Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000	000000	000000	0000	00

Pattern Selection using CEGAR

Alexander Rovner

University of Basel

July 31, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background •000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Planning Ta	asks			

Definition: Planning Task

A planning task is a 4-tuple $\Pi = \langle \mathcal{V}, \mathcal{I}, \mathcal{G}, \mathcal{A} \rangle$ with:

𝒱: finite set of variables. Each variable 𝑘 ∈ 𝒱 has a finite domain 𝒫_𝑘

- \mathcal{I} : initial variable assignment
- G: goal assignment
- \mathcal{A} : set of actions. Each $a \in \mathcal{A}$ consists of:
 - pre(a): preconditions
 - eff(a): effects
 - cost(a): cost of performing a

Background •000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Planning Ta	asks			

Definition: Planning Task

A planning task is a 4-tuple $\Pi = \langle \mathcal{V}, \mathcal{I}, \mathcal{G}, \mathcal{A} \rangle$ with:

𝒱: finite set of variables. Each variable 𝑘 ∈ 𝒱 has a finite domain 𝒫_𝑘

- \mathcal{I} : initial variable assignment
- G: goal assignment
- \mathcal{A} : set of actions. Each $a \in \mathcal{A}$ consists of:
 - pre(a): preconditions
 - eff(a): effects
 - cost(a): cost of performing a

Goal: find a cost-optimal plan

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0●00000		000000	0000	00
Heuristics				

- Task Π induces a state space $\mathcal{S}(\Pi)$ with $\prod_{v \in \mathcal{V}} |\mathcal{D}_v|$ states.
- Need to find a minimal cost path from initial state to a goal \Rightarrow A* with an admissible heuristic

(日) (日) (日) (日) (日) (日) (日) (日)

here: Pattern Database (PDB) heuristics

Background 00●0000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Pattern D	atabases			

- discard some variables of the concrete task Π
- ...to obtain an abstract task Π^P
- Pattern $P \subseteq \mathcal{V}$ specifies which variables are kept in Π^P

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- compute perfect heuristic h^* for all states of Π^P
- use h^* of Π^P as an admissible heuristic for Π

Background 000●000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Choosing a	Good Pattern			

Which subset of \mathcal{V} should be our pattern?

- small patterns lead to uninformative PDBs
- PDBs of large patterns are informative but computationally expensive

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 \Rightarrow use combination of multiple PDB heuristics

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000●00		000000	0000	00
Combining I	PDB Heuristics			

Given collection of patterns C and corresponding PDB heuristics we can:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- take maximum (always admissible!)
- take sum (only admissible if patterns are additive)

Background 00000●0	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Additivity				

Additivity

Two patterns are additive if no action...

- changes variables from both patterns (eff-eff correlation)
- has a precondition on variables from one pattern and effects on variables of the other pattern (pre-eff correlation)

If two patterns P_1, P_2 are additive: $h^{P_1 \cup P_2}(s) = h^{P_1}(s) + h^{P_2}(s)$

Background 000000●	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Canonica	l Heuristic			

Idea

Add PDB heuristics where possible and take max otherwise.

Example

 $C = \{P_1, P_2, P_3\}$ where P_1 and P_2 are additive. Canonical heuristic is $h^C(s) = \max\{h^{P_1}(s) + h^{P_2}(s), h^{P_3}(s)\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000	•00000		0000	00
Pattern Sele	ection			

Given a planning task Π , what pattern collection C should we use? \Rightarrow two ideas:

- taking sum is better than taking max
- generate a collection in which all patterns are pairwise additive

 \Rightarrow CEGAR^{fadd}

- generate a collection of disjoint patterns
- no additivity enforcement
- more patterns to choose from

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow CEGAR^{nadd}

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
CEGAR	Framework			

CEGAR Algorithm

- generate initial pattern collection
- Ind flaws in the collection
- **3** refine collection s.t. detected flaws do not occur again
- repeat steps 2-3 until all flaws repaired or size limit reached

o return final collection

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	00
Flaws				

Flaw Detection

Given pattern P, task Π^P and its optimal plan τ^P we try to execute actions of τ^P in the concrete task Π .

What can go wrong?

- Some action a from the plan τ^P is not applicable because some precondition pre(a) is not satisfied.
 ⇒ precondition violation flaw
- Plan could be executed but did not lead to a goal state.
 ⇒ goal violation flaw

Otherwise: solved during refinement

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Causes of	f Flaws			

Precondition violations can happen if some action of τ^P has a precondition on some $v \notin P$.

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Causes of	f Flaws			

Precondition violations can happen if some action of τ^P has a precondition on some $v \notin P$.

Goal Violation Flaws

Goal violations occur when some goal variable is not included in any pattern $P \in C$.

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	00
Causes of	Flaws			

Precondition violations can happen if some action of τ^P has a precondition on some $v \notin P$.

Goal Violation Flaws

Goal violations occur when some goal variable is not included in any pattern $P \in C$.

 \Rightarrow both flaw types occur because patterns are lacking certain important variables!

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Causes of	f Flaws			

Precondition violations can happen if some action of τ^P has a precondition on some $v \notin P$.

Goal Violation Flaws

Goal violations occur when some goal variable is not included in any pattern $P \in C$.

 \Rightarrow both flaw types occur because patterns are lacking certain important variables!

 \Rightarrow refinement \equiv introduction of new variables

Background 0000000 Pattern Selection

Merge Avoidance

Evaluation 0000

Conclusion 00

Abstraction Refinement: CEGAR^{nadd}

Reminder: CEGAR^{nadd}

We want to generate a collection C of disjoint patterns.

Refinement in CEGAR^{nadd}

Given flaw f with variable v_f

- If f is a goal violation: add pattern $\{v_f\}$ to collection
- If f is a precondition violation raised by P_f :
 - a) if v_f not part of any pattern yet: add v_f to P_f
 - b) if v_f already part of some P: merge P_f and P

Background 0000000 Pattern Selection

Merge Avoidance

Evaluation 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00

Abstraction Refinement: CEGAR^{fadd}

Reminder: CEGAR^{fadd}

We want to generate a collection C of pairwise additive patterns.

Refinement in CEGAR^{fadd}

Given flaw f with variable v_f

- create pattern $\{v_f\}$
- **2** select all patterns $P \in C$ that are not additive with $\{v_f\}$
- **Image** $\{v_f\}$ with all selected patterns

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		●00000	0000	00
Merging				

Both algorithms merge patterns to preserve additivity/disjointedness

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		●00000	0000	00
Merging				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Both algorithms merge patterns to preserve additivity/disjointedness

Merging is bad!

- merging produces large patterns
- large patterns lead to large state spaces
 ⇒ PDB construction becomes very expensive

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		○●○○○○	0000	00
Merge Av	voidance			

Merging cannot be avoided entirely, but how can we minimize it?

Ideas:

- better flaw selection strategy (LCF selection)
- completely ignore highly correlated variables (blacklisting)

• use different definition of additivity (partial additivity)

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
LCF Flaw S	election			

Given a set of flaws, which flaw should be repaired next?

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
LCF Flaw S	election			

Given a set of flaws, which flaw should be repaired next? \Rightarrow until now: pick a random flaw from the list

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		00●000	0000	00
LCF Flaw S	election			

Given a set of flaws, which flaw should be repaired next? \Rightarrow until now: pick a random flaw from the list

Pattern	Flaw Variable
P_1	<i>v</i> ₁
P_2	<i>v</i> ₁
P_3	<i>v</i> ₁
P_4	<i>v</i> ₂

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		00●000	0000	00
LCF Flaw S	election			

Given a set of flaws, which flaw should be repaired next? \Rightarrow until now: pick a random flaw from the list

Pattern	Flaw Variable
P_1	<i>v</i> ₁
P_2	v_1
P_3	v_1
P_4	<i>v</i> ₂

with random selection: 75% probability to pick a flaw with $v_1 \Rightarrow CEGAR^{fadd}$: guaranteed merge of P_1 , P_2 and P_3

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		00●000	0000	00
LCF Flaw S	election			

Given a set of flaws, which flaw should be repaired next? \Rightarrow until now: pick a random flaw from the list

Pattern	Flaw Variable
P_1	<i>v</i> ₁
P_2	v_1
P_3	v_1
P_4	<i>v</i> ₂

with random selection: 75% probability to pick a flaw with $v_1 \Rightarrow CEGAR^{fadd}$: guaranteed merge of P_1 , P_2 and P_3 would rather pick a flaw with the least common variable \Rightarrow Least-Common-First (LCF) Flaw Selection

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Blacklisting				

Blacklisting: Idea

Variables with many correlations are more likely to cause merges. We put these variables on a blacklist B and ignore them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Blacklisting				

Blacklisting: Idea

Variables with many correlations are more likely to cause merges. We put these variables on a blacklist *B* and ignore them. \Rightarrow precondition violation flaws cannot be raised for variables $v \in B$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Blacklisting				

Blacklisting: Idea

Variables with many correlations are more likely to cause merges. We put these variables on a blacklist *B* and ignore them. \Rightarrow precondition violation flaws cannot be raised for variables $v \in B$ $\Rightarrow v \in B$ are never added to the collection

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		0000€0	0000	00
Partial Ac	ditivity			

Idea

Relax definition of additivity, so that merging does not occur as frequently.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		0000●0	0000	00
Partial A	dditivity			

Reminder: Additivity

Two patterns are additive when no action...

- changes variables from both patterns
- has a precondition on variables from one pattern and effects on variables of the other pattern

If two patterns P_1, P_2 are additive: $h^{P_1\cup P_2}(s) = h^{P_1}(s) + h^{P_2}(s)$

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		0000●0	0000	00
Partial A	dditivity			

Partial Additivity

Two patterns are partially additive when no action...

- changes variables from both patterns
- has a precondition on variables from one pattern and effects on variables of the other pattern

If P_1, P_2 are partially additive: $h^{P_1 \cup P_2}(s) \ge h^{P_1}(s) + h^{P_2}(s)$

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		00000●	0000	00
CEGAR ^{padd}	algorithm			

CEGAR^{padd} functions analogously to *CEGAR^{fadd}* but aims to construct pairwise partially additive patterns.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CEGAR^{padd} functions analogously to *CEGAR*^{fadd} but aims to construct pairwise partially additive patterns.

Refinement in CEGAR^{padd}

Given flaw f with variable v_f

- create pattern $\{v_f\}$
- **2** select all $P \in C$ that are not partially additive with $\{v_f\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(3) merge $\{v_f\}$ with all selected patterns

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	00
Evaluation				

3 Algorithms:

- CEGAR^{fadd}: additive patterns
- CEGAR^{padd}: partially additive patterns
- CEGAR^{nadd}: disjoint patterns

3 Parameters:

- Initial collection: random goal vs. all goals
- Flaw selection strategy: random flaw vs. LCF
- Blacklist size: 0 (no blacklisting) vs. 20 variables

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Coverage				

	CEGAR ^{fadd}	CEGAR ^{padd}	CEGAR ^{nadd}
random goal	735 (231)	736 (122)	757 (153)
all goals	736 (229)	740 (118)	790 (145)

<□ > < @ > < E > < E > E のQ @

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Coverage				

	CEGAR ^{fadd}	CEGAR ^{padd}	CEGAR ^{nadd}
random goal	735 (231)	736 (122)	757 (153)
all goals	736 (229)	740 (118)	790 (145)
max of both	750 (240)	724 (129)	791 (158)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 0000	Conclusion 00
Coverage				

	CEGAR ^{fadd}	CEGAR ^{padd}	CEGAR ^{nadd}
random goal	735 (231)	736 (122)	757 (153)
all goals	736 (229)	740 (118)	790 (145)
max of both	750 (240)	724 (129)	791 (158)
random goal & LCF	737 (230)	742 (122)	757 (153)
all goals & LCF	739 (227)	740 (118)	790 (143)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	00
Coverage				

	CEGAR ^{fadd}	CEGAR ^{padd}	CEGAR ^{nadd}
random goal	735 (231)	736 (122)	757 (153)
all goals	736 (229)	740 (118)	790 (145)
max of both	750 (240)	724 (129)	791 (158)
random goal & LCF	737 (230)	742 (122)	757 (153)
all goals & LCF	739 (227)	740 (118)	790 (143)
max of both	748 (239)	721 (129)	793 (158)

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	00●0	00
Coverage:	Blacklisting			

	CEGAR ^{fadd}	CEGAR ^{padd}	CEGAR ^{nadd}
no blacklisting	737 (230)	742 (122)	790 (143)
blacklisting (20)	743 (34)	748 (36)	743 (4)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	00●0	00
Coverage:	Blacklisting			

	CEGAR ^{fadd}	CEGAR ^{padd}	CEGAR ^{nadd}
no blacklisting	737 (230)	742 (122)	790 (143)
blacklisting (20)	743 (34)	748 (36)	743 (4)
max of both	787 (230)	775 (119)	811 (146)

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 000●	Conclusion 00
iPDB vs CE	EGAR			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

iPDB (Haslum et. al., 2007)

- pattern selection using hillclimbing
- heuristic quality is evaluated empirically

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 000●	Conclusion 00
iPDB vs C	EGAR			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

iPDB (Haslum et. al., 2007)

- pattern selection using hillclimbing
- heuristic quality is evaluated empirically

Coverage:

• iPDB coverage: 802

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 000●	Conclusion 00
iPDB vs C	EGAR			

iPDB (Haslum et. al., 2007)

- pattern selection using hillclimbing
- heuristic quality is evaluated empirically

Coverage:

- iPDB coverage: 802
- CEGAR^{nadd} without blacklisting: 790

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 000●	Conclusion 00
iPDB vs C	EGAR			

iPDB (Haslum et. al., 2007)

- pattern selection using hillclimbing
- heuristic quality is evaluated empirically

Coverage:

- iPDB coverage: 802
- CEGAR^{nadd} without blacklisting: 790
- CEGAR^{nadd} with+without blacklisting: 811

Background 0000000	Pattern Selection	Merge Avoidance	Evaluation 000●	Conclusion 00
iPDB vs C	EGAR			

iPDB (Haslum et. al., 2007)

- pattern selection using hillclimbing
- heuristic quality is evaluated empirically

Coverage:

- iPDB coverage: 802
- CEGAR^{nadd} without blacklisting: 790
- CEGAR^{nadd} with+without blacklisting: 811
- max(iPDB, CEGAR^{nadd}): 833

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	•0
Future Wo	ŕk			

• alternative flaw selection strategies

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000	000000	000000	0000	•0
Future W	ork			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- alternative flaw selection strategies
- alternative blacklisting strategies

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
000000	000000	000000	0000	•0
Future W	ork			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- alternative flaw selection strategies
- alternative blacklisting strategies
 - blacklist variables with the largest domains?

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000	000000	000000	0000	•0
Future Wo	ork			

- alternative flaw selection strategies
- alternative blacklisting strategies
 - blacklist variables with the largest domains?
- adaptive blacklisting
 - decide automatically if blacklisting is appropriate
 - adjust blacklist size depending on planning task

cost-partitioning

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	O
Conclusion				

• CEGAR^{nadd} shows best performance

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	O
Conclusion				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- CEGAR^{nadd} shows best performance
- ...and is competitive with iPDB

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	O
Conclusion				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- CEGAR^{nadd} shows best performance
- ...and is competitive with iPDB
- CEGAR^{nadd} and iPDB are complementary

Background	Pattern Selection	Merge Avoidance	Evaluation	Conclusion
0000000		000000	0000	O
Conclusion				

- CEGAR^{nadd} shows best performance
- ...and is competitive with iPDB
- CEGAR^{nadd} and iPDB are complementary
- combining a baseline CEGAR algorithm with its blacklisted version gives a significant coverage boost

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <