
A Formal Verification of Strong
Stubborn Set Based Pruning

Bachelor’s thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence research group

ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Salomé Eriksson

Travis Rivera Petit

travis.riverapetit@stud.unibas.ch

2015-117-427

09.05.2020

http://ai.dmi.unibas.ch

Acknowledgments

I would like to thank very much my supervisor Dr. Salomé Eriksson for her thorough weekly

feedback on my progress. I would also like to thank Dr. Florian Pommering for his help in

clearing out some of my Isabelle/HOL questions.

Abstract

Classical Planning is a branch of artificial intelligence that studies single agent, static, de-

terministic, fully observable, discrete search problems. A common challenge in this field is

the explosion of states to be considered when searching for the goal. One technique that has

been developed to mitigate this is Strong Stubborn Set based pruning, where on each state

expansion, the considered successors are restricted to Strong Stubborn Sets, which exploit

the properties of independent operators to cut down the tree or graph search. We adopt

the definitions of the theory of Strong Stubborn Sets from the SAS+ setting to transition

systems and validate a central theorem about the correctness of Strong Stubborn Set based

pruning for transition systems in the interactive theorem prover Isabelle/HOL.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Strong Stubborn Sets . 2

1.2 Isabelle . 2

2 Preliminaries 5

3 Strong Stubborn Sets for Transition Systems 8

4 Strong Stubborn Set based pruning 11

4.1 Proof of correctness in SAS+ . 11

4.2 Proof of correctness in Transition Systems . 14

5 Implementation 16

5.1 A Note on the pull function . 17

6 Conclusion 19

Bibliography 20

Declaration on Scientific Integrity 21

1
Introduction

Classical Planning is one of the main studies of focus in AI research since it is a framework

for modelling planning tasks that have sparked the interest of computer scientists since the

inception of modern computers, ranging from solving Rubik’s Cubes automatically to graph

touring problems. It is also key in real world situations: consider the behavior of cranes and

robot carts in the process of loading and unloading of cargo ships and moving containers

around in a large harbour. What schedule of actions for the crane and the robots does the

work with minimal cost? In essence, tackling this problem follows almost identical steps of

reasoning as solving a Rubik’s Cube in the minimum amount of steps does.

The theory of domain independent classical planning unifies the development of algorithms

such that they may be used in any classical planning task with only minimal amount of

work needed for coupling. This is achieved by abstracting the notion of a planning task

and thinking of it as an mathematical object with discrete properties. The use of heuristic

functions serves as a stand-in for domain-specific approaches that dictate which state is a

good candidate to expand next.

A reoccurring problem in planning tasks is that their state spaces are too vast relative to our

current processing power available. This makes it such that many algorithms with powerful

theoretical properties such as A∗ [6] or its variants become infeasible to use in practice. When

confronted with a list of many potential states to explore, even under generous assumptions,

the number of states to be expanded tends to grow exponentially on each iteration of a

search algorithm [7]. State space pruning is a domain independent technique that narrows

down that list while preserving optimality, thus reducing the computation overhead needed

and making the use of some solvers feasible and more efficient.

A great deal of care must be taken when pruning a search space: if the the pruning method

has errors it may convert a solvable task into an unsolvable one or remove all optimal

solutions. However, due to the complexity of pruning algorithms, there have been published

papers that defined pruning procedures with an incorrect behavior, even though they were

–wrongly– proven to preserve optimality [4]. The difficulties arise because often there exist

more than one optimal solution, and when confronted with two or more options, more than

one of them could lead to an optimal solution, meaning that a pruning procedure may

eliminate transitions that form optimal solutions as long as not all of them are removed.

Introduction 2

Recently Mattmühler, Herlmert and Alkhazraji obtained good experimental results with

a Strong Stubbron Set based pruning technique [3]. They proved the correctness of their

algorithm by using intuitive arguments, most of mathematics is done this way. However,

due to the collective interest in rigorously proving the correctness of pruning procedures, a

formal proof would set the reliability of the procedure in stone.

In this thesis we validate the proof of a central theorem on the correctness (in the sense

of optimality preserving) of the Strong Stubborn Set pruning method in the interactive

theorem prover Isabelle/HOL.

1.1 Strong Stubborn Sets
Often when confronted with a planning task one may find actions that commute. We

consider as an example two a task of moving a bishop and a rook in a chessboard from the

squares a1 and d2 to the squares d2 and a1 respectively while not threatening each other

in any position in between, the initial position is shown in Figure 1.1. Here we consider

the moves bishop-a1-h8 and rook-d2-g2. Both are applicable in the starting position, and

both are applicable after each other, moreover, the resulting position is the same no matter

the order of moves. This observation, although quite evident, can be used to bypass a

whole branch of a search tree: if bishop-a1-h8 followed up by rook-d2-g2 does not lead to

an optimal solution, then neither will rook-d2-g2 followed up by bishop-a1-h8. These two

actions are an example of independent operators.

Things get particularly interesting when confronted with many independent operators: if op

is an operator and π an array of operators such that for every operator op′ in that path op′

and op are independent, a lot of things can be said about π and its permutations on a given

state depending on the behavior of op on that state, cutting down the search exponentially.

Strong Stubborn Sets were conceived with the idea of exploiting facts about independent

operators to narrow down tree or graph searches, for instance if op is in a Strong Stubborn

Set and is applicable in a state s, then only the operators it is dependent of must also belong

to that set, although further conditions must also be met to ensure the desired behaviour

when pruning.

Stubborn sets have been first proposed in the area of model checking [5] and have since been

adapted to SAS+ planning tasks [3]. In Chapter 3 of this thesis we show how they can be

adapted to the more general setting of transition systems.

1.2 Isabelle
Isabelle is an interactive computer program where human and machine team up to try to

prove mathematical formulas in a logical calculus together. It also facilitates the use of

external automatic theorem provers and supports functional programming. The software

is open source, and a mirror of the source code is available on GitHub [2]. Isabelle has

been originally developed by the Technische Universität München and the University Of

Cambridge, but has received contributions from many institutions and individuals since.

A challenge when doing mathematics at a high level of granularity, and even in mathematics

Introduction 3

Figure 1.1: The initial position of a planning task where the goal is to move the rook to a1
and the bishop to d2 without having the pieces threatening each other in any position.

in general is that we are often tricked by our common sense into thinking that certain

claims are so evident and elementary that their proof follows must immediately by the

definitions of the objects involved. And even when we know they do not, we tend to use

meta-mathematical reasoning to argue their validity. This is potentially dangerous as it

opens up the possibility of taking things for granted that are false and ending up with an

incorrect proof, often for a false claim. Isabelle offers an alternate way of doing mathematics

where every logical step has to be formally justified, and if such justification is not sound,

Isabelle lets the user know in real time. Figure 1.2 shows a screenshot of Isabelle’s default

IDE Isabelle/jEdit, and Figure 1.3 shows an instance where Isabelle/jEdit signals to the

user that Isabelle cannot conclude a statement from a premise. Working with Isabelle has

the benefit of forcing the user into being rigorous and of giving its proofs a soundness stamp.

For instance if the P vs NP problem were to be proven in Isabelle, we would have a high

level of certainty that the proof is correct.

A notable example of an Isabelle proof includes the correctness of an operating system’s

kernel, where the Isabelle proof spans roughly two hundred thousand lines [8].

As of the time of this writing, Isabelle’s archive of formal proofs [1] contains 530 articles of

formal proofs in mathematics and computer science written in Isabelle.

Isabelle/HOL is an instance of Isabelle for proving theorems in higher order logic which

is equipped a high level of expressiveness, for instance recursive functions with pattern

matching can be defined as long as it is proven that such functions are well defined. This is

especially useful when trying to model and prove facts about algorithms that are recursive

in nature with complex pattern matchings.

Introduction 4

Figure 1.2: Isabelle’s IDE Isabelle/jEdit. It provides immediate feedback on the status of
proofs, syntax highlighting and TEX-like semantic markup.

Figure 1.3: An example of Isabelle/jEdit’s signaling of a proof gone wrong, where
Isabelle’s proof method auto cannot conclude the claim ?case from the assumptions in
the lines 859 and 865.

2
Preliminaries

We build up the definitions needed for the theory of Strong Stubborn sets. We do this

by doing some adaptations to the definitions from [3]. These changes make talking about

operators, planning tasks and states easier in subsequent chapters but do not change the

semantics of the content.

We start by building up the theory of SAS+ planning tasks.

Definition 1. An alphabet is a finite non-empty set.

In our setting, we distinguish between two types of alphabets: variable alphabets, which

contain names of variables, and domain alphabets, which contain the values that vari-

ables may take. For instance, in the game of chess, a variable alphabet would be the

algebraic names of the square coordinates {a, . . . , h} × {1, . . . , 8} and a domain alphabet

would contain the chess pieces that might occupy these squares, namely
(
{white,black} ×

{king, queen, rook,bishop, knight,pawn}
)
∪ {empty}.

Definition 2. Let V be a variable alphabet and D be a domain alphabet, a global domain

is a mapping d : V → P(D) 1 i.e. each variable v gets assigned to a variable domain d(v).

Definition 3. Let V be a variable alphabet, D be a domain alphabet and d : V → P(D) be

a global domain. A state s is a mapping from V to D where for each v ∈ V it holds that

s(v) ∈ d(v). A partial state is a state where the mapping V → D is partial.

A state defines the current configuration of a planning task via a function, the initial state

from Figure 1.1 is a function that maps the a1 square to the bishop piece, the d2 square to

the rook piece, and the remaining 62 squares to empty.

Definition 4. An operator op is a triple op = 〈pre(op), cost, eff(op)〉 where cost ∈ R≥0 and

pre(op) and eff(op) are partial states called the precondition and effect of op respectively.

With this machinery we now can define planning tasks:

1 By P(D) we mean the power set of D.

Preliminaries 6

Definition 5. A SAS+ planning task Π is a 6-tuple

Π = 〈V,D, d, s0, s∗, O〉

where V is a variable alphabet, D is a domain alphabet, d : V → D is a global domain, s0

is a state (called initial state) and s∗ is a partial state (called goal). Finally, O is a set of

operators.

Coming back the the chess puzzle from Figure 1.1 we may let Π be the planning task whose

set of operators O contains all of the legal moves for the bishop and rook via preconditions

and effects, for instance for bishop-a1-h8 ∈ O, its precondition may be defined as follows

(a, 1) 7→ bishop

(i, j) 7→ empty ∀(i, j) ∈ {(b, 2), (c, 3), . . . , (h, 8)}

(i, 8) 7→ empty ∀i ∈ {a, . . . , g}

(h, i) 7→ empty ∀i ∈ {1, . . . , 7}

While its effect would then be a partial state with only two mappings defined: (a, 1) 7→ empty

and (h, 8) 7→ bishop.

We are still missing the notion of a solution, intuitively it is a sequence of operators that

‘lead’ one state to the goal. We build up the definitions needed for solutions now.

Definition 6. Let s be a state and sp be a partial state. sp agrees with s if for all variables

v where sp is defined, s(v) = sp(v).

Definition 7. Let op be an operator and s be a state. op is applicable in s if the precondition

of op agrees with s.

Definition 8. Let s be a state, op be an operator applicable in s and sp be the effect of op.

We let s[op] be the state defined as follows:

s[op](v) =

s(v) if sp(v) is undefined

sp(v) otherwise
∀v ∈ V.

We extend this definition as follows: Let n ∈ N. Then

s[op1, . . . , opn](v) :=

s[op1, . . . , opn−1](v) if eff(opn)(v) is undefined

eff(opn)(v) otherwise

assuming applicability, namely that opi is applicable in s[op1, . . . , opi−1] for i = 2, . . . , n and

that op1 is applicable in s.

The previous definition is a natural way of defining chains of operators: s[op1, . . . , opn] is

the state that is obtained after applying op1, . . . , opn (in that order) to s.

Definition 9. A path π from a state s to a state s′ is a finite sequence of operators

op1, . . . , opn such that op1 is applicable in s, opi is applicable in s[op1, . . . opn−1] for i =

2, . . . , n and s[op1, . . . , opn] = s′.

We let cost(π) be the sum of the costs of all the operators in π.

Preliminaries 7

Definition 10. Let Π = 〈V,D, d, s0, s∗, O〉 be a SAS+ planning task, a solution for a state

s is a path whose elements lie in O from s to a state s′ where s∗ agrees with s′. An optimal

solution π for s is a solution satisfying

π = arg min
solution π′for s

cost(π′)

Note that, a priori, nothing can be said about the existence of a solution (and for that matter,

of an optimal solution). A planning task may have no solution, one or many solutions, or

an infinite number of solutions. Also, when we talk about the solution of a planning task,

we refer to a solution for the initial state s0.

Moving on, we build up the definitions necessary for the theory of Strong Stubborn Sets.

Definition 11. Let Π = 〈V,D, d, s0, s∗, O〉 be a planning task and op, op′ ∈ O. We say that

• op disables op′ if there exists a v ∈ V such that eff(op)(v) and pre(op′)(v) exist but

are unequal.

• op and op′ conflict if there exists a v ∈ V such that eff(op)(v) and eff(op′)(v) exist but

are unequal.

• op and op′ are dependent if at least one of them disables the other or they conflict. We

write dep(op) as a stand-in for the set of all the operators in O that are dependent of

op.

Definition 12. Let s be a state and sp be a partial state. A disjunctive action landmark

for sp in s is a set of operators L such that for every path π from s to a state that sp agrees

with, π contains at least one operator from L.

Definition 13. Let s be a state and op be an operator not applicable in s. A necessary

enabling set for an operator op in state s is a disjunctive action landmark for pre(op) in s.

Necessary enabling sets have their name because if op is an operator not applicable in a

state s and π is some path from s to a state on which op is applicable, then a necessary

enabling set for op in s contains some operator in π that is necessary, although generally

not sufficient, to actively enable op.

Again, taking the chess puzzle from 1.1 but restricting the grid to the dimensions of 4 by 3,

i.e where the corners of the board are (a, 1), (a, 3), (d, 1), (d, 3), a necessary enabling set for

the operator bishop-b2-c1 in the initial position is {rook-d2-d3} or any of its supersets.

Definition 14. Let Π = 〈V,D, d, s0, s∗, O〉 be a planning task and s ∈ V . SSS is a Strong

Stubborn Set in s if it contains a disjunctive action landmark for s∗ in s and if for all

op ∈ SSS

• if op is applicable in s, then dep(op) ⊆ SSS

• if op is not applicable in s, then SSS contains some necessary enabling set of op in s.

3
Strong Stubborn Sets for Transition Systems

We define transition systems and adopt the theory of Strong Stubborn Sets to this new

setting.

In the previous chapter, we have seen that states were a particular kind of mapping where

variables got assigned to values of their corresponding domains. Transition systems simplify

this: in this framework states are now atomic units. In a way, transition systems behave

like weighted directed graphs, where states can be thought of as vertices and actions as

collections of edges.

Definition 15. A Transition System T is a 6-tuple

T = 〈S, T,A, cost, s0, G〉

where S is a finite set of states, T ⊆ S ×A×S is a set of transitions, A is a set of actions,

cost is a function A→ N0, s0 ∈ S is the initial state and G ⊆ S is the set of goal states.

Where in SAS+ planning tasks we had a set of variables and a global domain, here we only

have a set of states. Actions can be thought of as operator names/identifiers, and operators

themselves are sets of transitions meeting certain conditions.

We note that transition systems are more general than SAS+ planning tasks, for instance,

they allow for more flexibility with goal states. Coming back to the chess example, the goal

rook-at-a1-and-bishop-at-d2 can be defined with a partial state in SAS+ that maps the a1

square to the rook piece, the d2 square to the bishop piece, and is undefined for all the other

variables, but a goal of the form rook-at-a1-and-bishop-at-d2-OR- rook-at-a8-and-bishop-at-

c7 cannot be expressed via a partial state. In Transition systems, however such a goal can

be dealt with easily be letting G be the set of all the states where the rook and the bishop

are in one the the two configurations mentioned earlier.

For a transition t = 〈s, a, s′〉 ∈ T we let src(t) = s, dst(t) = s′ and act(t) = a and call a

Transition System T valid if ∀t, t′ ∈ T :
(
src(t) = src(t′) ∧ act(t) = act(t′)

)
−→ t = t′, that

is, a Transition System is valid if actions are not ambiguous in the sense that actions may

not map states to more than one successor state.

From now on we will also let T = 〈S, T,A, cost, s0, G〉 be an arbitrary valid transition system.

Strong Stubborn Sets for Transition Systems 9

We move on by adopting our own definitions for the theory of Strong Stubborn Sets in

transition systems. The definitions are partly adopted from the previous chapter and [9],

which is itself an adaptation of [5].

Definition 16. An operator op in T is a non-empty subset of T such that ∀t, t′ ∈ op :

act(t) = act(t′).

When the context makes it clear, we use the convention of calling op an operator instead of

an operator in T .

Definition 17. An operator op is applicable in s ∈ S iff there exists a transition t in op

such that src(t) = s.

If op is applicable in s, we write app(op, s) for short.

Note that in a valid transition system T , for any s ∈ S and any operator op in T there is

at most one t ∈ op such that src(t) = s. Applicability restricts this further: it states that

there is at least one t with such property. Thus if op is applicable in s and if T is valid then

there exists exactly one t ∈ T such that s = src(t).

This motivates the following definition.

Definition 18. For an operator op that is applicable in s ∈ S in a valid Transition System

T we let effect(op, s) be the state s′ ∈ S such that ∃t ∈ op : src(t) = s ∧ dst(t) = s′.

We continue with the definitions leading up to Strong Stubbron Sets.

Definition 19. Let op and op′ be operators.

1. op enables2 op′ if for every s ∈ S, if op and op′ are applicable in s, then op′ is applicable

in effect(op, s).

2. op and op′ are non conflicting if

app(op, s) ∧ app(op′, s) ∧ app
(
op, effect(op′, s)

)
∧ app

(
op′, effect(op, s)

)
implies

effect
(
op′, effect(op, s)

)
= effect

(
op, effect(op′, s)

)
for every s ∈ S.

3. op and op′ are independent if they enable each other and they are non conflicting.

The proof of Lemma 1 in Chapter 4 provides a strong intuition as for why this definition

of enables is compatible with the negation of disables in Definition 11. The same applies to

this definition of non-conflicting.

The definition of path, path effect and solution can be defined in an analogous way as has

been done in the previous chapter.

2 We use enables to mean the negation of disables, which is not to be confused with active enabling.

Strong Stubborn Sets for Transition Systems 10

Definition 20. Let op be an operator not applicable in s ∈ S. N is a necessary enabling

set for op in s if for every solution π for s the following holds: if op is a member of π, then

there exists some op′ such that op′ comes before op in π and op′ ∈ N .

There is a slight semantic nuance between the Definitions 20 and 12: the latter allows for

the definition to hold for paths between any two states. In this thesis we only consider

necessary enabling sets from states to goals, which is reflected in Definition 20.

Definition 21. A disjunctive action landmark L for a state s ∈ S is a set of operators such

that for every solution for s, there exists an operator in that path that is also in L.

Definition 22. A Strong Stubborn Set SSS for s ∈ S if the following hold:

• SSS contains a disjunctive action landmark for s.

• if op ∈ SSS and ¬app(op, s) then SSS contains a necessary enabling set for op in s.

• if op ∈ SSS and app(op, s) then SSS contains all the operators op′ for which op and

op′ are dependent.

4
Strong Stubborn Set based pruning

On each iteration of a search algorithm such as A∗, a pruning technique creates a blacklist

of elements that should not be expanded because they either do not lead to a goal state, or

do not start an optimal solution for the given state, or do start an optimal solution but can

be safely ignored because there is at least one such equivalent element that is not pruned.

A central theorem in the theory of Strong Stubborn Sets shows that in an active state3 s,

any Strong Stubborn Set for s includes an operator that starts an optimal solution. This

theorem is the main focus of this thesis, it stated formally as follows:

Theorem 1. Let Π = 〈V,D, d, s0, s∗, O〉 be a SAS+ planning task, s be active in Π and

SSS be a Strong Stubborn Set for s. Then there exists an op ∈ SSS that starts some optimal

solution for s.

In essence,this means that restricting expansion to elements of Strong Stubborn Sets pre-

serves optimality.

There is a lot to be said about which Strong Stubborn Sets should be chosen when expanding,

computing ‘some’ Strong Stubborn Set when choosing which state to expand next is a non-

deterministic procedure. It is easy to see that the set of all applicable operators in a state is

indeed a Strong Stubborn Set, albeit a not useful one, since taking that route would prune

zero operators every time. On the other extreme, finding Strong Stubborn Sets of minimal

size is not feasible, so the computation overhead for finding such sets is too inefficient for it

be of use in practice.

4.1 Proof of correctness in SAS+

We provide the proof of Theorem 1 from [3] elaborating further on their arguments. We

fix a planning task Π. For a path π = 〈op1, . . . , opn〉 we let swp(π, op) be the function

that swaps the first occurrence op in with the element preceding it, namely swp(opi, π) =

〈op1, . . . , opi, opi−1, opi+1, . . . opn〉 (granted that op1, . . . , opi−1 are all unequal to op), and

if opi is the first element of π, then swp(opi, π) = π. We first prove two important results:

3 Active states are those for which there exists a path to the goal.

Strong Stubborn Set based pruning 12

Lemma 1. Let π be an optimal solution for a state s in Π and let op be an element in π

that is applicable in s such that it is independent from all of the operators that come before

it. Then swp(op, π) is an optimal solution for s.

Proof. Formally, we must show that

π is an optimal solution for some state s =⇒ swp
(
π, op

)
is an optimal solution for s

assuming that op is in π, all of the elements of π that come before op are independent of op

and op is applicable in s.

We let · be the function that concatenates two sequences together and use it with an infix

notation, i.e. 〈x1, . . . , xm〉 · 〈y1, . . . , yn〉 := 〈x1, . . . xn, y1, . . . , yn〉. We first note that if π is

a path containing op, then π = xs · 〈op〉 · ys for some sequences xs and ys where for every

element x in xs : x 6= op. We prove the result over induction on length of xs.

The first base case is when xs is the empty sequence. Then op is the first element of π so

swp(π, op) = π and we are done.

For our second base case we consider xs having length one: xs = [op′] for some operator

op′. We assume the premise and let s be a state for which π is an optimal solution. It

suffices to show that op is applicable in s[op′] and that s[op, op′] = s[op′, op] because then

s[π] = s[swp(π, op)], and since cost(π) = cost(swp(π, op)), swp(π, op)) would then also be

an optimal solution. By assumption op and op′ are not dependent, in particular op enables

(that is, not disables) op’. By the definition of disables:

¬(op disables op’) ⇐⇒

¬
(
∃v ∈ V : eff(op)(v) exists ∧ pre(op’)(v) exists ∧ eff(op)(v) 6= pre(op’)(v)

)
⇐⇒

∀v ∈ V :
(
eff(op)(v) exists ∧ pre(op’)(v) exists

)
−→ eff(op)(v) = pre(op’)(v)

In particular for s, since op is applicable, it follows that

∀v ∈ V : pre(op)(v) exists −→ s[op](v) = pre(op’)(v)

So pre(op’) and s[op] agree, thus op’ is applicable in s[op]. Using the same reasoning we

can also see that op’ is applicable in s[op].

By Definition 8 we have

s[op, op′](v) =

s(v) if eff(op′)(v) is undefined and eff(op)(v) is undefined

eff(op)(v) if eff(op′)(v) is undefined and eff(op)(v) is defined

eff(op′)(v) if eff(op′)(v) is defined

and similarly

s[op′, op](v) =

s(v) if eff(op)(v) is undefined and eff(op′)(v) is undefined

eff(op′)(v) if eff(op)(v) is undefined and eff(op′)(v) is defined

eff(op)(v) if eff(op)(v) is defined

Strong Stubborn Set based pruning 13

By pattern matching we can see that if v is such that at most one of eff(op) and eff(op′)

is undefined for v, then s[op, op′](v) = s[op′, op](v). If v is defined for both, then by the

definition of conflicting:

op does not conflict with op’ ⇐⇒

¬
(
∃v ∈ V : eff(op)(v) exists ∧ eff(op’)(v) exists ∧ eff(op)(v) 6= eff(op’)(v)

)
⇐⇒

∀v ∈ V :
(
eff(op)(v) exists ∧ eff(op’)(v) exists

)
−→ eff(op)(v) = eff(op’)(v)

So s[op, op′](v) = s[op′, op](v), finishing the proof of this base case.

For the inductive step we show that if

π is an optimal solution for some state s =⇒ swp
(
π, op

)
is an optimal solution for s

assuming that op is in π, all of the elements of π that come before op are independent of op

and op is applicable in s, then

〈x〉·π is an optimal solution for some state s′ =⇒ swp
(
〈x〉·π, op

)
is an optimal solution for s′

assuming that op is in 〈x〉 · π, all of the elements of 〈x〉 · π that come before op are indepen-

dent of op and op is applicable in s′.

We assume the premise and let s be a state such that π and swp(π, op) are optimal solutions

for s and write π as 〈x1, . . . , xN 〉 · 〈op〉 · ys where x1 6= op, . . . , xN 6= op.

If N = 0 the claim holds by the second base case. If N ≥ 1 and x = op the claim holds by

the first base case. If N ≥ 1 and x 6= op we derive

swp
(
〈x〉 · 〈x1, . . . , xN 〉 · 〈op〉 · ys, op

)
= swp

(
〈x, x1, . . . , xN , op〉 · ys, op

)
N≥1
= 〈x, x1, . . . , xN−1, op, xN 〉 · ys = 〈x〉 · 〈x1, . . . , xN−1, op, xN 〉 · ys

= 〈x〉 · swp
(
〈x1, . . . , xN 〉 · 〈op〉 · ys, op

)
= 〈x〉 · swp(π, op)

Furthermore, if 〈x〉 · π is an optimal solution for s, then π is an optimal solution for s[x].

Thus we must show that

π is an optimal solution for s[x] =⇒ swp
(
π, op

)
is an optimal solution for s[x]

The proof follows directly by letting s′ = s[x].

Corollary 1. Let π be an optimal solution for an s ∈ S and let op be an element in π

applicable in s such that it is independent from all of the operators that come before it.

Then op starts an optimal solution for s.

Proof. Let n be the length of π. Use Lemma 1 n− 1 times on π and s.

With this out of the way we are ready to prove Theorem 1.

Strong Stubborn Set based pruning 14

Proof. Let op1, . . . , opn be the members of an optimal solution π. Since SSS is a disjunctive

action landmark for s∗, {op1, . . . , opn} ∩ SSS 6= ∅. Let then op be the member with the

smallest index of π that is also in an element of SSS.

Assume op is not applicable on s, then by the definition of Strong Stubborn Sets and

disjunctive action landmarks, there would exist at least one operator that comes before op

in π that is also contained in SSS. This is a contradiction since op is the element that is

contained in both π and SSS with the smallest index, hence op is applicable in s.

Assume there exists an op′ that comes before op in π op such that op and op′ are dependent

and fix it. By the definition of Strong Stubborn Sets op′ ∈ SSS. Then all of the following

hold:

• op′ ∈ SSS

• op′ in π

• op′ comes before op in π

Which contradicts the fact that op is the element with the smallest index in π that is also

in SSS, so op is independent from all of the operators that come before it in π. We use

Corollary 1 on π and s, the proof follows directly.

4.2 Proof of correctness in Transition Systems
We prove an analog of Theorem 1 for transition systems. We fix a valid Transition System

T = 〈S, T,A, cost, s0, G〉.

Theorem 2. Let s ∈ S be an active state and SSS be a Strong Stubborn Set for s. Then

there exists an op ∈ SSS that starts some optimal solution for s.

Like before, we rely heavily on a corollary of an analog of Lemma 1:

Lemma 2. Let π be an optimal solution for a s ∈ S and let op be an element in π applicable

in s such that it is independent from all of the operators that come before it. Then swp(op, π)

is an optimal solution for s.

Here swp is defined as in Lemma 1.

Proof. (of Lemma 2). We write π as xs · 〈op〉 · ys and prove the claim by induction on xs.

For the first base case we consider the xs as the empty sequence. Then the first element of

π is op and swp(π, op) = π so s[π] = s[swp(π, op)] and we are done.

For our second base case we let xs = [op′] for some operator op′ in T that is independent of

op. By the definition of independence and enables, op is applicable in effect(op, s) and op′

is applicable in effect(op, s), and then by the definition of conflict, effect(op, effect(op′, s)) =

effect(op′, effect(op, s)) and we are done.

The inductive step is proved the same way as it has been done in Lemma 1.

Corollary 2. Let π be an optimal solution for a s ∈ S and let op be an element in π

applicable in s such that it is independent from all of the operators that come before it. op

starts some optimal solution for s.

Strong Stubborn Set based pruning 15

Proof. Let n be the length of the path π. Use Lemma 2 n− 1 times on π and s.

With this we prove Theorem 2.

Proof. SSS contains a disjunctive action landmark for s, so there exists at least one element

in π that is also contained in SSS. Let then op be the element of the smallest index in π

that is also an element of SSS.

Assume op is not applicable in s, then by Definition 22, SSS is a necessary enabling set for

op in s, thus ∃op′ : op′ comes before op in π ∧ op′ ∈ SSS which leads to a contradiction

because otherwise op would no longer the the element with the smallest index in π that is

also in SSS. Hence app(op, s).

Furthermore, assume there exists an op′ in π that comes before op and is dependent of op. By

Definition 22, given that op is applicable in s, op′ ∈ SSS, again leading to a contradiction.

By Corollary 2, there exists an op ∈ SSS that starts an optimal solution for s.

5
Implementation

In Isabelle/HOL, the proof of Theorem 2 followed a bottom up approach by starting from

elementary lemmas and slowly building up. While our proof of the theorem in Chapter 4

has been achieved with a few paragraphs of arguments, the formal proof takes roughly one

thousand lines. As is often the case in discrete mathematics, most of the claims have been

proven by induction.

For the proof we considered transition systems as directed weighted graphs, and operators

were defined separately. We did this because reasoning about arbitrary transition systems

T requires to consider every single possible operator for T . Because of this, we defined

operators more broadly, independent of transition systems as sets of transitions, and defined

a predicate valid operator that filters out operators that are not well defined for T .

This had the benefit of working with simpler data structures at the price of having to keep

track of multiple instances of mathematical objects at the time. It also made it possible for

functions to be defined over sets of operators, which simplified the syntax. However, because

operators have been defined so broadly, some functions had to be defined in an awkward

manner. We consider for instance the effect function:

For cases where the op is not valid, effect will map the input to more than one output,

namely to a class states satisfying the definition, and if op is not applicable in s, effect(op, s)

is ill defined. Hence the SOME keyword. Of course, we only care about the cases where op is

valid and applicable in s, then effect behaves like a function in the mathematical sense,

but this requires proof, and although this is obvious, the proof is not easy. Another approach

could have been to follow the functional programming paradigm and define a function taking

a transition system as an input that returns an effect function with a restricted co-domain

of valid operators; but this too has its issues.

In the next section now present a small highlight of the Isabelle/HOL proof.

Implementation 17

5.1 A Note on the pull function
Corollaries 1 and 2 are one-line proofs, albeit there are intricate mathematics behind the

scenes, and in Isabelle they cannot be ignored. Among others, the proofs use the fact that

if op is in π, and if the length of π is n, then the chain of compositions over swp of length

n − 1 evaluated at π and op has op at its first element. Intuitively, we can justify this as

follows: if the index of op in π is I, with the indexing starting at 0, then the index of op in

swp(π, op) is max{I−1, 0}, so the index of op in the chain swp(swp(. . . swp(π, op), . . . , op), op)

is max{I − n, 0}, and since I < n, this evaluates to 0. This argument is very convincing

and may be claimed as trivial in a scientific paper or a textbook, but without some further

scrutiny, it is just not rigorous enough for Isabelle to accept it.

We present an overview of our Isabelle proof. Before jumping into it, we provide the neces-

sary definitions.

From now on we use square brackets to enclose sequences instead of 〈 and 〉 to stick to

syntax of Isabelle/HOL. We also call sequences lists, denote the first element of a list π by

hd(π), its length by len(π), and re-use the definition of the · function from Chapter 4.1.

The swapping function, called swap with previous in the proof (but shortened to swp

in this text) is defined recursively as follows:

swp(π, op) =

π if len(π) ≤ 1 ∨ hd(π) = op

[y, x] · xs if π = [x, y] · xs for some xs, x, y : x 6= op ∧ y = op

[x] · swp([y] · xs, op) if π = [x, y] · xs for some xs, x, y : x 6= op ∧ y 6= op

For the chaining of compositions of swp we define the function pull as a map that takes a

list of elements of some type ‘a, a natural number and an element of type ‘a as arguments

and returns a list of elements of type ‘a, where

pull(π, n, op) =

π if n = 0

pull(swp(π, op), n− 1, op) if n > 0

pull is essentially a a for-loop that executes π = swp(π, op) on every iteration. Now it is

clear what must be shown:

op in π =⇒ hd(pull(π, len(π), op)) = op (5.1)

The idea of using indices demonstrated with the informal argument has been tried and later

abandoned since proving that the index function is weakly decreasing under compositions

of swp chain is just as difficult as proving the claim above.

Instead, the claim is proven by induction on π: the base case works fine, however for the

inductive step, because π is appears twice inside the pull arguments, this leads to an

awkward state of affairs, and it is difficult to make progress directly. The key idea is to first

prove the lemma:

op in π =⇒ hd(pull(π, n, op) = op =⇒ hd
(
pull([x] · π, n+ 1, op)

)
= op (5.2)

By natural induction on n, as now there is only one argument of pull for which induction

is being applied to. 5.1 then follows from 5.2 without many complications.

Implementation 18

The proof of this lemma is shown in Figure 5.3. In it, we can see that this lemma also

depends on more elementary lemmas about the behavior of pull and swp, namely

• pull head to head does nothing on line 513, that claims that if hd(π) = op,

then hd(pull(π, n, op) = op.

• head concat swap on line 522, that claims that if op is in π and op 6= x and op 6=
hd(π) then [x] · swp(π, op) = swp([x] · π, op).

• set swap eq on line 531 that claims that set(π) = set(swp(π, op)).

Among others. Some of these lemmas themselves are proven by using yet more elementary

lemmas about the behavior of swp and pull.

Figure 5.3: An Isabelle/HOL proof of 5.2.

6
Conclusion

We have managed to validate the correctness of the optimality preserving property of Strong

Stubborn Set based pruning in the setting of transition systems. We now have a higher

degree of confidence that this pruning procedure is safe to use.

During the validation of Theorem 2 in Isabelle/HOL, a common pitfall has been to rigorously

define the theory of Strong Stubborn Sets and to prove facts about these, since in the classical

planning literature, most of the definitions are given at a meta-mathematical level, which

limits the high level of granularity that may be used to prove facts about them. This further

emphasizes the interest in computer assisted validations of important theorems in classical

planning.

The topic of Strong Stubborn Set-finding algorithms has not been discussed in this thesis.

Future work includes the the validation of the correct behavior of such algorithms. Another

way in which this work can be expanded on is by validating Theorem 1 in Isabelle/HOL

directly, without deviating to transition systems, since avoiding this reformulation reduces

the potential for errors.

Bibliography

[1] Isabelle’s archive of formal proofs. https://www.isa-afp.org/.

[2] Isabelle mirror. https://github.com/isabelle-prover/mirror-isabelle.

[3] Yusra Alkhazraji, Martin Wehrle, Robert Mattmüller, and Malte Helmert. A stubborn

set algorithm for optimal planning. In Proceedings of the 20th European Conference on

Artificial Intelligence (ECAI), pages 891–892, 2012.

[4] Neil Burch and Robert C Holte. Automatic move pruning revisited. In SOCS, 2012.

[5] Patrice Godefroid. Partial-order methods for the verification of concurrent systems —

an approach to the state-explosion problem. volume 1032, 1996.

[6] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuris-

tic determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[7] Malte Helmert, Gabriele Röger, et al. How good is almost perfect?. In AAAI, volume 8,

pages 944–949, 2008.

[8] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip

Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al.

sel4: Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles, pages 207–220, 2009.

[9] Martin Wehrle and Malte Helmert. About partial order reduction in planning and

computer aided verification. In Twenty-Second International Conference on Automated

Planning and Scheduling, 2012.

https://www.isa-afp.org/
https://github.com/isabelle-prover/mirror-isabelle

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	1.1 Strong Stubborn Sets
	1.2 Isabelle

	2 Preliminaries
	3 Strong Stubborn Sets for Transition Systems
	4 Strong Stubborn Set based pruning
	4.1 Proof of correctness in SAS+
	4.2 Proof of correctness in Transition Systems

	5 Implementation
	5.1 A Note on the pull function

	6 Conclusion
	Bibliography
	Declaration on Scientific Integrity

