flaw variable vf and

then tests it for additivity with all other patterns that are already in the pattern collection.

Patterns P ∈ C which turn out to not be additive with {vf} are collected in the merge list

M . Once all additivity checks are done, all patterns in M are merged into a single pattern,

which is then added to C, replacing the patterns it was made of in the process.

3.5 Convergence
In an environment with limitless resources (i.e. time and memory) CEGARfadd is guaranteed

to find an optimal solution to the concrete task in a finite number of steps for all tasks

Π = 〈V, I,G,A〉. Specifically, CEGARfadd will reach this solution in at most n−m iterations,

where n = |V| and m is the number of variables in the initial pattern collection. This

property is a direct consequence of the refinement policy of the algorithm. Recall that

refinement of a pattern in reaction to some flaw always implies the introduction of a new

variable v ∈ V to the pattern collection. With m variables being part of the collection from

the beginning, only n−m variables can still be added. Past this point, no new refinements

can be made any more and we say that the algorithm has converged.

With knowledge about correlations between variables it is also possible to predict the

exact pattern collection that the algorithm will converge to (provided it does not find a

solution sooner). If the causal graph of the given concrete task is connected, i.e. there

exists a path from each vertex to any other vertex, then the algorithm will converge to the

collection C = {V}, i.e. it will output the set of all variables as its sole pattern.

If the graph is disconnected, however, then this means that the concrete task can be de-

composed into a set of pairwise independent subtasks. In this case, each maximal connected

subgraph of the causal graph represents a separate pattern. Because subtasks induced by

these patterns are independent, their respective plans can be combined into a single optimal

solution of Π.

We illustrate this on the causal graph of the recycling robots task (Figure 2.1). From

the graph it is apparent that the tasks of collecting glass and plastic items are indeed

independent. Therefore CEGARfadd will converge to C = {{rg, g1, g2, g3}, {rp, p1, p2, p3}}.

Constructing Pattern Collections with CEGAR 15

Here, the optimal solutions of the two abstractions, when combined, represent a solution of

the original task.

While CEGARnadd converges to the same final collection, there are two key differences

that one needs to be aware of. Firstly, CEGARnadd is only guaranteed to converge in at

least n−m steps, but can also take longer, because flaw refinement of this algorithm does

not necessarily imply introduction of new variables to the pattern collection. A flaw can

also be caused by a pattern not having a variable that is already included in some other

pattern. In this case, the refinement step only entails a merge of the two existing patterns.

Secondly, even when CEGARnadd reaches the point where further refinements are no longer

possible, it is not guaranteed to find a plan that solves the concrete task. This is due to the

fact that CEGARnadd does not attempt to interleave or combine individual abstract plans,

but instead validates them in isolation (see Algorithm 4).

Regardless of the chosen CEGAR algorithm, pattern collections that are returned on

convergence are only guaranteed to have the form described above if the initial collection is

unproblematic (i.e. it contains only patterns whose variables are at least indirectly correlated

with one another).

For an example where a collection which does not fulfill this requirement leads to less-

than-optimal results, consider the initial pattern collection C̃init = {{g1, p1}} of the recy-

cling robots problem. Variables g1 and p1 are clearly uncorrelated with each other, but

all other variables of the planning task are at least indirectly correlated with one of them.

Therefore the algorithm will converge to C̃ = {V}, thus completely ignoring the convenient

decomposition into subtasks that is possible in this case.

4
Merge Avoidance

Although frequent merging is often necessary to ensure that the pattern collection always

contains only disjunct, additive patterns, it also represents a major problem for the algo-

rithm. This is due to the fact that pattern database sizes scale with the number of variables

in the pattern, as well as the domain sizes of said variables. Therefore, a merge of several

patterns with small pattern databases has the potential to result in a pattern database

whose space requirements greatly exceed the total available memory. For example, consider

a pattern collection with three patterns, where each pattern has five variables with a domain

size of five. Assuming that a single pattern database entry is a 4 byte integer and using

Formula 2.1 we get 4 B×(55+55+55) = 37.5 kB as the combined memory cost of all pattern

databases. Merging the three patterns, however, would result in a single pattern database

of size 4 B×515 ≈ 122 GB. Altough merging cannot be eliminated entirely, we present three

different techniques for alleviating this problem in the following sections.

4.1 Least-Common-First Flaw Selection
So far, the two CEGAR algorithms we introduced, randomly selected the next flaw for refine-

ment. The list of flaws generated on each iteration, however, is allowed to store duplicates,

i.e. a variable may be mentioned in the flaw list several times. This occurs when multiple

abstract plans fail in the concrete state space because of the same variable not being present

in the corresponding pattern. For this reason, random flaw selection is naturally biased

towards choosing the flaw with the most common variable. Consider a pattern collection

C = {P1, P2, P3, P4} whose respective abstract plans failed with the following list of flaws:

Pattern Flaw Variable

P1 v1

P2 v1

P3 v1

P4 v2

The first three abstract plans failed with a precondition violation because of variable

v1 and the abstract plan of pattern P4 failed because of v2. In this case, there is a 75%

Merge Avoidance 17

chance that v1 is chosen for refinement next. In the case of CEGARfadd, choosing to refine

a flaw associated with v1 would cause P1, P2 and P3 to be merged with {v1}. The goal

of least-common-first (LCF) flaw selection is to delay pattern merges by selecting the flaw

with a variable that appears in the given flaw list the fewest number of times. In the given

example, LCF algorithm would choose v2 for refinement, which, in the ideal case would only

merge P4 with {v2}. The choice made by LCF, however, is not always guaranteed to be

optimal. For example, it is possible that patterns P1, P2 and P3 also also not additive with

{v2} but just have not issued a corresponding flaw yet. In this situation, v1 would have

been a better choice. Still, when faced with the choice between the possibility of a merge

and a guaranteed merge, LCF always chooses the former.

At a first glance, it might not be immediately clear why a different order of handling flaws

might have an influence on the end-result, since the order of refinement does not influence

convergence. The reason why LCF selection still makes a difference is due to the pattern

size constraints that are imposed on the CEGAR algorithms in practice: Once at least one

pattern has reached the allowed limit, the algorithms abort and return the pattern collection

that could be generated up to that point. With LCF selection, the goal is to reach that

limit by merging as little as possible.

4.2 Blacklisting
A more invasive way to avoid merging is to change CEGAR algorithm to completely ignore

variables which threaten to cause many merges. We refer to this approach as blacklisting.

This technique identifies a number of non-goal variables with the most correlations and puts

them on a blacklist. Preconditions which involve blacklisted variables are always ignored

during plan validation, i.e. validation continues even if the plan does not satisfy a precondi-

tion on one of the blacklisted variables. For this reason, a CEGAR algorithm will never add

said variables to the pattern collection. Thus blacklisting effectively changes the pattern

collection that CEGAR will to converge to.

We demonstrate this effect on a planning task for which correlations between variables

are visualized in Figure 4.1. We established in Section 3.5 that CEGAR with this task

would converge to C = {V}, which is often too expensive to generate a PDB from. After

blacklisting v1, which is the variable with the most correlations, CEGAR will have the same

convergence as the task described by Figure 4.2. In this case, the final output is C =

{{v2, v6, v7}, {v3, v8, v9}, {v4, v10, v11}, {v5, v12, v13}} where individual pattern databases are

significantly easier to compute and store.

One of the drawbacks of blacklisting is that ignoring variables causes the resulting heuris-

tic to further understimate the path cost for all states. In addition to that, that blacklisting

severely restricts an algorithm’s ability to find optimal concrete plans during refinement.

This is due to the fact that an empty flaw list can now have two meanings where it pre-

viously only had one: In CEGAR without blacklisting, an empty list of flaws implies that

one or multiple abstract plans constitute a concrete solution, since they could be flawlessly

applied in the concrete state-space and led to a goal state.

In CEGAR with blacklisted variables, however, the absence of flaws could also mean

Merge Avoidance 18

v1

v2

v6 v7

v3

v8

v9

v4

v10 v11

v5

v12

v13

Figure 4.1: Causal graph of the blacklisting example task.

v2

v6 v7

v3

v8

v9v4

v10 v11

v5

v12

v13

Figure 4.2: Causal graph of the blacklisting example task after
blacklisting.

that there were in fact precondition violations during plan verification, which were, how-

ever, ignored because repairing them would have required the introduction of a blacklisted

variable.

The question of whether the often more favorable convergence outweighs the disadvan-

tages of this technique will be discussed in the next chapter.

4.3 Partial Additivity
We can obtain a different convergence for CEGAR by employing a stricter definition of

correlations. Recall that correlations, as defined in Section 2.3.1 demand that two variables

vi, vj are either changed by the same action (effect-effect correlation), or that the applicabil-

Merge Avoidance 19

ity of some action that changes vi depends on vj (precondition-effect correlation). We now

restrict this definition by removing the latter condition, i.e. two variables are only correlated

if both are assigned new values by the same action. Using restricted correlations results in a

causal graph with lower density, since edges that were induced by pre-eff correlations do not

exist under the strict definition. Because the graph has fewer edges, it is more likely that

it will be disconnected, which would make CEGAR converge to multiple separate patterns

describing discrete subtasks.

Additivity that is defined analogously to the definition in Section 2.3.1, but only for

effect-effect correlations will be referred to as partial additivity.

CEGARpadd is a modified version of CEGARfadd that aims to output a collection of pair-

wise partially additive patterns. While much of the algorithm remains unchanged between

these two versions, there is a number of important differences:

Firstly, the sum of PDBs of two partially additive patterns P1 and P2 is guaranteed to be

lower or equal to their union, i.e. hP1∪P2(s) ≥ hP1(s)+hP2(s) for all states s. This is because

there may be precondition-effect correlations between variables of P1 and P2. Operator

preconditions that induce these correlations are known to the task ΠP1∪P2 , but are abstracted

away in tasks ΠP1 and ΠP2 . For this reason, actions that are not applicable in ΠP1∪P2 may

be applicable in the individual tasks, thus creating ‘shortcuts’ in their corresponding state

spaces, which can lead to lower plan cost estimates for some states.

Secondly, abstract plans of partially additive patterns can no longer be arbitrarily inter-

leaved or combined into a single concrete plan the way it is possible with additivity that

accounts for eff-eff as well as pre-eff correlations. This is because given two patterns P1 and

P2, an action of the plan τP1 of P1 may have a precondition on some variable v ∈ P2. None

of the actions of τP1 have an effect on v (as this would go against the definition of partial

additivity), but the plan τP2 may have actions that change this variable. In this case, the

applicability of actions of τP1 may depend on how many actions of plan τP2 were already

executed. For example, variable v may initially have the value needed by actions from τP1

to be applicable, but the first action of τP2 might change this value, thus causing τP1 to fail.

Thus, it is possible that a certain order of actions from multiple plans constitutes a con-

crete solution while other combinations only lead to more flaws. Pascal Bercher conjectures

that the problem of finding such an optimal interleaving is NP-hard due to a reduction from

a proof in the context of partial order planning by Nebel and Bäckström (1994).1

Instead, CEGARpadd greedily looks for a working interleaving by iterating over all plans

and executing them as far as possible (i.e. until the plan either fails with a flaw or finishes).

If all plans could be fully executed, then CEGARpadd has successfully found a combination

of plans that solves the concrete task. If some plans could not be finished because of a flaw,

then the algorithm, once again, iterates over all plans and tries to apply them starting from

the point where they last failed. This process repeats until either a combination is found or

a full iteration over all plans passes without a single plan being able to execute one of its

actions.

Furthermore, the CEGARpadd algorithm can encounter irreparable flaws. For an exam-

1 Personal communication.

Merge Avoidance 20

ple where this can happen, consider the following scenario: The plan of pattern P1 fails

with a precondition violation flaw because of some variable vf . In both, CEGARnadd and

CEGARfadd, this implies that once this flaw has been chosen for refinement, variable vf

will be added to P1 (possibly along with other variables). In CEGARpadd, however, this is

not guaranteed. If pattern {vf} turns out to be partially additive with P1, then the two

will never be joined together. Therefore P1 will never receive variable vf and will thus keep

failing with the exact same flaw on each iteration, while vf will reside in a separate pattern.

In these situations, CEGARpadd keeps running for as long as it keeps finding flaws that can

be fixed and returns its current pattern collection once only irreparable flaws are left.

Lastly, because of the latter problem, it is possible for a pattern collection to have

patterns that do not contain a single goal variable (e.g. if vf from the above example is a

non-goal variable). Such a pattern models a subtask that does not have a goal. In this case,

the h-values are always zero and thus do not contribute to the final estimate.

5
Evaluation

All techniques introduced in the previous two chapters were implemented in the Fast Down-

ward planning system (Helmert, 2006). We tested various combinations of the three CEGAR

algorithms on a benchmark set of 1667 tasks from planning domains of all International Plan-

ning Competitions (IPC). A CEGAR algorithm is fully defined by the following parameters:

• PDB size limit: once at least a single PDB has reached this limit, the algorithm will

abort. Preliminary experiments showed that a size limit of 1 000 000 states for indi-

vidual PDBs provides good results. Hence, all experiments presented in this chapter

use this limit.

• Initial pattern collection, i.e. the collection returned by InitialCollection. As

previously mentioned, our implementation accounts for two options here, namely a

single pattern with a random goal variable, or a pattern for each goal variable of the

planning task.

• Flaw selection strategy: We either select flaws randomly, or in accordance with the

LCF strategy. Random selection is the default strategy that is used in all our experi-

ments unless specified otherwise.

• Blacklisting: whether the algorithm should ignore a number of variables with many

correlations. Blacklisting is deactivated per default. In experiments where blacklisting

is used, the blacklist has a size of 20, meaning that the algorithm will try to blacklist

up to 20 non-goal variables.

Furthermore, in all experiments, execution time (i.e. time for pattern collection genera-

tion and subsequent A* search) is limited to 30 minutes, while memory is limited to 2GB. In

the following sections we show how our three CEGAR algorithms react to different choices

for the last three paramters.

5.1 Initial Collections and Flaw Selection
First we show how the coverage (i.e. the number of solved tasks) of the three CEGAR

algorithms differs for different initial collections. Table 5.1 shows that, despite being able to

Evaluation 22

CEGARfadd CEGARpadd CEGARnadd

random goal 735 (231) 736 (122) 757 (153)
all goals 736 (229) 740 (118) 790 (145)

max of both 750 (240) 724 (129) 791 (158)
random goal & LCF 737 (230) 742 (122) 757 (153)

all goals & LCF 739 (227) 740 (118) 790 (143)
max of both 748 (239) 721 (129) 793 (158)

Table 5.1: Coverage of CEGAR algorithms given different starting collections and flaw
selection strategies. Numers in parentheses show how many tasks could be solved during
pattern collection construction.

solve slightly more tasks during refinement (see numbers in parentheses), CEGAR algorithms

that start with a single random goal variable in the initial pattern collection are generally

worse than algorithms that start with the other option. While this difference is negligible

in the case of CEGARfadd and CEGARpadd, CEGARnadd is able to perform significantly

better when starting with all goal variables. We believe that the reason why all goals

are a better starting point is the slightly faster convergence, since if all goal variables are

already present, goal violation flaws are no longer possible. Furthermore, starting with

many patterns instead of just one allows CEGAR to refine many different subtasks. On

the other hand, if an algorithm starts with only one goal variable, then it is possible that

CEGAR will refine the single corresponding pattern until its respective PDB has more than

a million entries. In this case, our algorithms would terminate before encountering a single

goal violation. For this reason, they would never try to model a different subtask.

Our analysis of collection construction time as well as node expansions until the last

f-layer (see Figures 5.1-5.6) shows that starting with all goal variables indeed leads to a

better heuristic most of the time. This further supports our theory that CEGAR algorithms

initialized this way are better because they have a wider pool of patterns available for

refinement from the very beginning. The fact that algorithms initialized with a single pattern

focus exclusively on that one pattern until a goal violation occurs, allows the algorithm to

reach the maximum pattern size and terminate earlier. This explains often shorter runtime

for algorithms that start with a single goal variable.

A lower coverage, of course, does not necessarily imply that the stronger algorithm could

solve all tasks that were solved by the weaker algorithm. It is possible that the algorithm with

lower coverage could find solutions for problem instances for which the stronger algorithm

failed. For this reason, we take the maximum of canonical PDB heuristics that operate on

pattern collections generated with different approaches. As can be seen in the third row of

Table 5.1, the combination of CEGARfadd with different starting collections indeed has a

higher coverage than both of them do individually. This is not the case for CEGARpadd,

where the added overhead of executing CEGAR twice causes more timeout errors.

Finally, our evaluation of LCF selection shows that this approach offers little to no

improvements for all algorithms and starting collections. We believe that the reason for this

is that CEGAR algorithms are able to reach flaws that cause many merges even though

they are selected last by LCF.

Evaluation 23

10−1 100 101 102 103 104
10−1

100

101

102

103

104

unsolved

u
n

s.

all

ra
n

d
om

Figure 5.1: CEGARfadd constr. time

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.

all

ra
n

d
o
m

Figure 5.2: Expansions with CEGARfadd

10−1 100 101 102 103 104
10−1

100

101

102

103

104

unsolved

u
n

s.

all

ra
n

d
o
m

Figure 5.3: CEGARpadd constr. time

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.
all

ra
n

d
om

Figure 5.4: Expansions with CEGARpadd

10−1 100 101 102 103 104
10−1

100

101

102

103

104

unsolved

u
n

s.

all

ra
n

d
om

Figure 5.5: CEGARnadd constr. time

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.

all

ra
n

d
om

Figure 5.6: Expansions with CEGARnadd

Evaluation 24

CEGARfadd CEGARpadd CEGARnadd

no blacklisting 737 (230) 742 (122) 790 (143)
blacklisting 743 (34) 748 (36) 743 (4)

max of both 787 (230) 775 (119) 811 (146)

Table 5.2: Coverage of CEGAR algorithms when blacklisting is employed.

5.2 Blacklisting
In the following experiment, we tested how blacklisting influences CEGAR performance (i.e.

collection construction time, coverage and expansions until last f-layer). Here, CEGARfadd

and CEGARpadd are configured to start with one random goal variable, because this ap-

proach results in similar coverage while also being faster than starting with all goals.

CEGARnadd, however, is initialized with a pattern for each goal variable, because here this

initial collection leads to significantly better coverage. Additionally, all algorithms utilize

LCF flaw selection. Table 5.2 shows our results.

As predicted, we observe that blacklisting severely restricts the ability of CEGAR to find

concrete plans during refinement. Furthermore, we observe that blacklisting improves cover-

age in algorithms that have a greater tendency to merge patterns (namely CEGARfadd and

CEGARpadd). This improvement does not extend to CEGARnadd, where blacklisting results

in a disproportionate decrease in coverage. Here, the version without blacklisting usually

results in better heuristic estimates which leads to fewer expansions (see Figure 5.12).

Taking the maximum of canonical heuristics that operate on pattern collections that

were generated with and without blacklisting provides the greatest improvement in coverage

as can be seen in the last row of Table 5.2, meaning that algorithms with and without

blacklisting complement each other rather well.

A very prominent feature that is present in all scatter plots for expansions is the ‘column’

of points at the very left of each plot. These points represent planning tasks Π for which a

CEGAR algorithm could converge to C = {V} (where V is the set of variables of Π), thus

successfully computing the perfect heuristic for the concrete task. These are usually very

small tasks with few variables. By blacklisting up to 20 variables in such tasks, the set of

variables that can still be used for refinement is reduced to the point where no refinement

is possible and CEGAR is forced to return the initial collection, which results in a weak

heuristic. This is why blacklisting-based approaches can lead to orders of magnitude more

search node expansions for simple problems.

Evaluation 25

10−1 100 101 102 103 104
10−1

100

101

102

103

104

unsolved

u
n

s.

no blacklisting

b
la

ck
li

st
in

g

Figure 5.7: CEGARfadd constr. time

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.

no blacklisting

b
la

ck
li

st
in

g
Figure 5.8: Expansions with CEGARfadd

10−1 100 101 102 103 104
10−1

100

101

102

103

104

unsolved

u
n

s.

no blacklisting

b
la

ck
li

st
in

g

Figure 5.9: CEGARpadd constr. time

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.
no blacklisting

b
la

ck
li

st
in

g

Figure 5.10: Expansions with CEGARpadd

10−1 100 101 102 103 104
10−1

100

101

102

103

104

unsolved

u
n

s.

no blacklisting

b
la

ck
li

st
in

g

Figure 5.11: CEGARnadd constr. time

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.

no blacklisting

b
la

ck
li

st
in

g

Figure 5.12: Expansions with CEGARnadd

Evaluation 26

5.3 iPDB
So far, CEGARnadd has been the most powerful pattern collection generator discussed in

this thesis. In this section we compare it to the iPDB algorithm (Haslum et al., 2007). The

iPDB pattern collection generator approaches the problem of finding a set of good patterns

by defining a search space where each state respresents a collection of patterns. The initial

collection holds each goal variable of the planning task in a separate pattern. Starting

with this state, the algorithm uses hillclimbing to visit neighboring states whose pattern

collections result in a stronger canonical heuristic. Heuristic quality is evaluated empirically

on a sample set of states of the given planning task.

Our experiments (Table 5.3) show that iPDB slightly outperforms CEGARnadd. A com-

bination of all three CEGAR algorithms (set up in the same way as in the previous section

but without blacklisting) comes out slightly on top, but combining CEGARnadd with its

blacklisted version provides better results (see Table 5.2).

By looking at the expansions comparison between iPDB and CEGARnadd in Figure 5.13,

we can observe that there are quite a few tasks for which CEGARnadd generates the better

heuristic. Indeed, the maximum of heuristics derived from collections generated by the two

approaches results in the best coverage values, thus proving that CEGARnadd and iPDB are

complementary.

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.

iPDB

C
E

G
A

R
n
a
d
d
&

L
C

F

10−1 101 103 105 107
10−1

102

105

108

unsolved

u
n

s.

iPDB

m
ax

-a
ll

Figure 5.13: Expansions when deriving a heuristic from pattern collections generated by
iPDB compared to CEGARnadd (left) and in comparison to using the combination (maxi-
mum) of CEGARnadd, CEGARpadd and CEGARfadd (right)

CEGARnadd max-all iPDB max(iPDB,CEGARnadd)
coverage 790 (143) 807 (253) 802 833 (148)

Table 5.3: iPDB in comparison as well as in combination with CEGAR. max-all describes the
maximum of canonical heuristics of collections generated by CEGARnadd, CEGARpadd and
CEGARfadd.

We believe that this complementarity can be explained by the fact that CEGAR algo-

rithms can generate patterns that contain multiple goal variables. iPDB, on the other hand,

is not capable of doing so, because this algorithm only extends patterns that already exist

Evaluation 27

in the initial collection and never merges or introduces new patterns. Therefore, by using

iPDB in combination with CEGAR we can obtain a more diverse pool of possible patterns.

6
Conclusion and Future Work

We have shown that the CEGARnadd algorithm is comparable to iPDB in terms of coverage.

However, despite the introduction of blacklisting and LCF, CEGARfadd and CEGARpadd could

not be made competitive with CEGARnadd.

Taking the maximum of canonical heuristics of pattern collections that were generated

with and without blacklisting is an approach that leads to notable improvements in coverage

for all algorithms. The need for multiple runs of a CEGAR algorithm, however, presents

additional overhead. We believe that this problem can be alleviated by extending future

CEGAR implementations with a classifier that decides on runtime whether blacklisting is

appropriate for the given planning task. Furthermore, alternative blacklisting strategies,

such as blacklisting based on variable domain size instead of the number of correlations, are

also of interest.

While LCF flaw selection has only demonstrated marginal improvements over versions

of CEGAR that select flaws randomly, it would be interesting to explore alternative flaw

selection strategies here as well. A possible improvement over LCF could be a strategy that

picks the next flaw based on available knowledge about correlations between variables.

All in all, we conclude that CEGAR is a promising approach to generating collections of

patterns. We believe that the algorithms presented in this thesis can be further improved

to derive even more informative heuristics.

Bibliography

Christer Bäckström and Bernhard Nebel. Complexity results for sas+ planning. Computa-

tional Intelligence, 11(4):625–655, 1995.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In International Conference on Com-

puter Aided Verification, pages 154–169. Springer, 2000.

Joseph C Culberson and Jonathan Schaeffer. Pattern databases. Computational Intelligence,

14(3):318–334, 1998.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathe-

matik, 1(1):269–271, 1959.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):

100–107, July 1968. ISSN 0536-1567. doi: 10.1109/TSSC.1968.300136.

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, Sven Koenig, et al. Domain-

independent construction of pattern database heuristics for cost-optimal planning. In

AAAI, volume 7, pages 1007–1012, 2007.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

Craig A Knoblock. Automatically generating abstractions for planning. Artificial intelli-

gence, 68(2):243–302, 1994.

Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27(1):97 – 109, 1985. ISSN 0004-3702. doi: https://doi.org/

10.1016/0004-3702(85)90084-0. URL http://www.sciencedirect.com/science/article/pii/

0004370285900840.

Drew M McDermott. The 1998 ai planning systems competition. AI magazine, 21(2):35,

2000.

Bernhard Nebel and Christer Bäckström. On the computational complexity of temporal

projection, planning, and plan validation. Artificial Intelligence, 66(1):125–160, 1994.

doi: 10.1016/0004-3702(94)90005-1.

Florian Pommerening, Gabriele Röger, and Malte Helmert. Getting the most out of pattern

databases for classical planning. In IJCAI, pages 2357–2364, 2013.

http://www.sciencedirect.com/science/article/pii/0004370285900840
http://www.sciencedirect.com/science/article/pii/0004370285900840

Bibliography 30

Jendrik Seipp and Malte Helmert. Counterexample-guided cartesian abstraction refinement.

In ICAPS, 2013.

Jendrik Seipp, Thomas Keller, and Malte Helmert. A comparison of cost partitioning algo-

rithms for optimal classical planning. 2017.

Silvan Sievers, Manuela Ortlieb, and Malte Helmert. Efficient implementation of pattern

database heuristics for classical planning. In SOCS, 2012.

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Alexander Rovner

Matriculation number — Matrikelnummer

2015-050-289

Title of work — Titel der Arbeit

Pattern Selection using Counterexample-guided Abstraction Refinement

Type of work — Typ der Arbeit

Bachelor Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 12.08.2018

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Planning Tasks
	2.2 Heuristic Functions
	2.3 Pattern Database Heuristics
	2.3.1 Additivity of Patterns
	2.3.2 Causal Graph
	2.3.3 Canonical Heuristic

	3 Constructing Pattern Collections with CEGAR
	3.1 CEGAR for Pattern Databases
	3.2 The Initial Pattern Collection
	3.3 Flaws
	3.3.1 Solving Abstract Tasks
	3.3.2 Abstract Plan Validation
	3.3.3 Flaw Retrieval for CEGARfadd
	3.3.4 Flaw Retrieval for CEGARnadd

	3.4 Pattern Refinement
	3.4.1 Refinement in CEGARnadd
	3.4.2 Refinement in CEGARfadd

	3.5 Convergence

	4 Merge Avoidance
	4.1 Least-Common-First Flaw Selection
	4.2 Blacklisting
	4.3 Partial Additivity

	5 Evaluation
	5.1 Initial Collections and Flaw Selection
	5.2 Blacklisting
	5.3 iPDB

	6 Conclusion and Future Work
	Bibliography
	Declaration on Scientific Integrity

