

A Formal Verification of Strong Stubborn Set Based Pruning

Travis Rivera Petit <travis.riverapetit@stud.unibas.ch>

Philosophisch-Naturwissenschaftlichen Fakultät, University of Basel

18.05.2020

- 1. Classical Planning
- 2. Strong Stubborn Set based pruning
- 3. Isabelle/HOL Implementation
- 4. Contributions & Future work

Roadmap

1. Classical Planning

- 2. Strong Stubborn Set based pruning
- 3. Isabelle/HOL Implementation
- 4. Contributions & Future work

Branch of AI that studies single agent, static, deterministic, fully observable, discrete search problems.

Definition

A transition system is a 6-tuple

 $\mathcal{T} = \langle S, T, A, \textit{cost}, s_0, G \rangle$

- 1. S is a set of states.
- 2. $T \subseteq S \times A \times S$ is a set of transitions $t = \langle src t, act t, dst t \rangle$.
- 3. A is a set of action.
- 4. *cost* is a function $A \to \mathbb{N}_0$.
- 5. s_0 is the initial state.
- 6. $G \subseteq S$ is the set of goals.

op is an operator in \mathcal{T} if $op \subseteq \mathcal{T} \land \forall t, t' \in op$: act t = act t'.

- $> S = \{ positions \}$
- $> T = \{ \langle position, move, effect \rangle \}$
- $A = \{$ possible moves $\}$
- $ightarrow \mathit{cost} \equiv 1$
- $> op_i = \{ \langle s, act_i, s' \rangle \in T \}$
- > solution = sequence of operators.

State spaces tend to be too vast!

One solution: Pruning

State spaces tend to be too vast!

One solution: Pruning

However ... pruning procedures are tricky to prove.

This thesis: Validate correctness of Strong Stubbron Set based pruning for transition systems in Isabelle/HOL.

1. Classical Planning

2. Strong Stubborn Set based pruning

- 3. Isabelle/HOL Implementation
- 4. Contributions & Future work

State space pruning is a domain-independent technique that narrows down the set of applicable operators into an optimality preserving set.

State space pruning is a domain-independent technique that narrows down the set of applicable operators into an optimality preserving set.

First introduced in the area of model checking.

Then adopted to classical planning in SAS^+ .

Here: to transition systems.

Idea: exploit properties about independent operators.

Necessary enabling set

N is a necessary enabling set for *op* in *s* if \forall solution π for *s* that contains *op*: $\exists op' \in set(\pi) \cap N$ that comes before *op* in π .

$$N = \{B-a1-b2, B-a1-c3, \dots, B-a1-h8\}$$

A disjunctive action landmark L for a state $s \in S$ is a set of operators such that for every solution for s, there exists an operator in that path that is also in L.

Definition

- A Strong Stubborn Set *SSS* for $s \in S$ if the following hold:
 - SSS contains a disjunctive action landmark for s.
 - if $op \in SSS$ and $\neg app(op, s)$ then SSS contains a necessary enabling set for op in s.
 - if $op \in SSS$ and app(op, s) then SSS contains all the operators op' for which op and op' are dependent.

Theorem

Let $s \in S$ be an active state and *SSS* be a Strong Stubborn Set for s. Then there exists an $op \in SSS$ that starts some optimal solution for s.

Proof sketch:

- > *s* active so ∃ solution $\pi = \langle op_1, \ldots, op_n \rangle$.
- > SSS contains a disjunctive landmark \implies set $(\pi) \cap SSS \neq \emptyset$.
- > Let then op in π s.t. it has the lowest inedex in π and $op \in SSS$.
- $\neg app(op, s) \implies SSS$ contains a necessary enabling set for op in $s \implies \exists op'$ comes before op and $op' \in SSS \cap set(\pi) \cap SSS \not s$.
- $> \exists op' \text{ in } \pi : op' \text{ comes before } op \text{ and } op \text{ and } op' \text{ are dependent } \implies op' \in SSS \not I.$
- > Thus moving *op* to the front of π is also an optimal solution.

- 1. Classical Planning
- 2. Strong Stubborn Set based pruning
- 3. Isabelle/HOL Implementation
- 4. Contributions & Future work

Isabelle is an interactive theorem prover.

Proofs are well defined \implies proof search is suited for automation.

Isabelle/HOL provides a higher-order logic theorem proving environment.

- > Bottom up approach.
- > 72 lemmas proven before tackling the main theorem.

```
232 Lemma
   fixes L :: "'a operator set" and pi :: "'a path"
233
shows "L \cap set pi \neq {} \Rightarrow pi \neq [] \Rightarrow first occurrence pi L \in L \cap set pi"
235 proof (induct pi)
    case Nil
236
    from this show ?case by auto
237
238 next
    case (Cons x xs)
239
240
    from this have ONE: "(x \notin L \wedge xs = []) \implies ?case" by simp
241
    from local.Cons have TWO: "(x \notin L \land xs \neq []) \implies ?case" by simp
242
     from local.Cons have THREE: "x \in L \implies ?case" by simp
243
244
     from ONE and TWO and THREE show ?case by auto
245
246 qed
```

The Isabelle/HOL proof

- 1. Classical Planning
- 2. Strong Stubborn Set based pruning
- 3. Isabelle/HOL Implementation
- 4. Contributions & Future work

- 1. Validate an important theorem about the optimality preserving property of Strong Stubborn Set based pruning.
- 2. Adapt the theory of Strong Stubborn Sets to transition systems.
- 3. Provide an Isabelle/HOL base code for future proofs.

- 1. Validate correctness of Strong Stubborn Set finding algorithms.
- 2. Validate the the correctness of the optimality preserving property in SAS^+

- 1. Validate an important theorem about the optimality preserving property of Strong Stubborn Set based pruning.
- 2. Adapt the theory of Strong Stubborn Sets to transition systems.
- 3. Provide an Isabelle/HOL base code for future proofs.

"Who fails to plan, plans to fail" proverb