Single-Player Chess as a Planning Problem

Ken Rotaris <ken.rotaris@stud.unibas.ch>
Institute, University of Basel

Date: 04.07.2022

Planning? Single-Player Chess?

“Planning is the art and practice of thinking before acting”
— Patrik Haslum

Single-Player Chess as a Planning Problem

Motivation

e Check the validity of a given chess problem (Puzzles)

Single-Player Chess as a Planning Problem

Motivation

e Check the validity of a given chess problem (Puzzles)
e Study ways to solve Single-Player Chess

Single-Player Chess as a Planning Problem

Motivation

e Check the validity of a given chess problem (Puzzles)
e Study ways to solve Single-Player Chess
e Comparison: general purpose planner vs. domain specific planner

Single-Player Chess as a Planning Problem

Motivation

Check the validity of a given chess problem (Puzzles)
Study ways to solve Single-Player Chess
Comparison: general purpose planner vs. domain specific planner
Test limits of a general-purpose planner (PDDL)
o Bottleneck: Computing valid moves involving the King

Single-Player Chess as a Planning Problem

Motivation

Check the validity of a given chess problem (Puzzles)
Study ways to solve Single-Player Chess
Comparison: general purpose planner vs. domain specific planner
Test limits of a general-purpose planner (PDDL)
o Bottleneck: Computing valid moves involving the King
e Chess engines are awesome!

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

3\
2 %
117 %

a b ¢

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

3% 3

2 % 2

1208 1
a b c a

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

3
2 %//
T |

a b ¢

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

3
2 %//
T |

a b ¢

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

3
2 %//
T |

a b ¢

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

& B E AA E

i 7 A 4 %7 | A @@2 0,
1 %1 Q/ 11/ %1 @/ 1 %
a b a b ¢ a b c a b c a b ¢

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

%
U@& Q‘

This is intuitive for humans but how can we communicate the problem to an engine?

Single-Player Chess as a Planning Problem

Encoding

e We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state

Single-Player Chess as a Planning Problem

Encoding

e We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state
e Encoding in a formal language for the domain-independent planner

Single-Player Chess as a Planning Problem

Encoding

e We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state.
e Encoding in a formal language for the domain-independent planner

Definition

A domain-independent planner is a generic tool which is independent of the problem at hand.

Single-Player Chess as a Planning Problem

Encoding

e We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state.
e Encoding in a formal language for the domain-independent planner
Definition

A domain-independent planner is a generic tool which is independent of the problem at hand.

= A domain-dependent planner on the other hand does not have the restrictions of a formal
language that needs to be used to encode the problem (we can encode it in whichever way we
want).

Single-Player Chess as a Planning Problem

Domain Specific Approach

1. General Purpose Planner Approach
(domain-independent planner)

Domain specific Approach

General Purpose Planner: Pipeline

PDDL ¥ FAST

DOWNWARD = an

- N w E o ()} ~ [ee]

double pawn moves
en passant moves
pawn promotions
taking turns

game termination
etc.

absolute pins
checks

blocked movement
inhibited moves
normal moves
castling

Encoding <

General Purpose Planner Approach

The PDDL Language: Objects and Predicates

Example: Static Predicate

(:predicates
(same_diagonal ?square 1 ?square 2 - square)
)

(:objects
(a1 a2 a3 b1 b2 b3 c1c2c3-square)
)

(zinit
(same_diagonal a1 b2)
(same_diagonal b2 a1)
(same_diagonal b2 c3)

)

— Example: (same_diagonal a1 b2) = true (any not defined combination of squares is false)

General Purpose Planner Approach

The PDDL Language: Types of Predicates

Three types of predicates and their evaluation time:
1. Static predicates: The value does not change after it is defined (given as part of the model).

General Purpose Planner Approach

The PDDL Language: Types of Predicates

Three types of predicates and their evaluation time:
1. Static predicates: The value does not change after it is defined (given as part of the model).
2. Fluent predicates: The value changes via the ‘:effect’-section if an action is applicable.

General Purpose Planner Approach

The PDDL Language: Types of Predicates

Three types of predicates and their evaluation time:
1. Static predicates: The value does not change after it is defined (given as part of the model).
2. Fluent predicates: The value changes via the ‘:effect’-section if an action is applicable.
3. Derived predicates: The value is computed anew whenever a state is generated.

General Purpose Planner Approach

The PDDL Language: Derived Predicates

Example: Capturable by white Piece

(:predicates
(is_white ?figure - figure)
(at ?figure - figure 7square - square)
(occupied by black ?square - square)
(capturable ?figure - figure ?from square ?to _square - square)
)
(:derived (capturable ?figure - figure ?from square ?to square - square)
(and (at ?figure ?from_square)
(is_white ?figure)
(occupied by black ?to square)

)

— Example: (capturable white_bishop 1 a1 a3) = true if there is a black figure on a3

General Purpose Planner Approach

The PDDL Language: Actions

Putting it all together:

Example: Capturing a black Piece with a white Bishop

(:action bishop capture
:parameters (?bishop - bishop ?from_square ?to_square - square)
:precondition (and (capturable ?bishop ?from_square ?to_square)
(same_diagonal ?from square ?to square)
)

-effect (and (not(at ?bishop ?from_square))

(at ?bishop ?to_square)
(not(occupied by black ?square))

General Purpose Planner Approach

PDDL Specifics of the Model (The Rook)

Implementation: Rook Move (1. Objects)

(:objects
‘locations:
n1 n2 n3 n4 n5 n6 n7 n8 - location

;object pieces:

king_w1 king_b1 - king
rook_w1 - rook

General Purpose Planner Approach

PDDL Specifics of the Model (The Rook)

Implementation: Rook Move (II. Parameters & Preconditions)

(:action rook_move
:parameters (?rook - rook ?from_file ?from_rank ?to file ?to_rank - location)
:precondition (and (valid_position)
(at ?rook ?from_file ?from_rank)
(myturn ?rook)
(or
(and
(= ?from_file ?to_file)
(vert_reachable ?rook ?from_file ?from_rank ?to_file ?to_rank)
)
(and
(= ?from_rank ?to_rank)
(horiz_reachable ?rook ?from_file ?from_rank ?to_file ?to_rank)

Either vertically or horizontally reachable

)

)

-effect (next slide...)

General Purpose Planner Approach

PDDL Specifics of the Model (The Rook)

Implementation: Rook Move (I11. Effect Section)

(and (forall (?figure - figure)
(when
(and (at ?figure ?to_file ?to_rank)
(not_same_color ?rook ?figure))
static predicate (and (not (at 7figure 7to_file ?to_rank))|| - ...remove that figure from the board
(removed ?figure))

If there is some figure of opposite
color at the destination square...

)

)

(when (white_s_turn) \ To prevent there being two figures at
(not(white_s_turn)) the same square

)

(when (not(white_s_turn))

) ™ Turn taking: switch turn after every action/ move
(white_s_turn)

)

7/

(not(valid_position))

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Red Zone: Consider the following state:

3 ///%

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Red Zone: Consider the following state:

. Q) %
3| & o) @ H
2
//'7 2 74
1 1 m-
a b ¢ a b ¢

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Problem:
3 " /
2
7 7
1
a b c

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Problem: King can protect himself and move behind his own ‘shadow’:

3 Y
2
Z A
W B
a b c

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Other interesting problems include the detection of:

Forced Moves:

3 e
2
==
a b c

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Other interesting problems include the detection of:

Forced Moves: Absolute Pins:

3 e

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Other interesting problems include the detection of:

Forced Moves: Absolute Pins: Mating Positions:
3 /v'e 3
7,
2 2 /
1 "“"/A//V 10 f
% ./
a b ¢ a b c

General Purpose Planner Approach

Domain Specific Approach: State Representation

General Purpose Planner Approach — Domain specific Approach

Domain specific Approach

Domain Specific Approach: State Representation

3%0 \

2 O // O > Black Knights Bitmap

—000000101
1 0 %
/
N
3 % ()

2 > White Knights Bitmap

a b C —101000000
1 0%
/

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
e Breadth First Search (BFS)

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
e Breadth First Search (BFS)
e Best First Search instantiations:

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
e Breadth First Search (BFS)
e Best First Search instantiations:
o Greedy Best First Search

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
e Breadth First Search (BFS)
e Best First Search instantiations:
o Greedy Best First Search
o A* Search

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
e Breadth First Search (BFS)
e Best First Search instantiations:
o Greedy Best First Search
o A* Search
o weighted A* Search

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
e Breadth First Search (BFS)
e Best First Search instantiations:
o Greedy Best First Search
o A* Search
o weighted A* Search

— Heuristic: We count the number of chess pieces that are out of order
when compared to the goal state.

Domain specific Approach

Domain Specific Approach: Heuristic

Compute the number of out of place figures:

Initial State: S,

A
Wy
7,

N W B O

iy

Y%
A

%

Domain specific Approach

Intermediate State: s’

Domain Specific Approach: Heuristic

Compute the number of out of place figures dded fig deleted fig
5 5
7 » 7 >
4 4 F 3
23 Y.
3 3 4 //
_ _
/ &
: /@ //47 . %, ///
) 7 Y . 7 7

(@]
o
(@)

a b C d e a b

We cannot just compute the amount of flipped bits...

Domain specific Approach

Domain Specific Approach: Heuristic

Current State: Goal State:

3%0 3%0
! 1%1 0%

Domain specific Approach

Domain Specific Approach: Heuristic

Long.bitCount (curr[i]

& ~|(curr[i] & goalli])

Current State:

Goal State:

3%0

1 1%

%o
0%

00
00O

0%

Domain specific Approach

Domain Specific Approach: Heuristic

Long.bitCount (curr[i] &Gﬂ(curr[i] & goallil])])

Current State:

Goal State:

%o
1%

%0
0%

00

Domain specific Approach

000111
0% 1
a b c

Domain Specific Approach: Heuristic

Current State: Goal State:
3 % 0 3 %o |11
2 2 2|11 . 1
7,
1 @@1 L % 10 D@
a b c

Domain specific Approach

Domain Specific Approach: Heuristic

h = Long.bitCount

Current State:

curr[i] & ~(curr[i] & goal[i]))

\

3%0 1 210 O
1/@/1 = 21000

1 1% 1 1 1%
a b c a

Domain specific Approach

Domain Specific Approach: Properties of h()

A Goal Aware?

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware
A Safe?

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware

Q Safe?
Two cases where the heuristic value is assigned to Infinity:

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware

Q Safe?
Two cases where the heuristic value is assigned to Infinity:
1. Number of pawns < number of missing figures (of the color who'’s turn it is)

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware

Q Safe?
Two cases where the heuristic value is assigned to Infinity:
1. Number of pawns < number of missing figures (of the color who'’s turn it is)
2. If last pawn of a color is further ahead than in the goal state (Pawns cannot
move backwards)

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware
v Safe
A Consistent?

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware
v Safe

[Consistent?
= h(s) value is not allowed to drop by more than one

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware
v Safe

[Consistent?
= h(s) value is not allowed to drop by more than one

Consider this position:
3 3
2| | -
%W %7
1 1
a b c a b ¢

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware
v Safe
B—Coensistent

Domain specific Approach

Domain Specific Approach: Properties of h()

v Goal Aware
v Safe

B—Coensistent
O Admissib]

Domain specific Approach

Experiments: Setup

Limits: 10 min., 8GB (memory)
Environment: Ubuntu, 16GB (memory), Intel Core i7 (with 4 x 2.7GHz)

Fast Downward with GBFS and the FF-heuristic (--search "eager greedy([ff])")

Single-Player Chess as a Planning Problem

Experimental Results

PDDL Approach: First Experiment (8x8 board, 1 Pawn move)

1.

o M~ W 1O < oo N -

a b ¢ d e f g h

Single-Player Chess as a Planning Problem

Experimental Results

1. PDDL Approach: First Experiment (8x8 board, 1 Pawn move)

11231241 kadiaaa

- Memory limit reached - /
(4 min 32 sec)

%%ﬁ% %@@M

Single-Player Chess as a Planning Problem

&\\
N-

x

\\
\

N W OO N

Experimental Results

2. PDDL Approach: Second Experiment (4x4 board)

4
4%%7
3 / y 3
2 //% 2 :
,
1 . 1
|
a b ¢ d a b ¢ d

Single-Player Chess as a Planning Problem

Experimental Results

2. PDDL Approach: Second Experiment (4x4 board)

@) J 7

solution of length 12 7
(180 sec) /

1 % ‘ 1 W _
a b ¢ d

|
a b ¢ d

N (O s
N

Single-Player Chess as a Planning Problem

Experimental Results

2. PDDL Approach: Second Experiment (4x4 board) 2 % %
” 3 /%
Row | Time | Moves | Goal State 7, %%
1 185s 1 k1K1/4/r3/RR2 ? z &
2 1765 | 2 k2K /4/r3/RR2 !
3 176s | 3 3K /k3/r3/RR2 2 b e d
4 1765 | 4 3K /k3/rR1/R3 4 %
5 175s | 5 k2K /4/rR1/R3 3 ole % //
6 1755 | 6 k2K/4/RR1/4 /2 zy 0
i 180s | 12 3K/k3/RR1/4 . v
a b ¢ d

Single-Player Chess as a Planning Problem

Experimental Results

2. PDDL Approach: Second Experiment (4x4 board)

time(sec) ‘

200

150

100

50

moves

o;
2 4 6 8 10 12

Single-Player Chess as a Planning Problem

Experimental Results

3-4. PDDL Approach: 5x5 and 6x6 board

Single-Player Chess as a Planning Problem

Experimental Results

3-4. PDDL Approach: 5x5 and 6x6 board

Time limit reached
(10 min)

Single-Player Chess as a Planning Problem

Experimental Results

5-7. PDDL Approach: 7x7 and 8x8 board

Single-Player Chess as a Planning Problem

Experimental Results

5-7. PDDL Approach: 7x7 and 8x8 board

Memory limit reached
(81 sec & 108 sec)

Single-Player Chess as a Planning Problem

Experimental Results

8. PDDL Approach: Without the Red-Zone/ without Kings (8x8 board)

Row | Time Moves | Goal State

1 111s 1 rnbqlbnr /pppppppp/8/8/4P3/8/PPPP1PPP/RNBQIBNR

2 109s 2 mbqlbnr/ppppplpp/8/5p2/4P3/8/PPPP1PPP/RNBQIBNR

3 109s 3 mbqlbnr/ppppplpp/8/5P2/8/8/PPPP1PPP/RNBQIBNR

4 119s 4 rnbqlblr/ppppplpp/5n2/5P2/8/8 /PPPP1PPP/RNBQIBNR

5 114s 5 mbqlblr/ppppplpp/5n2/5P2/8/3P4/PPP2PPP/RNBQIBNR

6 117s 6 11bq1blr/ppppplpp/2n2n2/5P2/8/3P4/PPP2PPP /RNBQIBNR
111s 7 r1bqlblr/ppppplpp/2n2n2/5P2/8/3P4/PPPBIPPP /RN1QIBNR

3 1255 9 r1bqlblr/ppplplpp/2n2n2/3p1P2/8/3P4/PPPBIPPP /RN1QIBNR

9 114s 12 r1bqlblr/ppplplpp/2n2n2/3p1P2/8/3P1Q2/PPPBIPPP/RN3BNR

10 1158 11 11bq1blr/ppplplpp/5n2/3plP2/3nd/3P 1Q2/PPPBIPPP/RN3BNR

11 1165 14 11bq1blr/ppplplpp/bn2/3Q1P2/3n4/3P4/PPPBIPPP /RN3BNR

12 117s 12 11b2b1r/ppplplpp/5n2/3q1P2/3n4/3P4/PPPBIPPP/RN3BNR

13 1155 14 r1b2b1r/ppplplpp/5n2/3q1P2/3n4/1P1P4/P1PB1PPP/RN3BNR

14 1295 18 r1b2b1r/ppplplpp/5n2/4qP2/3n4/1P1P4/P1PB1PPP/RN3BNR

15 139s 26 r1b2blr/ppplplpp/5n2/4qP2/3n4/1PPP4/P2B1PPP/RN3BNR

16 154s 24 r1b2blr/ppplplpp/5n2/1n2qP2/8/1PPP4/P2B1PPP/RN3BNR

17 149s 26 r1b2blr/ppplplpp/5n2/1n2qP2/8/1PPP1N2/P2B1PPP/RN3BIR

18 1355 35 11b2b1r/ppplplpp/5n2/4qP2/8/1PnP1N2/P2B1PPP /RN3BIR

19 134s 35 r1b2blr/ppplplpp/5n2/4qP2/8/1PNP1N2/P2B1PPP/R4BIR

20 1445 36 r1b2b1r/ppplplpp/5n2/5P2/8/1PqP1N2/P2B1PPP/R4BIR

21 194s 30 r1b2blr/ppplplpp/5n2/5P2/8/1PBPIN2/PAPPP /RABIR

22 2168 35 rdblr/ppplplpp/5n2/5b2/8/IPBP1N2/PAPPP/RABIR

23 | 3258 36 3r1blr/ppplplpp/bn2/5b2/8/IPBPIN2/PAPPP/RABIR

24 1725 33 3r1blr/ppplplpp/5B2/5b2/8/ 1P 1PIN2/PAPPP /RABIR

25 153s 38 3riblr/ppplp2p/5p2/5b2/8/1P1PIN2/PAPPP/R4BIR

26 281s 40 3r1blr/ppplp2p/5p2/5b2/7N/1P1P4/P4PPP/R4BIR

27 193s 46 5bir/ppplp2p/5p2/5b2/7N/1P1r4/PAPPP /RABIR

28 163s 50 5blr/ppplp2p/5p2/5b2/7N/1P1BA/PAPPP/R6R

29 2035 14 5blr/ppplp2p/5p2/8/7N/1P1bd/PAPPP /RIR5

30 156s 50 7r/ppplp2p/5plb/8/TN/1P1b4/PAPPP /R1R5

31 timeout | - 7r/ppplp2p/5plb/8/7N/1P1b4/P4PPP /R2R4

Single-Player Chess as a Planning Problem

Experimental Results

8. PDDL Approach: Without the Red-Zone/ without Kings (8x8 board)

A

time(sec)‘

400
300
200

100

moves
(0 >

RS X v X

Single-Player Chess as a Planning Problem

Experimental Results

8. PDDL Approach: Without the Red-Zone/ without Kings (8x8 board)

A

time(sec)‘

400
300

200

100

moves
0_

RS X v X

Single-Player Chess as a Planning Problem

Experimental Results

General Purpose Planner Approach — Domain specific Approach

Single-Player Chess as a Planning Problem

Experimental Results

9. Domain Specific Approach: using GBFS (8x8 board)

Row | Time | Moves | Nodes Expanded
1 1lms 1 20

2 2ms 2 40

3 3ms 3 121

4 3ms 4 i

5 11ms 6 1365

6 52ms 6 9746

7 14ms 10 1866

8 16ms 8 2267

9 , , ,

Single-Player Chess as a Planning Problem

Experimental Results

10. Domain Specific Approach: using GBFS (8x8 board)

time(millis) |

60
40

20

. # moves

1 2 3 4 6 6 8 10

Single-Player Chess as a Planning Problem

Experimental Results

10. Domain Specific Approach: using A* (8x8 board)

‘ Row ‘ Time ‘ Moves ‘ Nodes Expanded ‘
1 2ms 1 20
2 2ms 2 40
3 5ms 3 221
4 6ms 4 260
5 18ms 5 2043
6 16ms 6 1458
7 42ms 7 6377
8 54ms 8 9767
9 80ms 9 17148
10 83ms 10 18018
11 573ms 11 234’446
12 763ms 12 304’938
13 2s 166ms | 13 1’180°648
14 4s 305ms | 14 2253356
15 7s 424ms | 15 4672735
16 - - -

Single-Player Chess as a Planning Problem

Experimental Results

10. Domain Specific Approach: using A* (8x8 board)

time(millis)
8000

6000
4000

2000

moves

0
2 4 6 8 10 12 14

Single-Player Chess as a Planning Problem

Experimental Results

10. Domain Specific Approach: using A* (8x8 board)
~500’000 nodes/sec

A

expanded nodes == expanded nodes == nodes/sec
5000000

4000000
3000000
2000000

1000000

time (millis)
1000 2000 3000 4000 5000 6000 7000

Single-Player Chess as a Planning Problem

Experimental Results

Conclusion

Single-Player Chess as a Planning Problem

Experimental Results

Conclusion

e Red Zone = Bottleneck of the PDDL implementation
= Valid moves involving the King are expensive
= Domain independent approach not practical for boards bigger than 4x4

Single-Player Chess as a Planning Problem

Experimental Results

Conclusion

e Red Zone = Bottleneck of the PDDL implementation
= Valid moves involving the King are expensive
= Domain-independent approach not practical for boards bigger than 4x4
e The results of the PDDL implementation reflect our expectations
= PDDL is used for domain-independent problems
= Domain-independent approach can not be optimized as much as a
domain-dependent approach.

Single-Player Chess as a Planning Problem

Experimental Results

Conclusion

e Red Zone = Bottleneck of the PDDL implementation
= Valid moves involving the King are expensive
= Domain-independent approach not practical for boards bigger than 4x4
e The results of the PDDL implementation reflect our expectations
= PDDL is used for domain-independent problems
= Domain-independent approach can not be optimized as much as a
domain-dependent approach.
e Memory bottleneck in the domain-dependent approach

Single-Player Chess as a Planning Problem

Experimental Results

Conclusion

e Red Zone = Bottleneck of the PDDL implementation
= Valid moves involving the King are expensive
= Domain-independent approach not practical for boards bigger than 4x4
e The results of the PDDL implementation reflect our expectations
= PDDL is used for domain-independent problems
= Domain-independent approach can not be optimized as much as a
domain-dependent approach.
e Memory bottleneck in the domain-dependent approach
e A*is not as efficient as GBFS but it can find solutions where GBFS fails.

Single-Player Chess as a Planning Problem

Questions?

ken.rotaris@stud.unibas.ch

Backup: “Locking” Mechanism

e Fluid predicate ‘valid_position’ (frue at the start)
e After every action: (not(valid_position)) — set to false
e Only the unlocking action is applicable now (all other actions are “locked”).

1 (:action check_if last_move_was_valid ;check same colored king
2 :parameters (- figure — location)
3 :precondition (and

4 (not (valid_position))

5 (at)

6 (myturn)

7 (opposite_king_not_in_check)

8)

9 :effect (and

10 (valid. pesition)

11)

12)

Single-Player Chess as a Planning Problem

Backup: PDDL Domain File Statistics

Name Amount
H#types 8
#actions 18
total #predicates 61
#static predicates 19
#fluent predicates 9
total #derived predicates 33
#recursive derived predicates 6
#non-recursive derived predicates | 27

Single-Player Chess as a Planning Problem

Backup: Experimental PDDL Results

2. PDDL Approach: Second Experiment (4x4 board)

Row | Time | Moves | Goal State t States Generated
1 185s 1 k1K1/4/r3/RR2 J 0.634782s | 15

2 176s 2 k2K /4/r3/RR2 0.663288s | 33

3 176s 3 3K/k3/r3/RR2 0.679977s | 47

4 176s 4 3K/k3/rR1/R3 0.715359s | 61

5 175s 5 k2K/4/rR1/R3 0.790793s | 84

6 175s 6 k2K/4/RR1/4 1.05123s 258

i 180s 12 3K/k3/RR1/4 4.4395s 2879

Single-Player Chess as a Planning Problem

Backup: Experimental PDDL Results

2. PDDL Approach: Second Experiment (4x4 board)

expanded nodes ‘

== time (sec) == nodes/sec

3000
2000

1000

time (s)
0 >
1 2 3 4

Single-Player Chess as a Planning Problem

Backup: Bitmap Movements

Movement to the right (shift by 1 to the left):

3%0 3%0

¢ ’
4 <<1 %
2101 O 2100 1

10% 10%
a b ¢ a b ¢

Single-Player Chess as a Planning Problem

Backup: Bitmap Movements

Diagonal Movement (shift by 4 to the left):

3%0 3%0

/01 0| <<% :0¢
& O ////O
000 001
a b C a b C

Single-Player Chess as a Planning Problem

