
Single-Player Chess as a Planning Problem
Ken Rotaris <ken.rotaris@stud.unibas.ch>
Institute, University of Basel

Date: 04.07.2022

Single-Player Chess as a Planning Problem

Planning? Single-Player Chess?

“Planning is the art and practice of thinking before acting”
 — Patrik Haslum

Single-Player Chess as a Planning Problem

Motivation

● Check the validity of a given chess problem (Puzzles)

Single-Player Chess as a Planning Problem

Motivation

● Check the validity of a given chess problem (Puzzles)
● Study ways to solve Single-Player Chess

Single-Player Chess as a Planning Problem

Motivation

● Check the validity of a given chess problem (Puzzles)
● Study ways to solve Single-Player Chess
● Comparison: general purpose planner vs. domain specific planner

Single-Player Chess as a Planning Problem

Motivation

● Check the validity of a given chess problem (Puzzles)
● Study ways to solve Single-Player Chess
● Comparison: general purpose planner vs. domain specific planner
● Test limits of a general-purpose planner (PDDL)

○ Bottleneck: Computing valid moves involving the King

Single-Player Chess as a Planning Problem

Motivation

● Check the validity of a given chess problem (Puzzles)
● Study ways to solve Single-Player Chess
● Comparison: general purpose planner vs. domain specific planner
● Test limits of a general-purpose planner (PDDL)

○ Bottleneck: Computing valid moves involving the King
● Chess engines are awesome!

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

Single-Player Chess as a Planning Problem

Example: Guarini Problem (1512 AD)

This is intuitive for humans but how can we communicate the problem to an engine?

Single-Player Chess as a Planning Problem

Encoding

● We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state

Single-Player Chess as a Planning Problem

Encoding

● We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state

● Encoding in a formal language for the domain-independent planner

Single-Player Chess as a Planning Problem

Encoding

● We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state.

● Encoding in a formal language for the domain-independent planner

Definition

A domain-independent planner is a generic tool which is independent of the problem at hand.

Single-Player Chess as a Planning Problem

Encoding

● We need to encode the problem in such a way that there is no doubt on how the
system can behave in any given state.

● Encoding in a formal language for the domain-independent planner

Definition

A domain-independent planner is a generic tool which is independent of the problem at hand.

⇒ A domain-dependent planner on the other hand does not have the restrictions of a formal
language that needs to be used to encode the problem (we can encode it in whichever way we
want).

Domain specific Approach

Domain Specific Approach

1. General Purpose Planner Approach
(domain-independent planner)

General Purpose Planner Approach

General Purpose Planner: Pipeline

PDDL Plan

Encoding ● double pawn moves
● en passant moves
● pawn promotions
● taking turns
● game termination
● etc.

● absolute pins
● checks
● blocked movement
● inhibited moves
● normal moves
● castling

General Purpose Planner Approach

The PDDL Language: Objects and Predicates

Example: Static Predicate
(:predicates

(same_diagonal ?square_1 ?square_2 - square) → static predicate
)
(:objects

(a1 a2 a3 b1 b2 b3 c1 c2 c3 - square) → objects
)
(:init

(same_diagonal a1 b2)
(same_diagonal b2 a1)
(same_diagonal b2 c3)
…

)

→ Example: (same_diagonal a1 b2) = true (any not defined combination of squares is false)

 ∈ Domain file

 ∈ Problem file

General Purpose Planner Approach

The PDDL Language: Types of Predicates

Three types of predicates and their evaluation time:
1. Static predicates: The value does not change after it is defined (given as part of the model).

General Purpose Planner Approach

The PDDL Language: Types of Predicates

Three types of predicates and their evaluation time:
1. Static predicates: The value does not change after it is defined (given as part of the model).
2. Fluent predicates: The value changes via the ‘:effect’-section if an action is applicable.

General Purpose Planner Approach

The PDDL Language: Types of Predicates

Three types of predicates and their evaluation time:
1. Static predicates: The value does not change after it is defined (given as part of the model).
2. Fluent predicates: The value changes via the ‘:effect’-section if an action is applicable.
3. Derived predicates: The value is computed anew whenever a state is generated.

General Purpose Planner Approach

The PDDL Language: Derived Predicates

Example: Capturable by white Piece
(:predicates

(is_white ?figure - figure) → static predicate
(at ?figure - figure ?square - square) → fluent predicate
(occupied_by_black ?square - square) → fluent predicate
(capturable ?figure - figure ?from_square ?to_square - square) → derived predicate

)
(:derived (capturable ?figure - figure ?from_square ?to_square - square)

(and (at ?figure ?from_square)
(is_white ?figure)
(occupied_by_black ?to_square)

)
)

→ Example: (capturable white_bishop_1 a1 a3) = true if there is a black figure on a3

General Purpose Planner Approach

The PDDL Language: Actions

Example: Capturing a black Piece with a white Bishop
(:action bishop_capture

:parameters (?bishop - bishop ?from_square ?to_square - square)
:precondition (and (capturable ?bishop ?from_square ?to_square)

 (same_diagonal ?from_square ?to_square)
)

:effect (and (not(at ?bishop ?from_square))
 (at ?bishop ?to_square)
 (not(occupied_by_black ?square))

)
)

Putting it all together:

General Purpose Planner Approach

PDDL Specifics of the Model (The Rook)

Implementation: Rook Move (I. Objects)

(:objects
;locations:
n1 n2 n3 n4 n5 n6 n7 n8 - location

;object pieces:
king_w1 king_b1 - king
rook_w1 - rook

)

General Purpose Planner Approach

PDDL Specifics of the Model (The Rook)

Implementation: Rook Move (II. Parameters & Preconditions)

(:action rook_move
 :parameters (?rook - rook ?from_file ?from_rank ?to_file ?to_rank - location)
 :precondition (and (valid_position)
 (at ?rook ?from_file ?from_rank)
 (myturn ?rook)
 (or
 (and
 (= ?from_file ?to_file)
 (vert_reachable ?rook ?from_file ?from_rank ?to_file ?to_rank)
)
 (and
 (= ?from_rank ?to_rank)
 (horiz_reachable ?rook ?from_file ?from_rank ?to_file ?to_rank)
)
))

:effect (next slide…)

Either vertically or horizontally reachable

General Purpose Planner Approach

PDDL Specifics of the Model (The Rook)

Implementation: Rook Move (III. Effect Section)

(and (forall (?figure - figure)
(when

 (and (at ?figure ?to_file ?to_rank)
(not_same_color ?rook ?figure))

 (and (not (at ?figure ?to_file ?to_rank))
(removed ?figure))

)
)
(when (white_s_turn)

(not(white_s_turn))
)
(when (not(white_s_turn))

(white_s_turn)
)
(not(valid_position))
…

Turn taking: switch turn after every action/ move

To prevent there being two figures at
the same square

If there is some figure of opposite
color at the destination square…

…remove that figure from the boardstatic predicate

Red Zone: Consider the following state:

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Red Zone: Consider the following state:

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

 Problem:

Problem: King can protect himself and move behind his own ‘shadow’:

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Other interesting problems include the detection of:

 Forced Moves:

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Other interesting problems include the detection of:

 Forced Moves: Absolute Pins:

General Purpose Planner Approach

PDDL Specifics of the Model (Challenges)

Other interesting problems include the detection of:

 Forced Moves: Absolute Pins: Mating Positions:

Domain specific Approach

Domain Specific Approach: State Representation

General Purpose Planner Approach → Domain specific Approach

Domain specific Approach

Domain Specific Approach: State Representation

1 1

0 0 0
0 0 0

0
Black Knights Bitmap
 →000000101

0 0
0 0 0

1 10
0 White Knights Bitmap

 →101000000

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
● Breadth First Search (BFS)

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
● Breadth First Search (BFS)
● Best First Search instantiations:

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
● Breadth First Search (BFS)
● Best First Search instantiations:

○ Greedy Best First Search

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
● Breadth First Search (BFS)
● Best First Search instantiations:

○ Greedy Best First Search
○ A* Search

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
● Breadth First Search (BFS)
● Best First Search instantiations:

○ Greedy Best First Search
○ A* Search
○ weighted A* Search

Domain specific Approach

Domain Specific Approach: Search

Implemented search types:
● Breadth First Search (BFS)
● Best First Search instantiations:

○ Greedy Best First Search
○ A* Search
○ weighted A* Search

→ Heuristic: We count the number of chess pieces that are out of order
when compared to the goal state.

Domain specific Approach

Domain Specific Approach: Heuristic

Initial State: s0 Intermediate State: s’ Goal state: s*

 h(s0)=2 h(s’)=1 h(s*)=0

Compute the number of out of place figures:

Domain specific Approach

Domain Specific Approach: Heuristic
Compute the number of out of place figures: added figures deleted figures

We cannot just compute the amount of flipped bits…

Domain specific Approach

Domain Specific Approach: Heuristic

0 0
0 0 0

1 11
0

1

10

0 0
0 1 0

0

h = Long.bitCount(curr[i] & ~(curr[i] & goal[i]))

Current State: Goal State:

Domain specific Approach

Domain Specific Approach: Heuristic

0 0
0 0 0

1 11
0

1

10

0 0
0 1 0

0

h = Long.bitCount(curr[i] & ~(curr[i] & goal[i]))

0 0

1 0 0
0 0 0

0
Current State: Goal State:

Domain specific Approach

Domain Specific Approach: Heuristic

0 0
0 0 0

1 11
0

1

10

0 0
0 1 0

0

h = Long.bitCount(curr[i] & ~(curr[i] & goal[i]))

0 0

1 0 0
0 0 0

0 1 1

0 1 1
1 1 1

1
Current State: Goal State:

Domain specific Approach

Domain Specific Approach: Heuristic

0 0
0 0 0

1 11
0

h = Long.bitCount(curr[i] & ~(curr[i] & goal[i]))

1 1

0 1 1
1 1 1

1
Current State:

1

10

0 0
0 1 0

0
Goal State:

Domain specific Approach

Domain Specific Approach: Heuristic
h = Long.bitCount(curr[i] & ~(curr[i] & goal[i]))

1 1

0 1 1
1 1 1

1

h = 2

& =

1 1

0 0 0
0 0 0
0

0 0
0 0 0

1 11
0

Current State:

Domain specific Approach

Domain Specific Approach: Properties of h()

❏ Goal Aware?

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware
❏ Safe?

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware
❏ Safe?

Two cases where the heuristic value is assigned to Infinity:

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware
❏ Safe?

Two cases where the heuristic value is assigned to Infinity:
1. Number of pawns < number of missing figures (of the color who’s turn it is)

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware
❏ Safe?

Two cases where the heuristic value is assigned to Infinity:
1. Number of pawns < number of missing figures (of the color who’s turn it is)
2. If last pawn of a color is further ahead than in the goal state (Pawns cannot

move backwards)

✓ Safe

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware

❏ Consistent?

✓ Safe

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware

❏ Consistent?
⇒ h(s) value is not allowed to drop by more than one

✓ Safe

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware

❏ Consistent?
⇒ h(s) value is not allowed to drop by more than one

Consider this position:

✓ Safe

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware

❏ Consistent

✓ Safe

Domain specific Approach

Domain Specific Approach: Properties of h()

✓ Goal Aware

❏ Consistent
❏ Admissible

Single-Player Chess as a Planning Problem

Experiments: Setup

Limits: 10 min., 8GB (memory)
Environment: Ubuntu, 16GB (memory), Intel Core i7 (with 4 x 2.7GHz)

Fast Downward with GBFS and the FF-heuristic (--search "eager_greedy([ff])")

Single-Player Chess as a Planning Problem

Experimental Results

1. PDDL Approach: First Experiment (8x8 board, 1 Pawn move)

Single-Player Chess as a Planning Problem

Experimental Results

1. PDDL Approach: First Experiment (8x8 board, 1 Pawn move)

Memory limit reached
(4 min 32 sec)

Single-Player Chess as a Planning Problem

Experimental Results

 2. PDDL Approach: Second Experiment (4x4 board)

Single-Player Chess as a Planning Problem

Experimental Results

 2. PDDL Approach: Second Experiment (4x4 board)

solution of length 12
(180 sec)

Experimental Results

 2. PDDL Approach: Second Experiment (4x4 board)

Single-Player Chess as a Planning Problem

Experimental Results

 2. PDDL Approach: Second Experiment (4x4 board)

moves

time(sec)

Single-Player Chess as a Planning Problem

Experimental Results

 3-4. PDDL Approach: 5x5 and 6x6 board

Single-Player Chess as a Planning Problem

Experimental Results

 3-4. PDDL Approach: 5x5 and 6x6 board

Single-Player Chess as a Planning Problem

Time limit reached
(10 min)

Experimental Results

 5-7. PDDL Approach: 7x7 and 8x8 board

Single-Player Chess as a Planning Problem

Experimental Results

 5-7. PDDL Approach: 7x7 and 8x8 board

Single-Player Chess as a Planning Problem

Memory limit reached
(81 sec & 108 sec)

Experimental Results

 8. PDDL Approach: Without the Red-Zone/ without Kings (8x8 board)

Single-Player Chess as a Planning Problem

Experimental Results

 8. PDDL Approach: Without the Red-Zone/ without Kings (8x8 board)

moves

time(sec)

Single-Player Chess as a Planning Problem

Experimental Results

 8. PDDL Approach: Without the Red-Zone/ without Kings (8x8 board)

moves

time(sec)

Single-Player Chess as a Planning Problem

Experimental Results

Single-Player Chess as a Planning Problem

General Purpose Planner Approach → Domain specific Approach

Experimental Results

 9. Domain Specific Approach: using GBFS (8x8 board)

Single-Player Chess as a Planning Problem

Experimental Results

 10. Domain Specific Approach: using GBFS (8x8 board)

moves

time(millis)

Single-Player Chess as a Planning Problem

Experimental Results

 10. Domain Specific Approach: using A* (8x8 board)

Single-Player Chess as a Planning Problem

Experimental Results

 10. Domain Specific Approach: using A* (8x8 board)

moves

time(millis)

Single-Player Chess as a Planning Problem

Experimental Results

 10. Domain Specific Approach: using A* (8x8 board)

time (millis)

expanded nodes

Single-Player Chess as a Planning Problem

~500’000 nodes/sec

Experimental Results

 Conclusion

Single-Player Chess as a Planning Problem

Experimental Results

 Conclusion

Single-Player Chess as a Planning Problem

● Red Zone = Bottleneck of the PDDL implementation
⇒ Valid moves involving the King are expensive
⇒ Domain independent approach not practical for boards bigger than 4x4

Experimental Results

 Conclusion

Single-Player Chess as a Planning Problem

● Red Zone = Bottleneck of the PDDL implementation
⇒ Valid moves involving the King are expensive
⇒ Domain-independent approach not practical for boards bigger than 4x4

● The results of the PDDL implementation reflect our expectations
⇒ PDDL is used for domain-independent problems

⇒ Domain-independent approach can not be optimized as much as a
domain-dependent approach.

Experimental Results

 Conclusion

Single-Player Chess as a Planning Problem

● Red Zone = Bottleneck of the PDDL implementation
⇒ Valid moves involving the King are expensive
⇒ Domain-independent approach not practical for boards bigger than 4x4

● The results of the PDDL implementation reflect our expectations
⇒ PDDL is used for domain-independent problems

⇒ Domain-independent approach can not be optimized as much as a
domain-dependent approach.

● Memory bottleneck in the domain-dependent approach

Experimental Results

 Conclusion

Single-Player Chess as a Planning Problem

● Red Zone = Bottleneck of the PDDL implementation
⇒ Valid moves involving the King are expensive
⇒ Domain-independent approach not practical for boards bigger than 4x4

● The results of the PDDL implementation reflect our expectations
⇒ PDDL is used for domain-independent problems

⇒ Domain-independent approach can not be optimized as much as a
domain-dependent approach.

● Memory bottleneck in the domain-dependent approach
● A* is not as efficient as GBFS but it can find solutions where GBFS fails.

Questions?
ken.rotaris@stud.unibas.ch

Department of Mathematics
and Computer Science

Natural Science Faculty

Artificial Intelligence
Research Group

ai.dmi.unibas.ch

Single-Player Chess as a Planning Problem

Backup: “Locking” Mechanism

● Fluid predicate ‘valid_position’ (true at the start)
● After every action: (not(valid_position)) → set to false
● Only the unlocking action is applicable now (all other actions are “locked”).

Single-Player Chess as a Planning Problem

Backup: PDDL Domain File Statistics

Backup: Experimental PDDL Results

 2. PDDL Approach: Second Experiment (4x4 board)

Single-Player Chess as a Planning Problem

Backup: Experimental PDDL Results

 2. PDDL Approach: Second Experiment (4x4 board)

time (s)

expanded nodes

Single-Player Chess as a Planning Problem

Backup: Bitmap Movements

Single-Player Chess as a Planning Problem

0
0

00

0 0
0 0 1

0

00
‘<<1’0

0 0 0

0
1

Movement to the right (shift by 1 to the left):

Backup: Bitmap Movements

Single-Player Chess as a Planning Problem

0
0

00

0
00 0
1

0

00
‘<<4’0

0 0 0

0
1

Diagonal Movement (shift by 4 to the left):

