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Abstract

The International Planning Competitions (IPCs) serve as a testing suite for planning sys-

tems. These domains are well-motivated as they are derived from, or possess characteristics

analogous to real-life applications. In this thesis, we study the computational complexity

of the plan existence and bounded plan existence decision problems of the following grid-

based IPC domains: VisitAll, TERMES, Tidybot, Floortile, and Nurikabe. In all of these

domains, there are one or more agents moving through a rectangular grid (potentially with

obstacles) performing actions along the way. In many cases, we engineer instances that can

be solved only if the movement of the agent or agents follows a Hamiltonian path or cycle in

a grid graph. This gives rise to many NP-hardness reductions from Hamiltonian path/cycle

problems on grid graphs. In the case of VisitAll and Floortile, we give necessary and suffi-

cient conditions for deciding the plan existence problem in polynomial time. We also show

that Tidybot has the game Push -1F as a special case, and its plan existence problem is

thus PSPACE-complete. The hardness proofs in this thesis highlight hard instances of

these domains. Moreover, by assigning a complexity class to each domain, researchers and

practitioners can better assess the strengths and limitations of new and existing algorithms

in these domains.
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1
Introduction

Automated planning is a broad area of artificial intelligence. Researchers in this field devise

computer programs that are able to come up with strategies that solve problems in planning

and scheduling. Mathematically, such problems are modeled as planning tasks. Broadly

speaking, these define a set of states, an initial state, a set of goal states, and one or more

actions that transform a state into a new state. A planning task is solved once a strategy

has been found that reaches a goal state from the initial state (such a strategy is called a

plan), or when it is shown that no such strategy exists. Once a plan has been found, it can

be physically realized or executed by a real-world agent (e.g. a robot).

Classical planning is a branch of automated planning. It studies domain-independent, fully

observable, discrete planning tasks. The long-term goal of this area of research is to devise

efficient and reliable domain-agnostic planning algorithms. A strategy that solves a classical

planning task takes the form of a certificate of unsolvability, or a sequence of actions, that,

when applied in succession, transforms a given initial state into a goal state. Despite being

a restricted variant of automated planning, classical planning has many applications, for

instance in conformance checking, organic synthesis, and logistics [7], [20], [23].

Most classical planning algorithms try to exploit the given task’s structure to significantly cut

down the run time [14]. However, they sometimes underperform. There are two main reasons

for this. First, since they are domain-independent, they may not always correctly capture

the inherent structure of the given task, so they could for example fail to identify dead-ends

early or fail to take advantage of symmetries. Moreover, many algorithms and heuristics

are sensitive to reformulations. Hence, the amount of time spent looking for a plan can

vary when using distinct yet equivalent descriptions of the same planning task [12]. Second,

while it is true that (propositional) classical planning is known to be PSPACE-complete

[5], some domains are simpler than others. Unfortunately, the computational complexity

of many domains is not well understood, since there are so many of them, and new ones

emerge every year. It is often hard to diagnose which of these two is the underlying reason

for bad performance. Domains can have strange and novel regularities that most planners

fail to identify. A planning task may be hard to solve even when there are only a few actions

that can be applied in each state, and even when it consists of sub-problems that are easy to

solve in isolation. In particular, hard problems often have dependencies in such a way that
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local progress cannot be extended to global progress, meaning that it is possible to solve

one sub-problem in such a way that the next sub-problem can only be solved by un-doing

progress in the previous one. This severely punishes greedy algorithms, whose search is

guided by inappropriate simplifications of the state space.

Understanding the complexity of planning domains has many advantages. First, practition-

ers can use this information to make a more informed decision on which algorithm to use

when solving a particular instance. Second, it helps researchers understand the strengths

and limitations of their algorithms on hard and easy problems. This is of special importance

when the domains in question are used in benchmark planning competitions since they are

used to compare and showcase new ideas among researchers in classical planning. Third,

it helps in identifying the problem formulation mentioned before. Finally, by assigning a

complexity class a number of the domains, we help to expand the list of problems in the

complexity classes P, NP, NP-complete, PSPACE, and PSPACE-complete.

The previous paragraph motivates this thesis. We study five IPC planning domains from the

theoretical point of view of computational complexity theory, namely VisitAll, TERMES,

Tidybot, Floortile, and Nurikabe. For each domain, we assign a complexity class to the

plan existence and bounded plan existence problem. We also do a literature review on the

domains Snake, Ricochet Robots, and Labyrinth. The PDDL files of each domain are freely

available online1.

1.1 Background
In this section, we provide the necessary background: computational complexity, and classi-

cal planning. Also, since we analyze domains of classical planning based on grids, we go over

the types of grids that occur in these domains. Additionally, since many of our NP hardness

reductions stem from Hamiltonian path and cycle problems, we devote an additional section

to these.

1.1.1 Computational Complexity Theory
Computational complexity theory is a branch of theoretical computer science that studies

the amount of resources, like time and memory, needed to solve computational problems

regardless of the technology used. In the following two paragraphs, we distinguish the terms

“decision problem” and “instance”. We borrow and expand on the definitions from Garey

et. al. [11].

Conceptually, a decision problem is the blueprint or description of a computational task

whose output is “yes” or “no”. An instance is a concrete realization matching that descrip-

tion. As a running example, we take the decision problem of deciding whether graphs are

connected. We call this decision problem CONNECTED. An instance of CONNECTED fixes a

(finite) graph and asks if it consists of a single connected component.

1 As of the writing of this thesis, the PDDL files for the domains VisitAll, Tidybot, Floorile, and Nurikabe
can be found under https://editor.planning.domains/, and the PDDL files for the domains Snake, Ricochet
Robots, and Snake can be found under https://github.com/ipc2023-classical/ipc2023-dataset.

https://editor.planning.domains/
https://github.com/ipc2023-classical/ipc2023-dataset
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Formally, a decision problem Π = (DΠ, YΠ) is an ordered pair where DΠ is a set of instances

and YΠ ⊆ DΠ is the set of instances whose output is “yes”. Instances are words of an encod-

ing language that describe computational problems. Thus, elements of DΠ are descriptions

of computational tasks. For each word w ∈ DΠ we let ∥w∥ denote its length. Coming back

to the previous example of CONNECTED, we can encode graphs through their adjacency

matrices. To do this we let DCONNECTED ⊂ {0, 1,newline}∗ be the formal language that

describes all well-defined adjacency matrices, and YCONNECTED ⊂ DCONNECTED be such that it

corresponds to the adjacency matrices of connected graphs.

Most of the time, instances with long descriptions will require more computational effort.

For example, in most cases, an instance of CONNECTED that fixes a graph with 1010 vertices

will spend more computational resources than an instance with 10 vertices. Computational

complexity theory gives us a framework with which we can measure how the resources needed

to solve an instance I scales relative to ∥I∥.
Describing a decision problem formally can be tedious for the reader, it is also oftentimes

un-insightful. Therefore we adopt the convention of defining decision problems in the canon-

ical INPUT + QUESTION manner, where the INPUT provides one or many generic

uninstantiated mathematical objects (a function, set, ordered pair, etc.), and QUESTION

asks if the object admits some property. In this case, the length of an instance is measured

in a way that reflects the size of the object (cardinality, size of function domain, number of

vertices and edges in a graph, etc.). The decision problem CONNECTED could thus be posed

as follows:

CONNECTED

INPUT: A finite graph G = (V,E)

QUESTION: Is G connected?

We close off this section by explaining a few more notions that are of particular importance

in computational complexity: classes, membership to a class, hardness, completeness, and

reductions.

Conceptually, a complexity class C defines an amount of resources r and a model of com-

putation m. A decision problem Π belongs to a class C if there exists an algorithm that

runs on m and can successfully decide any instance I of Π subject to using at most r(∥I∥)
resources. Formally, C is the set of all decision problems that can be decided under the

restrictions mentioned above.

The complexity classes we work with in this thesis are P, NP, PSPACE, and NPSPACE.

The model of computation for P and PSPACE are deterministic one-tape Turing Machines.

NP and NPSPACE use the non-deterministic Turing Machine model. The resource bound

set by P and NP is that of running polynomial time. On the other hand, PSPACE and

NPSPACE require their problems to be solved with a polynomial amount of space. It

holds that P ⊆ NP ⊆ PSPACE = NPSPACE. It is conjectured that these inclusions are

proper. The fact that PSPACE = NPSPACE stems from Savitch’s Theorem [24]. If P =

NP it would imply that many currently intractable problems could be solved in polynomial

time, and if NP = PSPACE then verifying the correctness of candidate solutions for hard

intractable problems could be done efficiently.

If (DΠ, YΠ) ∈ NP, then a non-deterministic algorithm can decide if an instance I ∈ DΠ ∈ YΠ
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in polynomial time. In particular, when this algorithm runs, each branch of the non-

deterministic Turing Machine guesses a candidate certificate that can be verified in polyno-

mial time by a deterministic Turing machine. This certificate acts as proof that the instance

I of the decision problem Π has a solution.

Reductions are a key notion in computational complexity. Often an instance I of a problem

Π can be manipulated such that it becomes a new instance I ′ of Π′ in a manner where

I ∈ YΠ iff I ′ ∈ YΠ′ . If this transformation can be computed efficiently, this tells us that

devising an efficient algorithm for Π′ is at least as hard as devising one for Π. We say that

Π can be reduced to Π′, written Π ≤ Π′ if there exists a function f : DΠ → DΠ′ that runs

in polynomial time with regards to each ∥I∥ and satisfies I ∈ YΠ ⇐⇒ f(I) ∈ YΠ′ . If every

problem in a class C can be reduced to Π, we say that Π is C-hard. On the other hand,

Π is said to be C-complete if it is both C-hard and Π ∈ C. This implies that a C-complete

problem is not only as hard as any problem in the class but is also a representative problem

for the class. Solving a C-complete problem efficiently would enable us to solve all problems

in the complexity class C efficiently as well.

1.1.2 Classical Planning
Classical planning, as a field of AI, revolves around the problem of finding a sequence of

actions that can lead an agent from an initial state to a goal state within a formal model

of the world. The environment can be modeled with a number of formal systems. In this

thesis, we deal with propositional planning, i.e. planners whose models are formalized with

propositional logic. This model consists of a finite set of states, actions that map states to

new states, and descriptions of the initial state and goal states. We start by formally defining

planning task models and transition graphs, which then give rise to a formal definition of

domains. We borrow the definitions from Helmert [13].

Definition 1 (Planning task state model, transition graph). A planning task state model

is a tupleM = (S, s0, SG, A) comprised of

• a finite set of states S,

• the initial state s0 ∈ S,

• the set of goal-states SG ⊆ S,

• a finite set of actions A. An action is a partial function from S to S.

A planning task model M induces a transition graph T (M), an edge-labeled directed finite

graph whose vertex set is S with arcs s
a→ a(s) for all pairs (a, s) of actions and states for

which a(s) is well defined.

Definition 2 (planning domain, planning task). A planning domain D is a map that assigns

words in an encoding language E to planning task state models. A word T ∈ E is called a

planning task of D.

Definition 3 (plan, plan length). Let Π be a planning task of a domain D andM = D(Π) =

(S, s0, sG, A) be the planning task state model of Π. A plan for Π is a finite sequence of
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actions π = ⟨a1, . . . , an⟩ where ai ∈ A, i = 1, . . . n and the composition (an ◦ . . . ◦ a1)(s0) is

well defined and belongs to SG.

The previous definitions show that a task in classical planning can be thought of as a labeled,

directed, finite graph, where each node n represents a state, and there exists an arc n
a→ n′

if applying action a to n results in the state n′. Hence, at its core, planning algorithms

search for directed paths in large graphs. This is often done implicitly, since due to a large

number of states, classical planning tasks and domains tend to be encoded using logic-based

languages such as STRIPS and PDDL.

In PDDL, domains are defined through custom types, predicates of arbitrary arity, and

actions. Each action is defined in terms of its precondition and effect. The precondition

of an action a is a logical formula that, when evaluated to true, can be applied in a given

state. The effect of an action describes how the current state changes after applying a, thus

yielding a new state. All of the domains covered in this thesis are originally defined in PDDL.

However, in each chapter, we describe states, preconditions, and effects in mathematical

English.

In classical planning, researchers often focus on two distinct classes of planning algorithms:

satisficing and optimal planning algorithms. The former aim to find any plan, while the

latter search only for plans of minimal length or minimal cost.

There exist natural formulations for satisficing and optimal planning as decision problems.

We describe them below:

PE-D
INPUT: A planning task Π of a domain D.
QUESTION: Does there exist a plan for Π?

BPE-D
INPUT: A planning task Π of a domain D and a positive integer N .

QUESTION: Does there exist a plan for Π of length ≤ N?

Here PE stands for “plan existence”, while BPE stands for “bounded plan existence”.A well

known result is that if D is arbitrary, then both PE-D and BPE-D are PSPACE-complete

[5]. However, there exist planning domains for which, PE and BPE are in NP-complete or

are solvable in polynomial time [13].

1.1.3 Grid graphs
We present an overview of the various grid types that arise in the domains of classical

planning whose complexity we study by using graph theory.

Definition 4 (graph, simple graph). A graph is a tuple (V,E) where V is a finite or

countable set and E is a binary symmetric relation on V , i.e. E is a subset of V × V

satisfying (u, v) ∈ E ⇐⇒ (v, u) ∈ E for all u, v ∈ V . If V is finite, nonempty, and E

contains no self-loops we say that the graph is simple.

For grid graphs, rectangular and square graphs we follow the definitions of Itai et. al. [17].

For solid grid graphs, we follow De Biasi et. al. [3], and for subgrid graphs, we follow Buro

[4].



Introduction 6

Definition 5 (grid graph). Let G∞ = (V,E) be the the integer lattice, i.e. V = Z× Z and

(x,y) ∈ E ⇐⇒ dℓ2(x,y) = 1. A grid graph is a simple, node-induced, connected subgraph

of G∞.

Definition 6 (subgrid graph). A subgrid graph is a connected edge-induced subgraph of a

grid graph.

Note that all grid graphs are also subgrid graphs, yet the converse is not true, since subgrid

graphs allow for vertices that are at ℓ2 distance 1 to be non-adjacent.

Definition 7 (rectangular graph, squared graph). A rectangular graph G = R(m,n) is a

grid graph whose vertex set is {1, . . . ,m} × {1, . . . , n} for some natural numbers m and n.

A rectangular graph is squared if m = n.

Definition 8 (solid grid graph). A grid graph G = (V,E) is solid if each point p ∈ Z × Z
that is not in V lies in the outer face of G.

Geometrically, solid grid graphs are grid graphs that do not admit any “holes”, i.e. all of

their inner faces have the same area. Rectangular grid graphs are also solid. Figure 1.1

shows examples of grid graphs. For a vertex u in a (sub) grid graph, we use the notation

(ux, uy) for its x and y coordinates in the plane. Without loss of generality, we always

assume that the vertices at the left-most column of a (sub) grid graph have an x coordinate

of one. Similarly, we assume that vertices at the bottom-most row of any grid graph have a

y coordinate of one.

Figure 1.1: From left to right: a rectangular grid graph, a solid grid graph, a grid graph
that is neither rectangular nor solid, a subgrid graph that is not a grid graph.

Definition 9 (graph width, graph height). Let G = (V,E) be a grid graph or a subgrid

graph. We define width(G) to be the value of the x coordinate of a right-most vertex in G

minus one, height(G) is defined analogously. Formally

width(G) = max{n ∈ N : ∃u ∈ V : ux = n}

height(G) = max{n ∈ N : ∃u ∈ V : uy = n}

1.1.4 Hamiltonian paths and cycles
Hamiltonian paths and cycles are key topics in this thesis, as many of our hardness reduc-

tions feature reductions from Hamiltonian paths or cycle problems in grid graphs. Given a

finite graph G, a Hamiltonian path in G is a simple path that visits each vertex. An s-t

Hamiltonian path is a Hamiltonian path where s and t are the first and last nodes visited

respectively. Moreover, if s and t are neighbors, the path is called a Hamiltonian cycle.

Deciding whether a graph admits a Hamiltonian cycle is computationally challenging, even
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if the graphs in question are grid graphs or subgrid graphs. We define the following decision

problems

DEG-k-GHC

INPUT: A grid graph G = (V,E) such that deg(u) ≤ k ∀u ∈ V .

QUESTION: Is there a Hamiltonian cycle in G?

DEG-k-GHP

INPUT: A grid graph G = (V,E) such that deg(u) ≤ k ∀u ∈ V and s ̸= t ∈ V .

QUESTION: Is there an s-t Hamiltonian path in G?

DEG-k-SHC

INPUT: A subgrid graph G = (V,E) such that deg(u) ≤ k ∀u ∈ V .

QUESTION: Is there a Hamiltonian cycle in G?

DEG-k-SHP

INPUT: A subgrid graph G = (V,E) such that deg(u) ≤ k ∀u ∈ V and s ̸= t ∈ V .

QUESTION: Is there an s-t Hamiltonian path in G?

Here GHC, GHP, SHC, SHP stand for grid Hamiltonian cycle, grid Hamiltonian path, subgrid

Hamiltonian cycle and subgrid Hamiltonian path. The following results stem from Itai et.

al., Papadimitriou, and Buro respectively [17], [22], [4].

Theorem 1. DEG-4-GHC and DEG-4-GHP are NP-complete.

Theorem 2. DEG-3-GHP is NP-complete.

Theorem 3. DEG-3-SHC is NP-complete.

The three previous theorems are used in NP-hardness reductions in the next chapters.



2
VisitAll

In the VisitAll domain, there is an agent who can move in the four cardinal directions one

cell at a time and starts off in the middle of a square grid graph. The goal is achieved when

a preselected set of cells is visited. Some planning instances of VisitAll define the set of pre-

selected cells to be the full grid. We call those instances VISITALL, and all other instances

VISITSOME. This chapter is devoted to the decision problem counterparts of these two in-

stances, namely PE-VISITALL, PE-VISITSOME, BPE-VISITALL, BPE-VISITSOME. We

show that the first three are in P and that BPE-VISITSOME is NP-complete.

2.1 PE-VISITALL & PE-VISITSOME are trivial
We start by defining the decision problems:
PE-VISITALL

INPUT: A square graph G = R(n, n) of side length n.

QUESTION: Is there a path in G that starts at the cell (⌊n/2⌋, ⌊n/2⌋) and visits every

element of V at least once?

PE-VISITSOME

INPUT: A square graph G = R(n, n) of side length n, a set of cells S ⊆ V .

QUESTION: Is there a path in G that starts at the cell (⌊n/2⌋, ⌊n/2⌋) and visits every

element of S at least once?

We note how since grid graphs are connected by definition, there always exist paths that

visit any subset of their vertices. Hence, the answer to any instance of PE-VISITALL and

PE-VISITSOME is always ‘‘YES’’. In particular, they are decidable in polynomial time.

2.2 BPE-VISITALL is in P
This decision problem is formulated below:
BPE-VISITALL

INPUT: A square graph G = R(n, n) of side length n and a positive integer K > 0.

QUESTION: Is there a path in G of length at most K that starts at the cell (⌊n/2⌋, ⌊n/2⌋)
and visits every element of V at least once?
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If K = |V |, BPE-VISITALL asks whether an n × n square graph has a Hamiltonian path

that starts in the cell (⌊n/2⌋, ⌊n/2⌋). We show that for n ≥ 2, this is always the case. The

definitions 10, 11, 12 and Theorem 4 are taken from Itai et. al. [17].

Definition 10 (vertex parity). Let G = (V,E) be a grid graph. The parity of a vertex

u ∈ V is even if ux + uy ≡ 0 (mod 2). The parity of u is odd if it is not even.

Definition 11 (color compatible). Let G = (V,E) be a grid graph and s ̸= t ∈ V . Write

V as the disjoint union E ∪ O where E is the set of even vertices and O is the set of odd

vertices. We say that (G, s, t) is color compatible if one of the following conditions hold:

• |O| = |E| and s, t have different parity.

• |O|+ 1 = |E| and s, t are both even.

• |O| = |E|+ 1 and s, t are both odd.

Definition 12 (forbidden instance). Let G = R(m,n) be a rectangular grid and s ̸= t be

vertices in V . The tuple (G, s, t) is forbidden if one of the following conditions holds:

1. If m = 1 or n = 1, then and either s or t is not in a corner of G.

2. If m = 2 or n = 2, and s, t are neighbors, then the edge (s, t) is not on the outermost

face of G.

3. If m = 3 and n is even, or if n = 3 and m is even, and if the parity of s differs from

the parity of the left corners of G and from t, then sx < tx − 1 or sy = 2 ∧ sx < tx.

Theorem 4. A rectangular graph G has an s-t Hamiltonian path iff (G, s, t) is color com-

patible and not forbidden.

Using this result, the following Lemma is easy to prove.

Lemma 1. Let G = R(n, n), n ≥ 2 be a square graph and s be a vertex in G. Then there

exists an s-t Hamiltonian path in G for some vertex t.

Proof. Let E , O be the sets of even and odd vertices of G. If |E| = |O|, then choose t to be

any vertex whose parity is different from the parity of s. Otherwise, choose t to be any vertex

to be any vertex whose parity equals the parity of s. It is easy to see that (G, s, t) is then

color compatible and not forbidden. And thus, by Theorem 4, there is an s-t Hamiltonian

path in G.

Lemma 1 can be used to decide BPE-VISITALL in polynomial time by simply checking

whetherK ≥ |V |−1. Indeed, BPE-VISITALL is equivalent to asking whether a Hamiltonian

path exists in a square grid starting at a specific vertex s.
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2.3 BPE-VISITSOME is NP-complete
This decision problem is formulated below:
BPE-VISITSOME

INPUT: A square graph G = R(n, n) of side length n, a set of cells S ⊆ V and a positive

integer K > 0.

QUESTION: Is there a path in G of length at most K that starts at the cell (⌊n/2⌋, ⌊n/2⌋)
and passes through every element of S at least once?

We prove NP hardness through the following reductions

DEG-4-GHC ≤ DEG-4-GHP1 ≤ BPE-VISITSOME

where

DEG-4-GHPi

INPUT: A grid graph G and two vertices s ̸= t in G s.t. deg(t) ≤ i.

QUESTION: Does there exist an s-t Hamiltonian path in G?

We recall that by Theorem 1 DEG-4-GHC is NP-complete.

Lemma 2. DEG-4-GHC ≤ DEG-4-GHP1.

Proof. Let G = (V,E) be a grid graph with |V | ≥ 2 and v be the right-most top vertex of

V . The vertex v must exist because V is not empty. We have deg(v) ≤ 2 since otherwise,

v would not be a corner vertex. If deg(v) = 1 then there cannot be a Hamiltonian cycle

in G so we may assume deg(v) = 2. Given this, and that v maximizes the y coordinate of

the right-most column of G we get that v’s bottom neighbor s = (vx, vy−1) also exists. Let

G′ be the graph that results when adding a new vertex t = (vx+1, vy) to the right of v i.e.

G′ =
(
V ∪{t}, E ∪{(v, t), (t, v)}

)
. An example of the construction of G′ is shown in Figure

2.1.

A Hamiltonian cycle can be seen as a Hamiltonian path that starts at any vertex and ends

at one of its neighbors. Thus, G has a Hamiltonian Cycle iff it has an s-v Hamiltonian Path.

Next, because t is a neighbor of v with degree one, G has an s-v Hamiltonian Path iff G′

has an s-t Hamiltonian path.

v
t

s⇝
Figure 2.1: Transformation of the original grid graph on the left G to a modified grid
graph G′ on the right.

Lemma 3. BPE-VISITALL is NP-complete.

Proof. Membership to NP is straightforward since a non-deterministic algorithm can check

whether a given path visits each element in S and has length at most K in polynomial time.

We show the reduction

DEG-4-GHP1 ≤ BPE-VISITSOME
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Let (G, s, t) be a GHP1 instance where V,E are the vertex and edge set of G. Let n =

max{width(G), height(G)} ≤ |V |. We may assume that s = (⌊n2 ⌋, ⌊
n
2 ⌋) since otherwise

we may relabel the entire graph by translating each vertex through the extension the linear

map s 7→ (⌊n2 ⌋, ⌊
n
2 ⌋) to each v ∈ V . Further, let K = |V | − 1, S = V \ {s} and G′ =

R(n, n). We claim that G has an s-t Hamiltonian path iff (G′, S,K) is a YES-instance of

BPE-VISITSOME. This construction clearly runs in polynomial time. We first argue in the

direction ‘ =⇒ ’. Assume that there exists a Hamiltonian path P in G that starts in s and

ends in t. The path P induces a path P ′ in G′ of length ∥P ′∥ = ∥P∥ = |V |, that can be

solved by moving the robot |V | − 1 = K times along the path P ′. Since P is a Hamiltonian

path, P ′ visits each element of V \ {s} = S. Now we argue in the direction ‘⇐=’. Assume

that P ′ is a path in G′ of length ≤ K that visits each of element in S and starts in s. Since

∥P ′∥ = |S|, P ′ must visit a new p ∈ S on each move, this corresponds to a Hamiltonian

path in G that starts in s. Also, P ′ must end in t because it has degree one.

2.4 Representation matters
The decision problems we worked on in this chapter could also be parameterized more

compactly. Instead of taking a square graph R(n, n) as input, it suffices to provide n.

Under this representation, our NP completeness proof of BPE-VISITALL would no longer

be valid, unless n is encoded in base one. This is because with this parametrization, optimal

plans of instances I of VISITSOME and VISITALL can be exponential in length with regards

to ∥I∥. To see why this is true we can fix an n ∈ N and let sn = (⌊n2 ⌋, ⌊
n
2 ⌋), tn = s+(0, ⌊n2 ⌋),

a path from sn to tn has length ⌊n2 ⌋. If n is represented in base b ̸= 1, then
∥∥∥⌊n2 ⌋∥∥∥ = b∥n∥,

yet ⌊n2 ⌋ = O(∥R(n, n)∥).



3
Floortile

In the Floortile domain, a number of robots must paint a pattern in a rectangular grid using

white and black paint. Robots can only paint in the cells directly above or below them.

They cannot step on cells that are already colored. Floortile is the only domain in this

thesis that features non-uniform action costs.

Definition 13 (Floortile state, initial state). A Floortile state s is a tuple s = (G, Robotss,

robots poss, painteds, avail colors) where

• G = R(m,n) is a rectangular grid for some m,n ∈ N.

• Robotss = {robot1, . . . , robotN} for some N ∈ N is the set of robots.

• robots poss : Robotss → V is a map that assigns a vertex to each robot.

• painteds : V → {white, black, none} describes the color of each cell.

• avail colors : Robots → {white, black} is used to describe what color each robot

can use to paint.

All initial states s0 of Floortile are such that painteds0(u) = none ∀u ∈ V . Furthermore,

all initial states contain at least one robot.

Definition 14 (colored cell, clear cell). Let s be a Floortile state and (V,E) be the grid of

s. A cell u ∈ V is clear in s if painteds = none and if no robot occupies u. A cell u ∈ V

is colored if painteds(u) ̸= none.

The actions, costs, and preconditions for the Floortile are given in Tables 3.1 and 3.2. We

note that there are no actions that modify the grid. Thus, for a Tidybot state s, we refer

to its grid with G instead of Gs. The decision problems for Floortile are given below:

PE-FLOORTILE

INPUT: An initial Floortile state s0 such that painteds0(u) = none ∀u ∈ V , and a goal

goal : V → {none, white, black}.
QUESTION: Is there a sequence of actions π applicable on s0 such that painteds0[π] =

goal?
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BPE-FLOORTILE

INPUT: An initial Floortile state s0 such that painteds0(u) = none ∀u ∈ V , a goal

goal : V → {none, white, black} and a positive inter K.

QUESTION: Is there a sequence of actions π applicable on s0 such that painteds0[π] =

goal and cost(π) ≤ K?

3.1 PE-FLOORTILE is in P
We give necessary and sufficient conditions for the solvability of any instance of PE-FLOORTILE.

These conditions can be checked in polynomial time.

Proposition 1. Let (s0, goal) be a PE-FLOORTILE instance and s be a state reachable

from s. Then ∀ roboti ∈ Robots : painteds(robots poss(roboti)) = none.

Proof. Let G = (V,E) be the grid of s0. We divide the proof into two parts:

1. The claim holds for s0.

2. If the claim holds for a state s, then it also holds for s[a] where a is an action applicable

in s.

• Proof of (1):

Follows from the fact that {u : painteds0(u) = none} = V .

• Proof of (2):

Assume the claim holds for s. Let a be applicable in s. If a is a movement action, i.e.

if it moves a robot from u to v then the claim holds for s[a] since a has the precondition

that painteds(v) = none and a’s effect does not alter the painted function. Next, if

a ∈ {CHANGE TO BLACK(·), CHANGE TO WHITE(·)} then the claim also holds since these

actions do not change the robot’s positioning nor the painted function. Finally, if

a ∈ {PAINT UP(·), PAINT DOWN(·)} then the claim would not hold if a cell is painted on

which a robot is on, but both paint actions have the precondition that the target cell

must be empty.

Definition 15 (hole). Let I = (s0, goal) be a PE-FLOORTILE instance. We say a vertex

u ∈ V is a hole if goal(u) = none.

The following result gives necessary conditions for an instance of Tidybot to have a plan.

Lemma 4. Let I = (s0, goal) be a solvable PE-FLOORTILE instance with N robots and H

holes. Then H ≥ N and on each column of G contains a hole.

Proof. Let G = (V,E) be the grid of s0. We divide the proof into two parts, namely

a. I is solvable =⇒ H ≥ N

b. I is solvable =⇒ on each column of G there exists a vertex u with goal(u) = none.
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• Proof of (a):

Assume by contradiction that I is solvable and H < N . Let s be a goal state, then by

Proposition 1, we have that at least N vertices u are such that goal(u) = none which

is impossible.

• Proof of (b):

Assume by contradiction that I is solvable and that there exists a column C in G

such that for all vertices u in that column it holds that goal(u) ̸= none. Let π =

⟨π1, . . . , πn⟩ be a plan for I and u be the last cell that is painted in C in the plan

π. Let a be the action that paints u. If a = PAINT UP(·) then the cell above u must

be clear, which is impossible since a is the last cell in C to be painted. Similarly if

a = PAINT DOWN(·) then the cell below a must be clear, which contradicts the fact that

u is the last cell painted.

In the remainder of this section, we show that the conditions of Lemma 4 are also sufficient.

Our strategy is the following. We first show that this is true if s0 is comprised of a 1×n grid

and one robot, then that it is true on 1×n grids with multiple robots, and finally, we tackle

the general case. In each instance, we provide an algorithm and justify its correctness.

Lemma 5. Let I = (s0, goal) be a PE-FLOORTILE instance with one robot, one column,

and at least one hole. Then I is solvable.

Proof. We claim that Algorithm 1 produces a plan for any such instance I. Let I = (s0, goal)

be an instance with one robot, one column, and at least one hole. Let G = (V,E) be the grid

of s0 and h ∈ V be its bottom-most hole. After calling paint while facing down(1), it

is easy to see that the robot paints all the targets below h. After reaching h, the while loop

breaks and the function terminates, since h is the bottom-most cell that is not a target.

Note that we assume the function paint paints the target cell with the appropriate color.

Next, when calling paint while facing up(1), the robot first moves up as far as he is

allowed to, and then iteratively paints all of the target cells above h. Once the robot reaches

h, the while loop breaks since the cell below h, if it exists, is colored. Thus, the algorithm

terminates and we reach a goal state.

The behavior of the function paint while facing down is such that the robot with

index i moves up and paints the cell below him until he reaches a hole. On the other

hand, in paint while facing up the ith robot moves down and paints the cell above

him if needed, and only stops once he is no longer allowed to move down. The behavior of

Algorithm 1 is demonstrated in Figure 3.1.

Lemma 6. Let I = (s0, goal) be a PE-FLOORTILE instance with H holes, N ≤ H robots

and one column. Then I is solvable.

Proof. We justify that Algorithm 2 produces plans for such instances. Note that we reuse the

functions paint while facing down and paint while facing up from Algorithm 1.
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Algorithm 1 Solve a Floortile instance with one robot one column, and at least one hole.

1: function solve(s0, goal)
2: paint while facing down(1)
3: paint while facing up(1)
4: end function

5: function paint while facing down(idx)
6: r ← robot with index(idx)
7: move until collision(r, down)
8: while coordinates of(r) ∈ targets do
9: move(r, up)

10: paint(r, down)
11: end while
12: end function

13: function paint while facing up(idx)
14: r ← robot with index(idx)
15: move until collision(r, up)
16: while there is a cell below r and it is clear do
17: move(r, down)
18: u← the cell above r
19: if u ∈ targets then
20: paint(r, up)
21: end if
22: end while
23: end function

♂

h

1

2

3

4

Figure 3.1: An initial state s0 of an instance with one robot, one column, and at least one
hole. Cells colored gray are those that need to be painted with either black or white, the
cell marked with h is the bottom-most hole. The numbers indicate the order in which
Algorithm 1 paints the targets.
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The function move to initial positions moves each robot such that the N bottom-

most holes are each occupied by a robot. This is possible since by assumption N ≤ H.

Each robot is then relabeled such that the bottom-most robot’s index becomes 1, its closest

neighbor’s index becomes 2, and so on. For each i, roboti then paints the targets between

itself and roboti−1. Finally, paint while facing up(N) is called, which makes the

topmost robot paint the remaining cells.

An example of an execution of Algorithm 2 is shown in Figure 3.2.

Algorithm 2 Solve a Floortile instance with H holes, N ≤ H robots and one column.

1: function solve(s0, goal)
2: move to initial positions in column( )
3: relabel robots( )
4: for i = 1, . . . , N do
5: paint while facing down(i)
6: end for
7: paint while facing up(N)
8: end function

Lemma 7. Let I = (s0, goal) be a PE-FLOORTILE instance with N robots and H holes

with at least one hole per column and H ≥ N . Then I is solvable.

Proof. We expand our previous two algorithms to handle grids of any size. We show that

Algorithm 3 produces plans for instances with H holes, 1 ≤ N ≤ H robots, and at least

one hole per column. Let Hi be the number of holes in each column i. The function

distribute among columns moves the robots in the grid such that at each column i

there are at most Hi robots, it also moves at least one robot to the first column. This is

possible due to our assumptions since
∑

Hi = H. The algorithm then iterates over each

column, starting at the left-most one. On iteration i, the column i is painted with the

procedure defined in Lemma 6. After the ith column is painted, if there is no robot in the

i+ 1th column, a robot from the ith column migrates by moving one unit to the right.

Algorithm 3 Solve a Floortile instance with H holes, N ≤ H robots, and at least one hole
per column.

1: function solve(s0, goal)
2: distribute among columns( )
3: for i = 1, . . . ,num columns do
4: paint column(i)
5: if i < num columns and there are no robots in column i+ 1 then
6: migrate(i)
7: end if
8: end for
9: end function
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♂

♂

♂

♂ ♂

♂

♂

♂

1

2

3

4

5

6

Figure 3.2: Left: An initial state s0 of an instance with H holes, N ≤ H robots, and one
column. Cells colored gray are those that need to be painted with either black or white.
Right: after calling move to initial positions(). The numbers indicate the order in
which Algorithm 2 paints the targets. The arrows indicate which robot paints which cell.
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TERMES

The TERMES domain models a simplified version of the termite-inspired Harvard TERMES

robots [19]. In the general case, this is a multi-agent domain, however, the IPC variant that

we work on in this thesis considers a single agent. The goal is to arrange blocks in a

rectangular graph in a desired configuration. It is possible to stack more than one block on

a single vertex. There is an agent that can pick up, place, create or destroy blocks. Blocks

are created and destroyed at the depot. The agent can only move from a vertex u to a

neighboring vertex v if |num-blocks(u)− num-blocks(v)| ≤ 1. There are similar restrictions

on the pickup and place actions.

We start by formalizing TERMES states and actions.

Definition 16 (TERMES state). A TERMES state s = (G, max-height, robot-poss,

num-blockss, depot, has-blocks) is comprised of

• A rectangular graph G = (V,E)

• The maximal height max-height ∈ N

• The robot position robot-poss ∈ V

• The height function num-blockss : V → {0, . . . , max-height}

• The depot position depot ∈ {u ∈ V : num-blockss(u) = 0}

• The has-block variable has-blocks ∈ {T,F}

Definition 17 (empty TERMES state). A TERMES state s is empty if num-blockss(u) =

0 ∀u ∈ V .

A graphical representation of two TERMES states is shown in Figure 4. A table listing the

TERMES actions and preconditions and effects is shown in 4.1.

For the decision problem of TERMES, we consider two variants which we call TERMES-ES,

which limits initial states to be empty, and one with no restrictions on num-blocks, which

we call TERMES-NES. We do not prove any results for the decision problems of TERMES-ES,

however, we conjecture that its bounded plan existence problem is NP-hard. This is dis-

cussed further in Section 8.1.1.



TERMES 21

A
c
ti
o
n

a
a
is

a
p
p
li
c
a
b
le

in
s
if

E
ff
e
c
t
o
f
a

M
O
V
E
(u
)

(r
o
b
o
t
-p
o
s
s
,u

)
∈
E
∧

|n
u
m
-b
l
o
c
k
s
s
(r
o
b
o
t
-p
o
s
s
)
−
n
u
m
-b
l
o
c
k
s
s
(u
)|
≤

1
r
o
b
o
t
-p
o
s
←

u

P
L
A
C
E
(u
)

(r
o
b
o
t
-p
o
s
s
,u

)
∈
E
∧

h
a
s
-b
l
o
c
k
s
=

T
∧

n
u
m
-b
l
o
c
k
s
s
(u
)
=

n
u
m
-b
l
o
c
k
s
s
(r
o
b
o
t
-p
o
s
s
)
∧

u
̸=

d
e
p
o
t
∧

n
u
m
-b
l
o
c
k
s
s
(u
)
<

m
a
x
-h
e
i
g
h
t

n
u
m
-b
l
o
c
k
s
(u
)
←

n
u
m
-b
l
o
c
k
s
s
(u
)
+
1
∧

h
a
s
-b
l
o
c
k
←

F

P
I
C
K
U
P
(u
)

(r
o
b
o
t
-p
o
s
s
,u

)
∈
E
∧

h
a
s
-b
l
o
c
k
s
=

F
∧

n
u
m
-b
l
o
c
k
s
s
(u
)
+
1
=

n
u
m
-b
l
o
c
k
s
s
(r
o
b
o
t
-p
o
s
s
)

n
u
m
-b
l
o
c
k
s
(u
)
←

n
u
m
-b
l
o
c
k
s
s
(u
)
−
1
∧

h
a
s
-b
l
o
c
k
←

T

D
E
S
T
R
O
Y

r
o
b
o
t
-p
o
s
s
=

d
e
p
o
t
∧

h
a
s
-b
l
o
c
k
s
=

T
h
a
s
-b
l
o
c
k
←

F

P
I
C
K
U
P
F
R
O
M
D
E
P
O
T

r
o
b
o
t
-p
o
s
s
=

d
e
p
o
t
∧

h
a
s
-b
l
o
c
k
s
=

F
h
a
s
-b
l
o
c
k
←

T

T
ab

le
4.
1:

T
E
R
M
E
S
a
ct
io
n
s
a
n
d
p
re
co
n
d
it
io
n
s
fo
r
ea
ch

u
∈
V
.



TERMES 22

2 2 1 2

D

♂

2 2 1 2

D

♂

Figure 4.1: A graphical representation of two TERMES states. In the figure on the left, we
have has-block = T, and on the right has-block = F. The numbers on the vertices
indicate the values of num-blocks. Vertices u without numbers are those for which
num-blockss(u) = 0. The cell marked with D is the depot.

4.1 PE-TERMES-NES & BPE-TERMES-NES are NP-hard
The decision problem formulation for the non-empty start plan existence and bounded plan

existence problems are given below.

PE-TERMES-NES

INPUT: An initial state s0 such that and a goal configuration goal : V → N.
QUESTION: Is there a sequence of actions π applicable on s0 such that num-blockss0[π] =

goal?

BPE-TERMES-NES

INPUT: An initial state s0 such that, a goal configuration goal : V → N and an integer

K > 0.

QUESTION: Is there a sequence of actions π applicable on s0 such that num-blockss0[π] =

goal and ∥π∥ ≤ K?

To show the NP-hardness of both problems we use two similar reductions from DEG-4-GHP,

the Hamiltonian path problem for grid graphs, which is NP-complete due to Theorem 1.

The construction for s0 and goal are depicted graphically in Figure 4.2. The goal in both

reductions is to build a stack of height |V | − 1 which has to be constructed through a ramp,

forming a simple path of length |V |. Here V is the vertex set of the grid graph whose

Hamiltonian cycle we seek. This path is constrained to vertices of V only since s0 contains

tall stacks, which the agent cannot interact with.

Before proving hardness, we first need some intermediary results. It makes sense to first

consider and prove results about TERMES instances defined over arbitrary simple graphs

instead of rectangular grids. The invariant of Lemma 8 was hinted to us by Helmert [1].

Definition 18 (generalized TERMES state). A generalized TERMES state is a TERMES

state whose grid can be any simple graph.

Lemma 8. Let s, s′ be generalized TERMES states such that s′ is reachable from s. Let

(V,E) be the simple graph of s and s′. Then for each

num-blockss(robot-poss) ≤ n ≤ num-blockss′(robot-poss′)

there exists a vertex u ∈ V with num-blockss′(u) = n.
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Proof. We have s′ = s[π] for some finite sequence of actions π = ⟨a1, . . . , aN ⟩ applicable in

s. Our proof is by induction on N .

Base case (N = 0):

We have that π is the empty sequence, so s = s′, and the claim holds with u = robot-poss.

Inductive step (N ⇝ N + 1):

For k ≤ N +1 let πk = ⟨a1, . . . , ak⟩. If k = 0 then πk is the empty sequence. Further, define

state at step k as sk := sπk
:= (G, max-height, robot-posk, num-blocksk, depot, has-blockk),

and the agent’s height at step k as hk = num-blocksk(robot-posk). Finally define the set

Sk := {n : h0 ≤ n ≤ hk}.
We may assume the claim holds for sN . We now do a case analysis on aN+1.

• If aN+1 ∈ {DESTROY, PICKUP FROM DEPOT} then num-blocksN = num-blocksN+1 and

robot-posN = robot-posN+1 so the claim holds by the IH (inductive hypothesis).

• If aN+1 = MOVE(v) for some v ∈ V then robot-posN = robot-posN+1, hence we only

need to find a vertex u for each n ∈ SN+1 \SN such that robot-posN (u) = n, all other

options for n are covered by the IH. Note that for each k we have |hk − hk+1| ≤ 1, so

the following distinction covers all possibilities:

Case 1: hN+1 = hN . Then SN+1 \ SN = ∅ so there is nothing to do.

Case 2: hN+1 = hN ± 1. Then either SN+1 \ SN = ∅, or SN+1 \ SN = {hN+1}. In the

latter, we can set u = robot-posN+1.

• Now we consider the case aN+1 = PLACE(v) for some v ∈ V . We observe that v

and robot-posN must be neighbors since otherwise, this action would not be ap-

plicable. In particular v ̸= robot-posN , since G does not contain any self-loops.

Then hN+1 = hN so SN+1 = SN . Take an n ∈ SN+1. By the IH there exists

a u such that num-blocksN (u) = n. If u ̸= v then num-blocksN+1(u) = n since

{u′ : num-blocksN (u′) ̸= num-blocksN+1(u
′)} = {v}. Now we consider the case v = u.

We notice that num-blocksN (v) = hN = n, otherwise PLACE(v) would not be applica-

ble on sN . Then since hN = hN+1 we have num-blocksN+1(robot-posN+1) = n.

• Finally we consider the case aN+1 = PICKUP(u). Like in the previous case, we observe

that robot-posN = robot-posN+1 and hN = hN+1. Hence SN+1 = SN . Take an

n ∈ SN+1. By the IH there exists a u such that robot-posN (u) = n. Using the same

reasoning as in the previous case analysis we have that the claim holds if u ̸= v. On

the other hand, the case u = v is impossible,since then n = hN+1 + 1 and n ≤ hN+1.

In particular, Lemma 8 shows that if the agent is on the ground and reaches a state where

he is at height h, then there exists at least one block at height 0, 1, . . . , h. We now use

invariant to find a bound on the maximal stack height, thus giving necessary conditions of

the reachability of certain states.

Corollary 1. Let s be a generalized TERMES state with num-blockss(robot-poss) = 0

and num-blockss(u) ≥ |V | for some u ∈ V . Let s′ be a state reachable from s. Then none

of the following are applicable in s′ : PICKUP(u), PLACE(u), MOVE(u).
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Proof. Assume by contradiction that one of these actions is applicable in s′. Let (V,E) be

the simple graph of s and s′. We have num-blockss′(robot-poss′) ≥ |V |−1. Then by Lemma

8 for each n ∈ {0, . . . , |V | − 1} there exists a vertex v ∈ V \ {u} with num-blockss′(v) = n.

In total, there are |V | choices for n that must be covered with |V | − 1 choices for v. This is

impossible due to the pigeonhole principle.

Finally, we give necessary and sufficient conditions on the graph’s topology for certain states

to be reachable.

Lemma 9. Let s0 be an empty generalized TERMES state and s be a state reachable

from s0. Then, if s is such that there exists exactly one of each u1, . . . , uN satisfying

num-blockss(u1) = 1, . . . , num-blockss(uN ) = N , and it holds that robot-poss = uN , we

have that there exists a u0 with num-blockss(u0) = 0 and ⟨u0, . . . , uN ⟩ is a simple path in

the graph of s0.

Proof. Fix an empty generalized TERMES s0. Let its graph be G = (V,E). We show the

following by induction on N .

∀N ∈ N>0

∀s reachable from s0 s.t. ∃! u1, . . . , uN ∈ V : num-blockss(ui) = i, 1 ≤ i ≤ N

and robot-poss = un

∃ u0 ∈ V :

num-blockss(u0) = 0 and ⟨u0, u1, . . . , uN ⟩ is a simple path in G

• Base case: N = 1

Let u0 be the cell on which the robot is on when he places the block on u1. Then

clearly ⟨u0, u1⟩ is a simple path, and num-blockss(u0) = 0, num-blockss(u1) = 1.

• Inductive step: N ⇝ N + 1

Let s be a state reachable from s0 with exactly one u1, . . . , uN+1 with num-blockss(ui) =

i, 1 ≤ i ≤ N + 1. We now combine the facts that there exists only one u with

num-blockss(u) = N + 1, and that s is reachable from s0 and get that there must be

a cell v that is a neighbor of u with num-blockss(v) = N . If this was not the case

then there would not be a single action applicable on s, which is a contradiction since

s is reachable from s0 iff s0 is reachable from s. Now define the state s′ that results

when applying the action MOVE(v) in s. By the IH we have that ⟨u0, u1, . . . , uN ⟩ is a

simple path in G for some u0 with num-blockss(u0) = 0 this path can be extended to

⟨u0, . . . , uN , uN+1⟩, which finishes the proof.

Lemma 10. Let s be a state whose rectangular graph is G = (V,E) and V ′ ⊂ V s.t.

depot ∈ V ′. Assume that

num-blockss(u) =

0 u ∈ V ′

M u ̸∈ V ′
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for some M ≥ |V |. Let G′ = (V ′, E′) be the graph induced by V ′. Then for each u ∈ V ′ s.t.

u ̸= depot it holds that

G′ has a simple path of length at least N starting in depot and ending in u

=⇒

There exists a state s′ reachable from s such that num-blockss(u) = N − 1

Furthermore, if G has a simple path of length at least N , it takes at most

N2|V ′| + N2 − N |V ′| − N + |V ′| steps to reach s′ from s and 2N2|V ′| + 2N2 − 4N |V ′| −
4N + 2|V ′|+ 3 steps to reach a state s′′ where

num-blockss′′(v) =


0 v ∈ V ′ \ {u}

N − 1 v = u

M v ̸∈ V ′

Proof. Let P = ⟨p1, . . . , pM ⟩ be a simple path in G consisting of only of vertices from V ′

of length M ≥ N where p1 = depot, pM = u and truncate it from the front to create the

subpath P ′ = ⟨p′1, . . . , p′N ⟩ of length N where p′N = u. Let sramp be the state where

num-blockssramp(v) =



0 v = p′1

1 v = p′2
...

N − 1 v = p′N

M v ̸∈ V ′

0 otherwise

and robot-possramp
= p′N−1. We show that sramp is reachable from s and that s′′ is reachable

from sramp while giving a bound on the maximum number of steps needed to reach each of

these two states.

• Part 1: sramp is reachable from s: The agent can build the ramp in N − 1 rounds.

After the i’th round, each vertex in {p′i, . . . p′N} contains one block more than in the

previous round.

• Part 2: s′′ is reachable from sramp: The agent will now destroy the part of the ramp

that leads to u. This task can also be done in rounds. After round i each vertex in

{p′i, . . . , p′N−1} contains one block fewer than in the previous round.

In both cases, it is easy to see that each round is reachable from the previous one. We let

d∗G′ be the shortest path distance in G′.

The total number of actions needed to reach sramp from s is

A = d∗G′(robot-poss, depot)︸ ︷︷ ︸
go to depot

+

N−1∑
j=1

N−1∑
i=j

[
1︸︷︷︸

pickup from depot

+ d∗G′(depot, p′i)︸ ︷︷ ︸
go to p′

i

+ 1︸︷︷︸
place block in p′

i+1

+
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d∗G′(p′i, depot)︸ ︷︷ ︸
go back to depot

]
The total number of actions needed to reach s′′ from sramp is

B = 1︸︷︷︸
go to p′

N−2

+

N−3∑
j=1

N−2∑
i=j

[
1︸︷︷︸

pickup from p′
N−i

+ d∗G′(p′N−1−i, depot)︸ ︷︷ ︸
go to depot

+

1︸︷︷︸
destroy block

+ d∗G′(depot, p′N−2−i)︸ ︷︷ ︸
go to p′

N−2−i

]
+ 1 + dℓ1(p

′
1, depot) + 1︸ ︷︷ ︸

last round

The bound on the number of steps for reaching s′ = sramp follows from simplifying A while

noticing that d∗G′(depot, ·) ≤ |V ′|. Similarly, the bound on the steps needed to reach s′′

follows from adding A and B. In the end, we get

A ≤ N2|V ′|+N2 −N |V ′| −N + |V ′|

A+B ≤ 2N2|V ′|+ 2N2 − 4N |V ′| − 4N + 2|V ′|+ 3

Theorem 5. PE-TERMES-NES is NP-hard.

Proof. We show the reduction

DEG-4-GHP ≤ PE-TERMES-NES

We recall that DEG-4-GHP is NP-complete due to Theorem 1. Let G = (V,E) be a grid

graph and s ̸= t ∈ V . We construct a TERMES state s0 and target goal as follows:

• Gs0 = R(width(G), height(G)). Let the Vs0 , Es0 be the vertex and edge set of this

graph.

• max-height = |Vs0 |

• depot = s

• robot-poss0 = s

• num-blockss0(u) =

max-height u ∈ Vs0 , u ̸∈ V

0 u ∈ Vs0 , u ∈ V

• has-blocks0 = F

• goal(u) =


max-height u ∈ Vs0 \ V

|V | − 1 u = t

0 otherwise
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It is clear that this construction can be done in polynomial time. A graphical representa-

tion of s0 and goal is shown in Figure 4.2. By Lemma 10 we know that if G has an s-t

Hamiltonian path, then a state s′ with num-blockss′ = goal can be reached. Assume now

that (s0, goal) is solvable. By Corollary 1, we may restrict Gs0 to G, since the robot cannot

interact with the vertices of Vs0 \ V . Next, since the instance can be solved, we can reach a

state s′ where robot-poss′ = t and num-blockss′(t) = |V | − 1. Then by Lemma 8, we get

that there are u0, u1, . . . , u|V |−1 with num-blockss′(ui) = i, 0 ≤ i ≤ |V | − 1, and by Lemma

9 we have that u0, . . . u|V |−1 is a simple path. This simple path is an s-t Hamiltonian path

since it has length |V | and u0 = depot, u|V |−1 = t.

Theorem 6. BPE-TERMES-NES is NP-hard.

Proof. We show the reduction GHC ≤ BPE-TERMES-NES and use the same construction

for s0 and goal as in Theorem 5. We set K = 2|V |3 − 2|V |2 − 2|V | + 3, where X =

maxu∈V dℓ1(depot, u), and V is the vertex set of the grid of state s0. The Theorem follows

from the bound in Lemma 10 using the same reasoning as in Theorem 5. where

s
t

(a) A DEG-4-GHP instance
G.

12

12

D♂

(b) The initial TERMES
state.

12

12

9 D

(c) The goal goal.

Figure 4.2: Example reduction from DEG-4-GHP to PE-TERMES-NES

4.2 A special case of BPE-TERMES-NES is NP-hard
We show that BPE-TERMES-NES remains NP-hard even if all initial states have at most 1

block per vertex.

Definition 19 (Free neighbor direction, shifting function). Let G = (V,E) be a grid graph

such that deg(u) ≤ 3 ∀u ∈ V . We define

free neighbor directionG : V → {(0, 1), (0,−1), (1, 0), (−1, 0)}

which maps each u ∈ V to a z ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)} such that (u, u + z) ̸∈ E.

Next, we define the shifting function shiftG : V × N→ Z2 as follows:

shiftG(u, amont) = 3 · u+ amount · free neighbor directionG(u)

Lemma 11. BPE-TERMES-NES is NP-hard even on grids where the initial state has at

most 1 block per vertex.

Proof. We reduce from DEG-3-GHP which is NP-complete according to Theorem 2. Let

I = (G, s, t) be an instance of DEG-3-GHP with G = (V,E). We define the initial state s0

and bound K as follows.
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• The rectangular graph of s0 is G′ = R(m,n) = (V ′, E′) where m = 3 · width(G) + 2

and n = 3 · height(G) + 2.

• max-heights0 = 2

• depot = 3 · s

• robot-poss0 = 3 · s

• has-blocks0 = F

We define num-blockss0 and goal as follows. Let Si = {shiftG(u, i) : u ∈ V, u ̸= t, u ̸= s},
Then

num-blockss0(u
′) =

1 u′ ∈ S0 ∪ S1

0 otherwise

and

goal(u′) =


2 u′ ∈ S1

1 u′ = shiftG(t, 1)

0 otherwise

The bound is K = 5 · |V | − 5. An example of the construction is shown in Figure 4.3. It is

easy to see that (s0, goal,K) can be defined in polynomial time w.r.t. ∥I∥.
We assume first that I is solvable. Let P = ⟨p1, . . . , p|V |⟩ be an s-t Hamiltonian path in

G. We construct a plan π for I ′ of length K as follows. The robot first grabs a block from

the depot. Then, for each i ∈ 1, . . . , |V | − 2, the robot moves to 3 · pi+1, places a block in

shift(pi+1, 1), moves 1 unit in the direction closest to 3 · pi+2, and picks up the block from

3 · pi. Finally, the robot moves to 3 · t and places the final block. It is easy to see that π is a

plan. Further, we have that ∥π∥ is the sum of the total number of movement, pickup, and

placement actions. From our argument above we can see that

number of movement actions = 3 · |V | − 1

number of pickup actions = |V | − 2

number of placement actions = |V | − 1

Adding the three shows that ∥π∥ = K, so we are done.

Next, we assume that (s0, goal) is solvable in at most K steps. Let π be a plan of length

at most ∥K∥. We will first show that this bound is sharp, i.e. ∥π∥ cannot be less than K.

Since there are |V | − 2 blocks in places that do not match their goal, and since in any plan

the robot must at some point pick up a block from the depot, the number of pickup actions

in |V | must be at least |V | − 1. Also, it is necessary to put an additional block on each

shift(u, 1), u ∈ V \ {s}, to reach the goal, so a minimum of |V | − 1 placement actions is

needed. Finally, by the spacing of the grid, the robot needs to move at least 3 · (|V | − 1)

squares. Adding these three values yields exactly K. In particular, since we need |V | − 1

movement actions, the robot’s movement must match a Hamiltonian path in G, since each

time he places a block, he must do so by moving 3 squares, and thus not visit any cell with
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(a) The instance (G, s, t) of
DEG-3-GHP.

1 1 1

1

1

1

11 1 1

1

1
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(b) The BPE-TERMES-NES initial state s0
with K = 5 · |V | − 5 = 45.

2

2 2

1

2

2

2

2 2

D

(c) The TERMES goal goal.

Figure 4.3: An example reduction from DEG-3-GHP to BPE-TERMES-NES. In this case,
(s0, goal) cannot be solved in ≤ K steps since G does not have an s-t Hamiltonian path.

an already placed stack of 2 blocks. Next, this path must end in t, since otherwise the

number of pickup actions would be more than |V | − 1.



5
Tidybot

The Tidybot domain models a multi-agent logistics transportation problem on rectangular

graphs. It is comprised of robots, grippers obstacles, base obstacles, carts, and objects. The

goal is for the robots to move some transportation objects from their initial positions to

one of many goal positions. Robots have grippers, which allow them to pick up and drop

objects at a distance up to some fixed radius. Base obstacles and gripper obstacles limit the

mobility of the robots and their grippers respectively. Robots can hold at most one object

at a time. Carts are movable objects that can be used to store an unlimited amount of

objects. They can be pushed but not pulled.

The domain PDDL file of Tidybot allows for multiple items to be located on the same cell.

We believe this is a modeling oversight, hence we enforce that at most one item is located

in each cell. Similarly, the PDDL file also allows grippers to navigate freely around their

corresponding robots up to some fixed radius. An example of this is shown in Figure 5. We

believe this models unrealistic scenarios, hence we do not allow for this. We do so by adding

a constraint that does not allow the gripper to make turns, making grippers only able to

move in straight lines.

We add some additional changes, in the PDDL domain file, a robot must be parked in order

to pick up or place an object, and each gripper movement takes one action. We simplify

this, each robot can pick up or drop an object using a single action instead of having to

park, move the gripper on top of the object, move the gripper back to the robot’s base, and

un-park.

Definition 20 (Tidybot state). A Tidybot state s is a 10-tuple comprised of

• A rectangular grid Gs = R(m,n) for some m,n ∈ N

• The gripper radius gripper rads ∈ {1, . . . ,max{m,n}}

• The set of robots Robotss = {robot1, . . . , robotM} for some M ≤ |V |

• The set of carts Cartss = {cart1, . . . , cartN} for some N ≤ |V |.

• The set of objects Objectss = {object1, . . . , objectO} for some O ≤ |V |

• The position of each robot robots poss : Robotss → V
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♂

Figure 5.1: A legal state in Tidybot as described in its PDDL domain file. The robot’s
gripper can reach the cell that is two units north of the robot, despite there being a
gripper obstacle in the way.

• The position of each cart: carts poss : Cartss → V

• The position of each object objects poss : Objectss → V ∪ Cartss ∪ Robotss

• The set of base obstacles base obstacless ⊂ V

• The set of gripper obstacles gripper obstacless ⊂ V

Definition 21 (holding an object). Let s be a Tidybot state. We define

holdings : Robotss → Objects ∪ {none}

holdings(roboti) =

objectj if objects poss(objectj) = roboti

none if objects pos−1
s

(
{roboti}

)
= ∅

Definition 22 (empty cell). Let s be a Tidybot state whose grid is G = (V,E). We say

that a cell u ∈ V is empty, written emptys(u), if there is no robot, object, or cart occupying

that cell, i.e. if

emptys(u) ⇐⇒ ∄ roboti, objectj , cartk :

robots poss(roboti) = u ∨ objects poss(cartj) = u ∨ carts poss(cartk) = u

The table listing actions and action preconditions for Tidybot are given in Tables 5.2 and

5.2. The decision problems for Tidybot are

PE-TIDYBOT

INPUT: A Tidybot state s0, a set of objects S ⊂ Objectss0 and a goal goal : S → 2V

QUESTION: Is there a sequence of actions π applicable on s0 such that ∀ objecti ∈ S :

objects poss0[π](objecti) ∈ goal(objecti)?

BPE-TIDYBOT

INPUT: A Tidybot state s0, a set of objects S ⊂ Objectss0 , a goal goals : S → 2V and

an integer K > 0

QUESTION: Is there a sequence of actions π applicable on s0 such that ∀ objecti ∈ S :

objects poss0[π](objecti) ∈ goal(objecti) and ∥π∥ ≤ K?
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Although the state and goal definitions are very general. In the PDDL instance files, there

is exactly one robot, the radius is one, and there is exactly one cart. Further, the initial

positions s0 are such that the robot’s gripper and cart are empty. We call the domain that

is comprised of these sub-instances IPC-TIDYBOT.

5.1 The computational complexity of IPC-TIDYBOT and related problems
In this section, we show that BPE-IPC-TIDYBOT is NP-hard. Also, this domain becomes

NP-complete if we do not allow for obstacles. This stems from the fact that the plan

existence problem IPC-TIDYBOT can be solved in polynomial time if there are no obstacles.

The following reduction follows a similar idea to that used in Lemma 11.

Lemma 12. BPE-IPC-TIDYBOT is NP-hard.

Proof. We reduce from DEG-3-GHP, which is NP-complete according to Theorem 2. This

decision problem takes as input a grid graph G = (V,E) where deg(u) ≤ 3 ∀u ∈ V and

s ̸= t ∈ V . It asks whether there exists an s-t Hamiltonian path in G. Let (G, s, t) be an

instance from DEG-3-GHP and V,E be the vertex and edge set of G. We now show that

there is a BPE-IPC-TIDYBOT instance (s0, goal,K) that can be constructed in polynomial

time and is solvable iff there is an s-t Hamiltonian path in G.

Let f : V → Z2 with f(u) = 4u− (2, 2).

The corresponding Tidybot state s0 is defined as follows:

• The grid Gs0 = R(m,n) where m = 4 · width(G) + 2, n = 4 · height(G) + 2

• The robot is placed in f(s).

• For each vertex u in V \ {s} create an object objectu placed in f(u).

• The cart is placed at the top left of the grid.

• There are no obstacles.

We make use of the function free neighbor direction, which stems from Definition 19.

The goal is goal is defined as follows:

goal(objectu) =

f(u) + 2 · free neighbor directionG(u) u = t

f(u) + free neighbor directionG(u) u ̸= t

Further, let K = 5|V | − 4. It is clear that (s0, goal,K) is a polynomial time construction.

A graphical example is shown in Figure 5.2.

We now argue that (s0, goal,K) is solvable if (G, s, t) is solvable.

Assume (G, s, t) is solvable. Then there exists an s-t Hamiltonian path P = ⟨p1, . . . , p|V |⟩
in G. Let P ′ = ⟨f(p1), f(p2), . . . , f(p|V |)⟩. For i = 2, . . . , |V | the robot can now repeat the

following: Move to the closest neighbor of p′i relative to the robot, pick up the block, move

one unit to where the object was before picking it up, and place it in the desired location.
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Note that no object ever interferes with the robot’s path. The total number of actions

needed to achieve this is:[ |V |−2∑
i=1

3︸︷︷︸
move to a neighbor of p′

i

+ 1︸︷︷︸
pick up objectpi

+ 1︸︷︷︸
place objectpi

]

+ 1︸︷︷︸
move to neighbor of f(t)

+ 1︸︷︷︸
pick up objectt

+ 1︸︷︷︸
move one unit closer to goal(objectt)

+ 1︸︷︷︸
place the object

= 5(|V | − 2) + 4 = K

Assume now that (s0, goal) is solvable in at most K steps. Let π be an optimal plan. Since

π is optimal, it contains |V |−1 pickup actions, |V |−1 place actions and at least 3(|V |−1)+1

movement actions. But since |V | − 1+ |V | − 1+3(|V | − 1)+1 = K we have that π contains

exactly 3(|V | − 1)+ 1 move actions. From this, we can see that G must have a Hamiltonian

path starting at s, since otherwise, the robot would need at least 3(|V |−1)+1+3 movement

actions, which is impossible. Also, this Hamiltonian path must end in t, since otherwise we

would need at least 3(|V | − 1) + 2 movement actions.

Lemma 13. All solvable instances of IPC-TIDYBOT defined on rectangular grids of width

and height at least two and with no obstacles have polynomial length plans.

Proof. Let (s0, goal) be a solvable IPC-TIDYBOT instance with no obstacles. Let π be a

plan for (s0, goal). We show that there exists a new plan π′ of polynomial length. We

first demonstrate that the robot can reach any cell in V \ {cart poss0} in a polynomial

amount of steps by using a grab-move-place strategy without having to push the cart. The

grab-move-place strategy is the following: if the robot is on a cell u and wants to move to a

cell v without pushing the cart, consider a path P = ⟨p1, . . . , pn⟩ from u to v on the graph

G′ induced by V \{cart poss0}. Note that since the width and height of G are at least two,

G′ is connected, and thus P exists. For i = 1, ..., n− 1 the robot can move from pi to pi+1,

assuming pi+1 is occupied by an object by grabbing the object in pi+1, moving to pi+1 and

placing the object in pi. The plan π′ is divided into three phases. We begin defining the first

phase. From the grab-move-place argument, it is easy to see that it is possible to put all of

the objects in the grid inside the cart without having to push it in a polynomial amount of

steps. Now we move on to the second phase. Let v be the position of the cart in s0[π]. The

robot can push the cart from its initial position to v in the now empty grid. It is easy to

see that this can also be done in a polynomial amount of steps. Now we describe the third

and final phase. Let H = ⟨h1, . . . , h|V |⟩ be a Hamiltonian path on G starting at cart poss0 .

This path exists due to Lemma 1. For each vertex u ∈ V let objectu be the object in

Objects that is placed in u in s0[π] provided that it exists. Now for i = |V |, . . . , 2 the robot

now can check if objecthi
exists, if so, he places it in hi. By following this Hamiltonian

path, the robot is never trapped and thus can place all of the objects.

Corollary 2. BPE-IPC-TIDYBOT is NP-complete if we add the additional constraint that

there are no obstacles.

Proof. Hardness is shown in Lemma 12, and membership toNP follows from Lemma 13.
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(a) The instance (G, s, t) of DEG-3-GHP
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(b) The corresponding Tidybot instance. The arrows indicate where each object must be
placed to achieve the goal. All the goal destinations except the one for the object that

represents t are one unit away from their corresponding objects.

Figure 5.2: Example reduction for BPE-IPC-TIDYBOT.

In the remainder of this section, we build up the necessary definitions and lemmas that give

rise to Corollary 4. The idea of using bipartite matching in order to prove Corollary 3 was

given to us by Eppstein and Jeřábek [9].

Definition 23 (Simplified Tidybot task). A simplified Tidybot task is a tuple τ = (T, L,m)

where

1. T is a finite set of transportation objects.

2. L is a finite set of locations such that T ∩ L = ∅.

3. m : T → 2L is a map that assigns a set of candidate locations to each object.

A solution to τ is an injective function a : T → L such that ∀t ∈ T : a(t) ∈ m(t). We say

that τ is solvable if such an assignment function a exists.

Definition 24 and Theorem 7 are taken from Galil [10].
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Definition 24 (Graph matching, maximal matching). Let G = (V,E) be a finite bipartite

graph. A matching of G is a subset M of edges such that no two edges in M are incident, i.e.

they do not share their start or endpoints. M is maximal if there does not exist a matching

M ′ with |M ′| > |M |.

Theorem 7. Finding a maximal matching of a bipartite graph (V,E) can be done in time

O
(
|V | · |E|

)
.

Corollary 3. Deciding whether a simplified Tidybot task τ = (T, L,m) is solvable can be

done in time O
(
|T |2 + |L|2 + |L| · |T |

)
.

Proof. Define the graph G = (V,E) as follows: V = T ∪ L and (t, l) ∈ E ⇐⇒ l ∈ m(t).

It is easy to see that G is bipartite. By the definitions of V and E, we immediately get

that τ is solvable iff there exists a matching on G of cardinality |T |. The existence of such

matching can be decided using Theorem 7 in time O
(
|V | · |E|

)
= O

(
(|T |+ |L|) · (|T | · |L|)

)
=

O
(
|T |2 + |L|2 + |L| · |T |

)
.

Definition 25 (cart range). Let G = (V,E) be a rectangular graph of width and height at

least two and u be a vertex in V . Define cart range(u) as the set of vertices to which a cart

placed in u can be pushed to after any number of actions. That is, if the cart is located in a

corner, then cart range(u) = {u}. If the cart is located in the boundary of G but not in a

corner, then its range is the whole boundary column or row that is incident to u. Finally, if

the cart is an inner point of G, the cart range of u is V .

Figure 5.3 shows the cart ranges of distinct points in a grid.

Theorem 8. Let I = (s0, goal) be an PE-IPC-TIDYBOT instance where S is the set

on which goal ⊂ Objects is defined, i.e. goal : S → 2V . Then I is solvable iff ∃u ∈
cart ranges0 such that the simplified Tidybot task τu =

(
S, V, s 7→ goal(s)\{u}

)
is solvable.

Proof. Assume I is solvable. Let π be a plan and u be the position of the cart in s0[π].

Then clearly u is part of the cart’s range and moreover, since there is no object placed in

u, the task τu is solvable.

Now we argue in the other direction, we assume there exists a u in the cart’s range such

that τu is solvable. We now proceed to create a plan π for I. We define π in three phases in

the same manner as in Lemma 13. In the first phase, the robot places all objects in the cart.

In the second phase, the robot pushes the cart such that it is placed in u, this is possible

since otherwise u would not be in the cart’s range. Finally, the robot follows a Hamiltonian

path starting at u and places all the objects from S to their targeted goal positions.

Corollary 4. PE-IPC-TIDYBOT can be solved in polynomial time.

Proof. Follows from Theorem 8 and Corollary 3.
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Figure 5.3: Cart ranges (colored in gray) for different values of u, indicated by the cart
drawing.

5.2 PE-TIDYBOT is PSPACE-complete
We first show that PE-TIDYBOT is NP-hard. We reduce from 3CNF-SAT, given below.

3CNF-SAT

INPUT: A set V = {x1, . . . , xm} of propositional variables, and a set C = {C1, . . . , Cn} of
clauses over V, where each Ci contains at most three literals, i.e. Ci = {ci,1, ci,2, ci,3}, ci,j ∈
V ∪ {x̄ : x ∈ V} 1 ≤ i ≤ n.

QUESTION: Is there a satisfying assignment for (V, C)?

The problem 3CNF-SAT is NP-complete [11].

Lemma 14. PE-TIDYBOT is NP-hard even if there is only one robot.

Proof. We reduce from 3CNF-SAT. Let Φ = (V, C) be an instance of 3CNF-SAT, i.e. V =

{x1, . . . , xM} is a set of M propositional variables and C = {C1, . . . , CN} is comprised of

size 3 clauses over V, namely Ci = {ci,1, ci,2, ci,3}, i = 1, . . . , N . We may assume that no

clause contains a variable xi and its negation x̄i, since then that clause is a tautology. We

may also assume that every variable xi in V appears in some clause either as xi or in its

negated form x̄i. We make use of the choice gadget, shown in Figure 5.4. Our construction

for s0 stacks M choice gadgets horizontally, one for each variable. We also add a corridor

that is two units wide which allows the agent to reach each gadget. There are N objects

object1, . . . , objectN placed in the corridor. The robot is also placed in the corridor and



Tidybot 37

has a grip radius of 1. For 1 ≤ j ≤ N let ℓj1,j , ℓj2,j , ℓj3,j be the literals that appear in the

clause Cj . We define goal(objectj) = {ℓj1,j , ℓj2,j , ℓj3,j}. An example of a construction of

s0, goal for a fixed Φ is given in Figure 5.5. The construction can be computed in polynomial

time since the height of the grid is fixed and its width is bounded by M · N · C for some

constant C.

Assume that Φ is satisfiable. We now construct a plan π for s0. Let A : V → {T,F} be

a satisfying assignment for Φ. The agent proceeds to do the following for each variable xi:

if A(xi) = T, move to the choice gadget for xi and push the cart one unit down, and if

A(xi) = F, move to the choice gadget for xi and push the cart one unit to the right. No

cart will be moved again for the rest of the plan. Now it is easy to see that each object

can be placed in one of its goal destinations since otherwise, A would not be a satisfying

assignment.

Now assume that the Tidybt construction (s0, goal) is solvable. Let s be a goal state. We

define an assignment A on V as follows: for each variable xi, if the cart in the choice gadget

for xi is pushed down in s or if the cart is not pushed at all, set A(xi) = T, otherwise if the

cart is pushed to the right, set A(xi) = F. We now claim that A is a satisfying assignment

for Φ. Assume by contradiction that A is not a satisfying assignment. Then there exists

some clause Cj = {a, b, c} such that none of the literals a, b, c are made true in A. But for

s to be reachable, at least one of the cells marked with aj , bj , cj must be reachable from

s0, thus pushing the cart in the appropriate direction, making that literal true. Hence a

contradiction.



xi,1 xi,2 xi,3 . . . xi,N

x̄i,1 x̄i,2 x̄i,3 . . . x̄i,N

Figure 5.4: Choice gadget for the propositional variable xi. The cells colored with black
are base obstacles. Placing an object in the cell marked xi,j can be seen as making the
literal xi true in the clause Cj . Similarly, placing an object in the cell marked x̄i,j can be
seen as making the literal x̄i,j true in the clause Cj . Note that carts cannot be pulled, so
pushing the cart to the right makes it impossible for the robot to reach the cells marked
with xi,1, . . . , xi,N , and pushing the cart downwards makes it impossible to reach
x̄i,1, . . . , x̄i,N . This reflects the fact that an assignment for Φ cannot make a variable both
true and false simultaneously.

The previous theorem seems to suggest that a source for Tidybot is the number of objects.

However, the next proposition shows that Tidybot remains hard even if there is only 1

object.
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x1,1x1,2x1,3

x̄1,1 x̄1,2 x̄1,3

x2,1x2,2x2,3

x̄2,1 x̄2,2 x̄2,3

Figure 5.5: Full reduction for Φ = ({x1, x2}, {{x1, x̄2}, {x̄1, x2}, {x1}}). We have
goal(o1) = {x1,c1 , x̄2,C1

}, goal(o2) = {x̄1,C2
, x2,C2

}, goal(o3) = {x1,C3
}. The

black-colored cells are base obstacles. There are no gripper obstacles.

Proposition 2. PE-IPC-TIDYBOT is PSPACE-complete even if there is only one single

robot and only one object.

Proof. All problems of classical (propositional) planning are members of PSPACE [5].

Thus we need only show hardness. We do so by reducing from the puzzle Push -1F. This

puzzle is a planning domain similar to Sokoban, with the only difference being that in

Push -1F the goal is reached once the agent reaches a desired position in the grid, rather

than when the blocks are put in some goal locations. The plan existence for Push -1F is

PSPACE-complete [2].

The reduction is straightforward. Let (s0, agent goal) be a Push -1F plan existence in-

stance. Let GP1F = (VP1F , EP1F ) be the grid graph of s0. We now define a plan existence

I of Tidybot that is solvable iff (s0, agent goal) is solvable.

Define I = (s′0, goal) as follows:

1. The graph G of s0 is G = R(m,n) where m = width(GP1F ), n = height(GP1F ).

2. For each hole in GP1F put a base obstacle in G.

3. I does not contain gripper obstacles.

4. The gripper radius is 1.

5. The robot location in I is the same as the robot location in (s0, agent goal)

6. There is only one object, which the robot is holding.

7. The goal is to put the object in agent goal.

This construction can clearly be done in polynomial time. It is easy to see that a plan for

I exists iff a plan for (s0, agent goal) exists.
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6
Nurikabe

Nurikabe is the name of a Japanese logic puzzle. The name of the puzzle translates to

‘painting wall’, which refers to the puzzle’s aim of coloring particular cells within some

constraints. More precisely, a Nurikabe puzzle is comprised of a rectangular graph G =

(V,E), and a set of groups. A group is a pair (u, n) where u is a vertex in G and n is a natural

number. The goal is to find a white-black coloring of G, i.e. a map m : V → {white, black}
satisfying two conditions. The first is that the subgraph of G induced by the set of vertices

{u : m(u) = black} is connected, does not contain any 2× 2 square subgraph, and does not

contain any vertices belonging to a group. The second is that the subgraph induced by the

set of vertices {u : m(u) = white} is made out of N connected components, where N is the

number of groups. For each group (u, n) there exists exactly one component C such that

u ∈ C and C has order n.

The IPC Nurikabe domain, which we call IPC Nurikabe, is a variant of the original

Nurikable puzzle. It differs from Nurikabe in two ways. First, the painting constraints of

the set of black cells are not enforced. Second, all cells are initially painted black, and there

is an agent (a robot) that moves around the grid and can paint cells he is on with white.

The actions of the robot are limited: he is not allowed to move to white-colored cells, he

can only start painting cells with white when he is on a cell belonging to a group, and he

can only stop painting once the number of cells painted for its respective group matches the

group size.

Nurikabe is NP-complete [16], however, the relaxation of some of the painting constraints

mixed with the added complexity of the agent makes a reduction from Nurikabe to IPC

Nurikabe nontrivial. We start by formalizing a IPC Nurikabe states, goals, and decision

problems.

Definition 26 (IPC Nurikabe, initial state). An IPC Nurikabe state is s is comprised

of

• A square grid G = R(n, n) for some n ∈ N

• The position of the robot robots ∈ V

• A boolean variable that indicates if the robot is currently painting paintings ∈ {T,F}
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Action a a is applicable in s if Effect of a
MOVE(u) (u, robots) ∈ E ∧

paintings = F ∧
painteds(u) = F

robot ← u

MOVE AND PAINT(u) (u, robots) ∈ E ∧
paintings = T ∧
painteds(u) = F

robot ← u ∧
painted(u)← T

START PAINTING ∃n : (robots, n) ∈ groups ∧
paintings = F

painting ← T ∧
painted(robot)← T

STOP PAINTING paintings = T ∧
∃g ∈ groups : g is solved and robots ∈s g

painting ← F

Table 6.1: IPC Nurikabe actions and preconditions for each u ∈ V . The notation ∈s is
introduced in Definition 29.

• A function which indicates which vertices have been painted white painteds : V →
{T,F}

• The set of groups groups ⊂ V × N>0

For a (u,m) ∈ groups, we say that u is the source of the group and m is the group size. All

IPC Nurikabe initial states s0 are such that painteds0(u) = F ∀u ∈ V , paintings0 = F

and for each (u, n), (u′, n′) ∈ groups we have dℓ1(u, u
′) ≥ 2, so in particular u ̸= u′.

The actions and preconditions of IPC Nurikabe are shown in Table 6.1. Intuitively, a

group (u,m) indicates that the robot must paint a simple path P starting at u of length

m. If there are adjacent vertices v in P and v′ in P ′ for distinct group paths P and P ′, we

enter a dead state, i.e. a state from which the goal cannot be reached.

Definition 27 (coloring graph, group graph). Let s be an IPC Nurikabe state and u ∈ V .

The coloring graph of s is the graph induced by the set of vertices {v : painteds(v) = T}.
The group graph of u in s is the connected component of the coloring graph of s that includes

u. If painteds(u) = F, we define its group graph to be the empty graph (∅, ∅).

Definition 28 (solved group, solved state). Let s be an IPC Nurikabe state. A group

(u, n) is solved in s if the group graph (V,E) for u in s has order n and if there does not exist

another group (u′, n′) with u′ ∈ V . We say that s is solved if all the groups of g ∈ groups

are solved in s.

Definition 29 (membership to a group). Let s be a an IPC Nurikabe and g ∈ groups

whose group graph is (V,E). We say that a vertex u is a member g in s, written u ∈s g, if

u ∈ V .

The decision problems for IPC Nurikabe are given below.

PE-IPC-NURIKABE

INPUT: An initial IPC Nurikabe state s0.

QUESTION: Is there a sequence of actions π applicable on s0 such that s0[π] is a solved

state?
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BPE-IPC-NURIKABE

INPUT: An initial IPC Nurikabe state s0 and a bound K > 0.

QUESTION: Is there a sequence of actions π applicable on s0 such that s0[π] is a solved

state and ∥π∥ ≤ K?

6.1 BPE-IPC-NURIKABE is NP-complete
We show NP completeness of IPC Nurikabe. A straightforward argument shows that all

solvable instances have polynomial length plans. NP hardness is shown by reducing from

GHP1, which was introduced in Section 2.2.

Lemma 15. Any solvable instance I of IPC Nuriake has a polynomial length plan w.r.t.

∥I∥.

Proof. Let s0 be a solvable instance of IPC Nurikabe with N groups and π be a plan for

s0. Let G be the square grid of s0. We construct a new plan π′ of length O(|V |2). Let

g1, . . . , gN be the ordering of groups where gi is the i’th group painted in π. The plan π′ is

defined in N iterations as follows. In iteration i the robot moves to gi and paints the group

gi in the same pattern as in π. Notice that moving to gi takes at most |V | actions, and
painting the group gi also takes at most |V | actions. The fact that it is possible to move to

gi and paint the group gi every time follows from the fact that π is a plan.

Lemma 16. BPE-IPC-NURIKABE is NP-complete.

Proof. Membership to NP is proven in Lemma 15. We show NP hardness by reducing from

DEG-4-GHP1. This problem takes a grid graph G, and vertices s ̸= t as input such that t

has degree one. It asks whether there exists an s-t Hamiltonian path in G. We have shown

that this problem is NP-complete in Lemma 2.

Let (G, s, t) be a DEG-4-GHP1 instance where G = (V,E). We construct an instance

I = (s0, goal,K) as follows.

• Let G′ = R(n, n) be the grid of s0 where n = 2 ·max{wdith(G),height(G)}.

• Place the robot in 2 · s

• Let groups = {(2 · u, 1) : u ∈ V }

• painteds0(u) = F ∀u ∈ V ′

• paintings0 = F

• K = 4|V | − 2

An example of this construction is shown in Figure 6.1. We now argue that G has an s-t

Hamiltonian path iff s0 can be solved in at most K steps. Assume first that G has a s-t

Hamiltonian path P = ⟨p1, . . . , p|V |⟩. We construct a plan π for s0 as follows. On iteration

i ∈ {1, . . . , |V |} we move the robot to 2 ·pi and paint the group the robot is on. The number
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of actions on iteration 1 are one for painting and one to stop painting, on all other iterations

the robot must also move two squares. In total we have

2 +

|V |−1∑
i=1

4 = 4|V | − 2 = K

Next we assume that s0 can be solved in at most K steps. Note that we have |V | groups so
we need 2|V | actions to paint each group. Moreover, since the distance between each group is

at least two we also need at least 2|V |−2 movement actions. But since 2|V |+2|V |−2 = K,

the requirement on the number of movement actions is tight. Because of this, the robot

must move two squares between each group painted, which is only possible if he follows a

Hamiltonian path. Further, this path must end in 2 · t since deg(t) = 1.

t

s

♂ 1111

1

1 1 1 1 1

11

Figure 6.1: An instance (G, s, t) of DEG-4-GHP1 on the right and the corresponding
BPE-IPC-NURIKABE instance on the right.

6.2 PE-IPC-NURIKABE is NP-complete
We recall the problem DEG-3-SHP introduced in Section 1.1.4. It asks if a given subgrid

graph (i.e. a connected edge induced subgraph of the integer lattice) whose vertices have

degree at most three has an s-t Hamiltonian path. In this section, we consider a special case

of this problem, where s and t have degree one, and t’s neighbor has degree 2. We show

that this restricted variant remains NP-complete. For an instance (G, s, t) of this problem,

we engineer an initial IPC Nurikabe state s0 in the following way. There is a group (u, n)

where u depends on s and n is a large number that depends on the order of G. There are

also many groups of the form (v, 1), scattered around the grid of s0 where the values for v

depend on the other vertices of G. Intuitively, these 1-groups force the robot to paint (u, n)

in such a way that its coloring is a scaled-up s-t Hamiltonian path from G on the grid of s0.
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Until now, we always labeled (sub) grid graphs such that their smallest x and y coordinates

are 1. For simplicity, we make a change of convention in this section only, in that we label

graphs such that the smallest x and y coordinates of a grid are 0 instead.

We define the following decision problem:

DEG-3-SHP∗
3

INPUT: A subgrid graph G = (V,E) and s ̸= t ∈ V such that deg(t) = deg(s) = 1,

deg(u) ∈ {2, 3} ∀u ∈ V \ {s, t}, and the neighbor of t has degree 2.

QUESTION: Is there an s-t Hamiltonian path in G?

Lemma 17. DEG-3-SHP∗
3 is NP-complete.

Proof. For an instance (G, s, t) of DEG-3-SHP∗
3, a non-deterministic algorithm can guess a

sequence of vertices of length |V | and check whether it forms an s-t Hamiltonian path in

polynomial time. In the remainder of this text, we show that

DEG-3-SHC ≤ DEG-3-SHP∗
3

which finishes the proof since DEG-3-SHC is NP-complete according to Theorem 3. Let

G1 = (V1, E1) be an instance of DEG-3-SHC with |V1| > 2. If G1 contains a degree 1

vertex, then G1 cannot have a Hamiltonian cycle, so we thus may assume that all vertices

of G1 have degree either 2 or 3. We now provide a polynomial time construction of an

instance (G3, s, t) of DEG-3-SHP∗
3 that can be solved iff G1 has a Hamiltonian cycle. Let

s be the right-top corner of G1, i.e. s is at the top of the right-most column. Since s is a

corner vertex it must have degree two. Then s has a neighbor below it, we call it u. Let

G2 =
(
V1, E1 \ {(s, u), (u, s)}

)
. Define two new vertices t0 =

(
u + (1, 0)

)
, t =

(
u + (2, 0)

)
and let G3 = (V2 ∪ {t0, t}, E2 ∪ {(u, t0), (t0, u), (t0, t), (t, t0)}). An example of this is shown

in Figure 6.2. It is easy to see that this construction can be done in polynomial time and

that (G3, s, t) is a valid instance of DEG-3-SHP∗. We now argue that

(i) G1 has a Hamiltonian Cycle

⇐⇒

(ii) G2 has an s-u Hamiltonian Path

⇐⇒

(iii) G3 has an s-t Hamiltonian Path

• Proof of (i) ⇐⇒ (ii). Note that G1 has a Hamiltonian cycle iff G1 has an s-u

Hamiltonian path P . This path cannot make use of the edge (s, u) because u must be

visited last and may thus be removed.

• Proof of (ii) ⇐⇒ (iii). Trivial since t’s only neighbor is only adjacent to t and u.

The remainder of this chapter is devoted to defining a polynomial time transformation T

from DEG-3-SHP∗
3 and proving its correctness.
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s

u

s

u⇝
s

u t⇝
Figure 6.2: Transformation of graphs G1, G2 and G3.

Definition 30 (Scaling function f). We define the scaling function

f : Z2 → Z2

f(x, y) = (4x+ 4, 4y + 4)

Definition 31 (Degree k vertex counting function). Let G = (V,E) be a simple graph,

U ⊆ V and k ∈ N, define the degree k counting function on G as

Dk
G(U) = |{u ∈ U : deg(u) = k}|

Definition 32 (Blockade vertices, bridge vertices). Let (G, s, t) be a DEG-3-SHP∗ instance

with G = (V,E). We define the following sets

• Left blockades = {f(u)− (2, 0) : u ∈ V,
(
u, u− (1, 0)

)
̸∈ E}

• Right blockades = {f(u) + (2, 0) : u ∈ V,
(
u, u+ (1, 0)

)
̸∈ E}

• Top blockades = {f(u) + (0, 2) : u ∈ V,
(
u, u+ (0, 1)

)
̸∈ E}

• Bottom blockades = {f(u)− (0, 2) : u ∈ V,
(
u, u− (0, 1)

)
̸∈ E}

• Horizontal bridges = {f(u) + (±2, 2) :
(
u, u+ (1, 0)

)
∈ E}

• Vertical bridges = {f(u) + (2,±2) :
(
u, u+ (0, 1)

)
∈ E}

Definition 33 (IPC Nurikabe transformation T ). Let I = (G, s, t) be an DEG-3-SHP∗

instance where G = (V,E). We define a transformation T (I) from I to an initial Nurikabe

state s0 = (G′, robots0 , paintings0 , painteds0 , groups) as follows.

• G′ = R(n, n) where n = 4 ·max{width(G), height(G)}+ 12

• robots0 = (0, 0)

• paintings0 = F

• painteds0(u) = F ∀u ∈ V ′

• groups =
{
(f(s), 4 · |V |+ 2 ·D3

G(V )− 3)
}
∪
{
(u, 1) : u ∈ S

}
where S is the set given by the union

S = Blockades ∪ Bridges ⊂ V ′

which decomposes further into

Blockades = Left blockades ∪ Right blockades ∪ Top blockades ∪ Bottom blockades

and

Bridges = Horizontal bridges ∪ Vertical bridges
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A graphical example of the transformation T is shown in Figure 6.3. We have built a

program that constructs such instances2.

Proposition 3. Let I = (G, s, t) be an SHP∗
3 instance. Then T (I) is well-defined and can

be computed in polynomial time w.r.t ∥I∥.

Proof. Trivial since the dimensions of the grid in T (I) are linear with respect to ∥T∥, and
determining whether an (u, n) ∈ groups can also be done in linear time w.r.t ∥I∥.

We now turn to proving the correctness for T . Our strategy is the following. For an instance

I = (G, s, t) of DEG-3-SHP∗, and s0 = T (I), we consider the graph GT induced by the set

of vertices that the robot could paint in order to solve the group whose source is f(s). We

call this graph the T graph of s0 and make claims about the relationship between simple

paths in G and simple paths in GT that eventually prove the hard direction of Theorem 21.

Definition 34 (1-blocked vertex). Let s0 be an IPC Nurikabe state. We say that a

vertex u ∈ V is 1-blocked if (u, 1) ∈ groups or if u is adjacent to a vertex v such that

(v, 1) ∈ groups.

Definition 35 (T -reachable vertex). Let I = (G, s, t) be an DEG-3-SHP∗
3 instance where

G′ = (V ′, E′) is the square grid of T (I). A vertex u′ ∈ V ′ is T -reachable if there exists a

path (not necessarily simple) from f(s) to u′ that does not pass through a 1-blocked vertex.

Remark 1. Let I = ((V,E), s, t) be an DEG-3-SHP∗ instance and s0 = T (I). The set of

all the T -reachable vertices is

Corresponding vertices ∪

Corresponding vertical edges ∪

Corresponding horizontal edges ∪

Horizontal tentacles ∪

Vertical Tentacles

where

• Corresponding vertices = {f(u) : u ∈ V }

• Corresponding vertical edges =
{
f(u) + (0, i) : 1 ≤ i ≤ 3,

(
u, u+ (0, 1)

)
∈ E

}
• Corresponding horizontal edges =

{
f(u) + (i, 0) : 1 ≤ i ≤ 3,

(
u, u+ (1, 0)

)
∈ E

}
• Horizontal tentacles =

{
f(u) + (i, j) : i ∈ {1, 3}, j ∈ {1,−1},

(
u, u+ (1, 0)

)
∈ E

}
• Vertical tentacles =

{
f(u) + (i, j) : i ∈ {1,−1}, j ∈ {1, 3},

(
u, u+ (0, 1)

)
∈ E

}
2 This can be found online under https://github.com/TravisPetit/Nurikabe.

https://github.com/TravisPetit/Nurikabe
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Definition 36 (T -graph, T ′-graph). Let I = (G, s, t) be an DEG-3-SHP∗ instance and

s0 = T (I). The T -graph of s0, written GI
T is the subgraph of the grid of s0 induced by the

vertex set {u : u is T -reachable}. The T ′-graph of s0, written GI
T ′ is the subgraph of GI

T

induced by the set of vertices {u : degGI
T
(u) ≥ 2, u ̸= f(s), u ̸= f(t)}

Remark 2. Let I = (G, s, t) be an DEG-3-SHP∗ instance where the only vertices with

degree one are s and t, and let s0 = T (I). The T ’ graph of s0 is a grid graph induced by

the union of the following sets of vertices:

• Corresponding vertices

• Corresponding vertical edges

• Corresponding horizontal edges

• {f(u) + (1, 1) :
(
u, u+ (1, 0)

)
∈ E ∧

(
u, u+ (0, 1)

)
∈ E}

• {f(u) + (−1, 1) :
(
u, u+ (−1, 0)

)
∈ E ∧

(
u, u+ (0, 1)

)
∈ E}

• {f(u) + (−1,−1) :
(
u, u+ (−1, 0)

)
∈ E ∧

(
u, u+ (0,−1)

)
∈ E}

• {f(u) + (1,−1) :
(
u, u+ (1, 0)

)
∈ E ∧

(
u, u+ (0,−1)

)
∈ E}

We note that in the T ′-graph G
(G,s,t)
T ′ of an instance T ((G, s, t)), a vertex u in G corresponds

to a set of vertices in GT ′ , which can be seen clearly in Figure 6.3. This motivates the

following definitions.

Definition 37 (bridge midpoint). Let I = (G, s, t) be an DEG-3-SHP∗ instance with G =

(V,E) and s0 = T (I). Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0. The bridge midpoint of

an e ∈ E, written m(e) is given below:

m(e) =

f(u) + (2, 0) e =
(
u, u+ (1, 0)

)
for some u ∈ V

f(u) + (0, 2) e =
(
u, u+ (0, 1)

)
for some u ∈ V

Definition 38 (corresponding vertex zone). Let I = (G, s, t) be a some DEG-3-SHP∗ in-

stance with G = (V,E), and let s0 = T (I), GT ′ = (VT ′ , ET ′) be the T ′ graph of I, and

u ∈ V . The corresponding vertex zone of u, written z(u) is the following set of vertices

z(u) = {v ∈ VT ′ : ∃ a path P in GT ′ from u to v with ∥P∥ ≤ 3}\{m(e) : e is incident to u}

Remark 3. Let I = (G, s, t) be a some DEG-3-SHP∗ instance with G = (V,E), and let

s0 = T (I), GT ′ = (VT ′ , ET ′) be the T ′ graph of I, and u, v, w ∈ V be a vertices with degree

1, 2, and 3 respectively in G. An easy computation shows that

z(u) =



{f(u) + (1, 0)}
(
u, u+ (1, 0)

)
∈ E

{f(u) + (0, 1)}
(
u, u+ (0, 1)

)
∈ E

{f(u) + (−1, 0)}
(
u, u+ (−1, 0)

)
∈ E

{f(u) + (0,−1)}
(
u, u+ (0,−1)

)
∈ E
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Figure 6.3: Example transformation from an instance I = (G, s, t) of DEG-3-SHP∗ to the
corresponding IPC Nurikabe state T (I). The cells colored in gray are 1-blocked. The
value of N is 4 · |V |+ 2 ·D3

G(V )− 3 = 4 · 10 + 2 · 2− 3 = 41. The path traced in red is a
possible coloring for the group (f(s), N).
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z(v) =



{f(v) + (0, y) : −1 ≤ y ≤ 1}
(
v, v + (0, 1)

)
∈ E ∧(

v, v + (0,−1)
)
∈ E

{f(v) + (x, 0) : −1 ≤ x ≤ 1}
(
v, v + (1, 0)

)
∈ E ∧(

v, v + (1, 0)
)
∈ E

{f(v) + (x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
(
v, v + (1, 0)

)
∈ E ∧(

v, v + (0, 1)
)
∈ E

{f(v) + (x, y) : −1 ≤ x ≤ 0, 0 ≤ y ≤ 1}
(
v, v + (−1, 0)

)
∈ E ∧(

v, v + (0, 1)
)
∈ E

{f(v) + (x, y) : −1 ≤ x ≤ 0,−1 ≤ y ≤ 0}
(
v, v + (−1, 0)

)
∈ E ∧(

v, v + (0,−1)
)
∈ E

z(w) =



{f(w) + (x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 0}
(
w,w + (−1, 0)

)
∈ E ∧(

w,w + (0,−1)
)
∈ E ∧(

w + (0, 1)
)
∈ E

{f(w) + (x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 1}
(
w,w + (−1, 0)

)
∈ E ∧(

w,w + (0, 1)
)
∈ E ∧(

w + (0, 1)
)
∈ E

{f(w) + (x, y) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1}
(
w,w + (0,−1)

)
∈ E ∧(

w,w + (0, 1)
)
∈ E ∧(

w + (1, 0)
)
∈ E

{f(w) + (x, y) : −1 ≤ x ≤ 0,−1 ≤ y ≤ 1}
(
w,w + (−1, 0)

)
∈ E ∧(

w,w + (0,−1)
)
∈ E ∧(

w + (1, 0)
)
∈ E

Remark 4. Let I = (G, s, t) be an DEG-3-SHP∗ instance with G = (V,E) and s0 = T (I).

Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0. The following family of sets is a disjoint partition

of VT ′

{z(u) : u ∈ V } ∪ {{m(e)} : e ∈ E}

From the previous remark we can see that for a simple path to visit a vertex in a correspond-

ing vertex zone, it must do so by first visiting a bridge midpoint. This is used to define the

notion of entering and leaving a corresponding vertex zone.

Definition 39 (entering/leaving a corresponding vertex zone). Let I = (G, s, t) be an

DEG-3-SHP∗ instance with G = (V,E) and s0 = T (I). Let GT ′ = (VT ′ , ET ′) be the T ′

graph of s0. Let u ∈ V . We say that a simple path P = ⟨p1, . . . , pn⟩ in GT ′ enters z(u) if

there exists an 1 ≤ i ≤ n such that pk is a bridge midpoint and pk+1 ∈ z(u). Similarly, we

say that P leaves z(u) if there exists an 1 ≤ i ≤ n such that pk ∈ z(u) and pk+1 is a bridge

midpoint.
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Lemma 18. Let I = (G, s, t) be an DEG-3-SHP∗ instance with G = (V,E) and s0 = T (I).

Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0 and P be a simple path in GT ′ starting in f(s).

Let u ∈ V with degG(u) = k, u ̸= s. The following hold:

a) If k = 1, P cannot leave z(u).

b) If k = 2, P cannot enter z(u) twice.

c) If k = 3, P cannot enter z(u) twice unless P ends in a vertex of z(u).

Proof. Note that by definition P must enter and leave z(u) through a bridge midpoint, and

a vertex u of degree k has k bridge midpoints adjacent to one of the vertices in z(u). Next,

since P must enter z(u) before leaving it we have that P can enter z(u) at most ⌈k2 ⌉ times,

and leave it ⌊k2 ⌋ times. Setting k = 1, 2, 3 proves a), b), and c) respectively.

Clearly, a path P as defined in Lemma 18 cannot enter z(s), thus, it may enter at most

|V | − 1 corresponding vertex zones.

Proposition 4. Let I = (G, s, t) be an DEG-3-SHP∗ instance with G = (V,E) and s0 =

T (I). Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0 and P be a simple path in GT ′ starting

in f(s). Then P can enter at most |V | − 1 distinct corresponding vertex zones, and it can

enter corresponding vertex zones at most |V | − 1 times.

Proof. P cannot enter z(s) since it starts in f(s) and degG(s) = 1, thus it may enter at

most |V |−1 corresponding vertex zones. Furthermore, if the last corresponding vertex zone

z(u) that P enters is such that degG(u) = 3, then P could enter z(u) twice, however, since

G has a vertex of degree 1 other than s, it would enter |V | − 2 corresponding vertex zones

and would enter a total amount of |V | − 2 + 1 times.

From the previous two results, the next remark is immediate.

Remark 5. Let I = (G, s, t) be an DEG-3-SHP∗ instance with G = (V,E) and s0 = T (I).

Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0. Let P be a simple path in GT ′ starting at f(s),

and let z(u1), . . . z(un) be the corresponding vertex zones that P enters (in that order).

Then if degG(un) ̸= 3, we get that ⟨s, u1, . . . , un⟩ is a simple path in G.

Lemma 19. Let I = (G, s, t) be an DEG-3-SHP∗ instance with G = (V,E) and s0 = T (I).

Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0. Let u ∈ V with degG(u) = k, k ∈ {2, 3},
and e1, . . . , ek be the edges incident to u. Let Gz(u) be the subgraph of GT ′ induced by the

following set of vertices: z(u) ∪ {m(ei) : 1 ≤ i ≤ k}. Let Li,j be the length of the longest

path from one of m(ei) to one of m(ej) in Gz(u), i ̸= j ∈ {1, . . . , k}. Then

1. If k = 2, Li,j = 5 ∀i, j

2. If k = 3, Li,j = 7 ∀i, j

Proof. By inspection. Possible longest simple paths are drawn in Figure 6.5 up to symmetries

in rotations and relfections.



Nurikabe 52

Lemma 20. Let I = (G, s, t) be an DEG-3-SHP∗ instance with G = (V,E) and s0 = T (I).

Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0. Let P = ⟨p1, . . . , pm⟩ be a simple path in G′

that starts in f(s) and ends in a bridge midpoint. Let z(u1), . . . , z(un) be the corresponding

vertex zones that P enters. Then ∥P∥ ≤ 4n+ 2 ·D3
G({u1, . . . , un}) + 3

Proof. We notice that each of u1, . . . , un must have degree at least two since otherwise, P

could not end in a bridge midpoint. Further, it is easy to see that there is only one simple

path from f(s) to b
(
(s, u1)

)
in GT ′ , and it has length 3. For 1 ≤ i < n let ei = (ui, ui+1).

By Lemma 5 we get that ei ∈ E ∀i. Further, let en be an edge incident to un other than

en−1. Let

ℓi =

4 degG(ui) = 2

6 degG(ui) = 3

Using Lemma 19 we get

∥P∥ ≤ 3 +

n∑
i=1

ℓi = 3 + 4n+ 2 ·D3
G

(
{u1, . . . , un}

)
as desired.

Lemma 21. Let I = (G, s, t) be an DEG-3-SHP∗ instance with G = (V,E) and s0 = T (I).

Let GT ′ = (VT ′ , ET ′) be the T ′ graph of s0. Let P = ⟨p1, . . . , pm⟩ be a simple path in G′

sthat starts in f(s) of length at least L = 4 · (|V | − 1) + 2D3
G(V ) + 1 and z(u1), . . . , z(un)

be the corresponding vertex zones that P visits. Then ⟨s, u1, . . . , un⟩ is an s-t Hamiltonian

path in G.

Proof. Let z(u) be the last corresponding vertex zone that P enters. We first show that

u = t. Assume by contradiction that u ̸= t. We make two case distinctions.

• Case 1: deg(u) = 2. We have that P cannot enter any vertex twice by Lemma 18.

Moreover, P cannot have entered z(t) since it would have to leave it. Hence P can

enter at most |V |−2 corresponding vertex zones, without repetitions. Then by Lemma

20

∥P∥ ≤ 4 · (|V | − 2) + 2 ·D3
G(V ) + 3 = 4 · (|V | − 1) + 2 ·D3

G(V )− 1 < L

• Case 2: deg(u) = 3. Let v be the neighbor of t. We have that P cannot enter z(t) nor

z(v), so P can enter at most |V | − 3 corresponding vertex zones. However, P could

enter z(v) twice, thus entering corresponding vertex zones at most |V |−2 times. Using

Lemma 20 we get the same bound as above.

Next, we let e = (un−1, un) and notice that e ∈ E due to Lemma 5. We let 1 ≤ m ≤ i be

the index such that pi = m(e) and P ′ = ⟨pi+1, . . . , pm⟩. By Lemma 20 we have

∥P∥ ≤ 4(n− 1) + 2D3
G(V ) + 3 + ∥P ′∥

And since ∥P ′∥ ≤ |z(un)| = |z(t)| = 2 we get

∥P∥ ≤ 4n+ 2D3
G(V ) + 1

Thus n = |V |−1 so P enters |V |−1 distinct corresponding vertex zones. We conclude using

Lemma 5.
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Theorem 9. PE-IPC-NURIKABE is NP-complete.

Proof. Membership to NP follows from Lemma 15. We reduce from DEG-3-SHP∗ using

the transformation T from Definition 33. We know that T can be computed in polynomial

time due to Proposition 3. Let I = (G, s, t) be an DEG-3-SHP∗ instance and s0 = T (I) and

let Gs0 = (Vs0 , Es0) be the square grid of s0. We show that I is solvable iff s0 is solvable.

Assume first that s0 is solvable. We show that I is solvable too. This follows from Lemma

21.

Assume now that I is solvable, i.e. there exists an s-t Hamiltonian path P = ⟨p1, . . . , pn⟩
in G. We devise an algorithm that produces a plan π for s0 as follows: Note that for each

(u, 1), (v, 1) ∈ groups we have that dℓ1(u, v) > 1, so in particular, we get that the subgraph

G′ of Gs0 induced by the set of vertices {us0 ∈ Vs0 : (us0 , 1) ∈ groups} is connected, so the

robot can paint each of the 1-groups without running into a dead state. Thus, the algorithm

devises π such that the robot first paints each of the 1 groups. Next, the robot moves to

f(s) and starts painting the group in the following way. At iteration i ∈ {1, . . . , |V | − 1}, if
degG(pi+1) = 2, the robot moves from f(pi) to f(pi+1) in a straight line, thus painting four

squares. And if degG(pi+1) = 3, the robot moves from f(pi) to f(pi+1) by doing a turn as

shown in Figure 6.5. This clearly produces a plan since in total, the number of cells that

the robot paints is

1 +

|V |−1∑
i=1

4 + 2 · 1degG(pi+1)=3 = 4 · (|V | − 1) + 2 ·D3
G(V ) + 1

= 4 · |V |+ 2 ·D3
G(V )− 3

as desired.
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f(t)

f(s)

f(t)

f(s)

Figure 6.4: The T and T ′-graphs of s0, where s0 is the IPC Nurikabe state from Figure
6.3.
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k = 2 :

u e2

e1

⇝

m(e1)

m(e2)f(u)

ue1 e2 ⇝ m(e1) m(e2)f(u)

k = 3 :

u e3e1

e2

⇝

m(e2)

m(e1) m(e3)f(u)

m(e2)

m(e1) m(e3)f(u)

Figure 6.5: We trace possible longest simple paths from each bridge midpoint to another in
Gz(u) up to symmetries in rotations and mirroring where k = degG(u). In the case k = 2,
possible longest simple paths from one of m(e1) to one of m(e2) are traced in red on the
right-hand side. In the case of k = 3, a path from m(e1) to m(e3) and vice-versa is traced
in red. Similarly, a path from m(e2) to m(e3) and vice-versa is traced in blue. Note that a
path from m(e2) to m(e3) can be obtained considering the blue path mirrored along the y
axis.
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Other Domains

We do a literature review of other classical planning domains based on grids that appear in

previous IPCs.

7.1 Snake
Snake is the name of a 2D single-player video game where the player controls the movement

of the head of a simple path (a snake) along a grid. Apples spawn in arbitrary positions

of the grid, and when the head of the path intersects an apple (i.e. when the snake eats

an apple), the simple path grows in length. The goal is to eat as many apples as possible

without colliding with obstacles or the snake’s body.

The game of Snake has many variants. In the most well-known variant, which we call the

classical variant, the grid on which the game is played is rectangular, there is a single apple

in the initial state, and a new apple spawns in a random cell each time an apple is eaten. In

the variant called Nibbler, there can be an arbitrary number of apples in the initial state,

and new apples do not spawn once other apples have been eaten. The IPC version of Snake

(which we call IPC Snake throughout the rest of this text) is similar to that of the classical

version, the only difference is that this variant removes any uncertainty by predeterminedly

selecting the spots where the apples will spawn.

The plan existence problem for Nibbler is NP-hard if played on solid grid graphs [3]. This

has been shown by reducing from GHP. With similar arguments, the authors show that

Nibbler is NP-hard if played on rectangular grids, assuming that the snake’s growth rate

after eating each apple is at least two, and assuming that the snake’s body can be of arbitrary

size in the initial state. Using the nondeterministic constraint logic framework, the authors

also show that Nibbler is PSPACE-complete if played on arbitrary grid graphs. A key

observation in these reductions is that they are made such that in any plan, some apples

must be eaten in a certain order. This forces the snake to move in a way that it avoids

certain cells. Imposing an ordering on when the apples are eaten gives rise to complexity in

a way that cannot be done in IPC Snake since in that variant there is always at most one

apple in the grid at any given reachable state.

We consider the following decision problem posed by Du et. al. [8].
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Partial Path Problem

INPUT: A rectangular graph G and a simple path P on G.

QUESTION: Is there a Hamiltonian cycle on G that contains P as a subpath?

It is conjectured that the partial path problem is NP-hard, and that there exists a reduction

from this problem to the plan existence problem IPC Snake3 [8]. However, an outline for

both the hardness proof and the reduction are missing.

7.2 Ricochet Robots
Ricochet Robots is the name of a multiplayer sliding game puzzle published by Rio Grande

Games4. In the game, there is a rectangular grid G of fixed size, 4 robots of colored red,

green blue, and yellow placed in vertices of G, and a set of “walls”, represented as a set of

edges in G. An instance of the game is solved once a sequence of robot movements has been

found such that a predetermined robot reaches a predetermined square. The movement

of the robots is limited: they may only move one at a time in one of the four cardinal

directions, and they slide once they start moving, i.e. they can only stop once they are in

front of another robot, or when they collide with a wall, or once they reach the boundary

of the grid. An instance of Ricochet Robots is depicted in Figure 7.1. Ricochet Robots is

played in multiple rounds between two or more players. At the start of each round, a new

instance is shown to the players. Players who find short solutions (i.e. solutions with a low

number of robot movements) gain tokens. After all rounds are over, the player with the

most amount of tokens wins the game.

We note that the number of players does not affect the complexity of the game. There

is a straightforward single-player variant of the game, where the goal is simply to either

determine whether an instance is solvable (plan existence problem) or whether an instance

is solvable in at most K steps (bounded plan existence problem). Throughout the remainder

of this text, we treat Ricochet Robots as a single-player game.

Ricochet Robots has been solved via the means of brute force computation [6]. This is only

possible due to the fixed size of the grid. The game needs to be generalized to make it

interesting from a computational complexity point of view, there are several ways of doing

this. We mention the work by Masseport et. al. [21], which generalizes the puzzle in several

directions, as follows.

Definition 40 (Generalized Ricochet Robots domain). The domain GRR(n, cr,m, ct) is

comprised of all Ricochet Robot instances on rectangular grids of arbitrary size with n robots

{r1, . . . , rn}, where each robot ri is chosen from a list of cr total colors, and m target tiles

{t1, . . . , tm}, each of which is chosen from a list of a total of ct colors. An instance of this

domain is solved once a state s′ is reached such that each robot ri is on a target tile tj

satisfying robot color(ri) = tile color(tj).

In the IPC variant of Ricochet Robots, we have n = 4, cr = 4,m = 1, ct = 4. To the best of

3 The authors do not make it clear whether they mean IPC Snake or the classical variant of Snake.
4 The game seems to be discontinued, as it is no longer listed on Rio Grande Games’s website.
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our knowledge, the complexity of this problem has yet to be analyzed. The following results

are known. The plan existence problem for GRR(n, 1, 1, 1) is fixed-parameter tractable for

fixed values of n [15] and PSPACE-complete for arbitrary values of n [21].

Figure 7.1: [15]. An optimal solution is drawn on top of the grid.

7.3 Labyrinth
Labyrinth is a board game published by Ravensburger [18]. The game is comprised of a

set of labeled square cards, each with one of three shapes, shown in Figure 7.2 and four-

player tokens. At the start of the game, all but one of the cards are randomly placed such

that they form a rectangular grid, thus, forming a labyrinth. We call the leftover card

the turnover card. Each card is placed in a random orientation. Moreover, the token of

each player is placed in a corner of the card grid, and a list of random labels is assigned

to each player. Labyrinth is played in turns, and the first player to visit all of the cards

with their respective labels in order wins the game. In each turn, each player performs two

actions. First, they change the shape of the labyrinth by choosing one column or row, and

one direction (north/south or east/west respectively), each card in that column or row then

slides by one unit in the direction indicated by the player. The turnover card fills in the

missing spot and the card that slides out of the grid becomes the new turnover card. As for

the second action, the turn player can then move his token to any card in the grid to which

a path exists. An example of a turn in Labyrinth is shown in Figure 7.3.

The IPC variant of Labyrinth is inspired by this game, yet it differs in three ways. First,

there is no turnover card. Instead, after a shift, the card that leaves the grid fills in the

missing spot. Second, the IPC variant is a single-player puzzle, where the goal is for the

player to maneuver their token from the top left corner to the bottom right corner. Finally,

a shift cannot be performed on the column or row that contains the token.

The computational complexity of a Labyrinth variant, which we call Labrynth∗ has been

analyzed [25]. It is a single-agent version of the original Labyrinth game, where the goal

is to maneuver the token from one given card to another. The bounded plan existence
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of Labrynth∗ is NP-hard. The reduction is based on 3CNF-SAT5. Despite there being a

turnover card, the corresponding instance is always defined in such a way that the movement

of the agent never visits a newly added card, making the behavior of the maze similar to

that of the IPC variant. Moreover, the instances are always such that the token must move

from the top left corner to the bottom left corner of the grid.

Figure 7.2: The three types of tiles in Labyrinth.

Figure 7.3: A full turn in Labyrinth. The turn player shifts the middle row to the left and
decides not to move his token.

5 This problem was introduced in Section 5.2.
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Conclusion

We studied the computational complexity of five classical planning domains based on grids

stemming from past IPCs. Table 8.1 summarizes our results. We also did a literature review

on three other domains. The IPC domains Nurikabe, TERMES, Snake, Ricochet Robots,

and Labyrinth are inspired by existing puzzles/domains. However, with the exception of

maybe Labyrinth, from a computational complexity point of view, they are different enough

from their counterparts to the point where they are hardly comparable.

A special case of the work by Itai et. al. [17] shows that on any rectangular grid of order at

least three, there is a Hamiltonian path starting at any vertex. We showed that this implies

that the bounded plan existence problem for VisitAll is solvable in polynomial time.

There are bounded plan existence instances of VisitAll that can be solved only if the robot’s

movement matches some Hamiltonian path on a grid graph. When the goal is to visit a

preselected set of cells, we used this fact to make a reduction from DEG-4-GHP1, i.e. the

s-t Hamiltonian path problem on grid graphs where t has degree 1, which we have shown to

be intractable.

Floortile is the only domain in this thesis that features non-uniform action costs. We

provided necessary and sufficient conditions for the plan existence problem which can be

computed in polynomial time. We also provided an algorithm that, given a solvable instance

of Floortile, provides a plan of polynomial length. The bounded plan existence problem

is open. A source of difficulty here is that, due to the action costs, a reduction from a

Hamiltonian path/cycle problem is challenging.

We divided (the IPC variant of) TERMES into two sub-domains. One where the state s0 is

empty, and one where s0 is allowed to contain blocks. The complexity of the plan bounded

existence and bounded plan existence for the former are open, however, we conjecture that

the bounded plan existence problem is NP-hard. As for the latter, we showed that the plan

existence and bounded plan existence problems are NP-hard by reducing from DEG-4-GHP.

In our hardness reduction, we placed tall, unreachable stacks of blocks in the grid, essentially

adding obstacles, and as a goal, we set the agent to build a tall stack, which must be built

through a ramp that follows a simple path in a grid graph.

The PDDL definition of the Tidybot domain allows for multiple robots or objects to be on

the same cell. Furthermore, it defines the gripper’s movement in such a way that it behaves
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strangely when the gripper’s radius is more than one. We thus modeled this domain by

adding further constraints that enforce that at most one object/robot can be on a single cell

at all times. We also redefined the movement of grippers when the radius is more than one.

Under these new constraints, we showed that Tidybot has the game Push -1F as a special

case, and is thus PSPACE-complete. In settings with exactly one cart, one robot, and no

obstacles, we came up with a polynomial time procedure that decides whether an instance

is solvable. However, finding optimal plans in this setting is NP-complete.

Nurikabe is a Japanese logic puzzle. In the IPC variant of Nurikabe, there is a robot

that moves through a square grid and paints cells with white. There is a straightforward

argument that shows that solvable instances of this variant have polynomial length plans.

Moreover, an easy reduction from DEG-4-GHP1 shows that the bounded plan existence

problem is NP-hard. The plan existence problem is NP-complete. We reduced from a new

Hamiltonian path problem on subgrid graphs, which we have shown to be NP-complete. In

our reduction, the agent must paint a group by following a simple path, which is forced to

correspond to a simple path in a subgrid graph due to the presence of 1-groups scattered

along the grid.

Some of the reductions in this thesis featured new decision problems, which we have shown

to be intractable (see Lemma 17 and Lemma 2). Since IPCs serve as a testing suite for

domain-independent classical planning algorithms, the results from Table 8.1 can be used

by researchers and practitioners to assess new algorithms and heuristics in these areas.

Moreover, the hardness proofs in this thesis highlight hard instances of these domains. We

categorized various domains into complexity classes, thus expanding the list of P, NP, NP-

complete, PSPACE, and PSPACE-complete problems, which allows researchers to use

them for hardness reductions in the future.

8.1 Future Work
The computational complexity of the three IPC domains in the literature review has yet to

be studied, namely Snake, Ricochet Robots, and Labyrinth. All three of them are inspired

by existing domains whose complexity has been partially explored. There are more domains

based on grids featured in previous IPCs that have not been covered in this thesis, namely

Slitherlink, Protein Folding, and Spanner. In this thesis, we worked with the complexity

classes P, NP, and PSPACE. Future work could also include a more granular classification

of complexity classes (e.g. L, NL) to the domains studied in this thesis.

We present a conjecture that we found during the thesis, but were unable to prove.

8.1.1 TERMES
Bob is a mechanical engineer and wants to put his new invention: a TERMES robot, to use.

He wants to coordinate his robot to build structures as efficiently as possible on an empty

field. Unfortunately for him, this task is likely to be intractable.

Conjecture 1. BPE-TERMES-ES is NP-hard.

Proof idea. Let (G, s, t) be an instance of of DEG-3-GHP with G = (V,E). Further, Let
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PlanEx Bounded PlanEx

VisitAll P
Pa

NP-completeb

TERMES
NP-hardc

?d
NP-hardc

?d

Tidybot
Pe

PSPACE-completef
NP-completee

PSPACE-completef

Floortile P ?

Nurikabe NP-complete NP-complete

a If the goal is to visit all the cells in the grid.
b In the general case, where the goal can be any subset
of cells.

c If the initial state is allowed to contain blocks.
d If the initial state is empty.
e If there is only one cart and no obstacles.
f In the general case.

Table 8.1: Overview of the complexity classes of each domain studied in this thesis. Note
that in each entry, we always mean the IPC variant of the corresponding domain. In
Tidybot we add the constraint that no two robots/objects can be in the same cell, and we
also redefined the behavior of the gripper when its radius is more than one.

(s′0, goal
′,K ′) be the BPE-TERMES-NES instance defined in the proof of Lemma 11. We

define an instance I = (s0, goal,K) of BPE-TERMES-ES as follows. We let s0 be like s′0,

except that num-blockss0(u) = 0 for all u. Next, we let goal = goal′ and

K = K ′ + 4 · |V | − 4 + 12
∑

u∈V \{s,t}

dℓ1(u, s)

= 7 · |V | − 9 + 12
∑

u∈V \{s,t}

dℓ1(u, s)

If G has an s-t Hamiltonian path, then (s0, goal) can be solved in K steps. To justify this,

it is easy to see that s′0 is reachable from s0 using a total of K −K ′ actions. The fact that

we can reach a goal state from s′0 in K ′ steps has been shown in Lemma 11. For the other

implication, we conjecture that if I is solvable, then there exists an optimal plan for I that

starts with π, where π is a sequence of actions of length K −K ′ such that s0[π] = s′0.
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