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Abstract

Multiple Sequence Alignment (MSA) is the problem of aligning multiple biological sequences

in the evoluationary most plausible way. It can be viewed as a shortest path problem through

an n-dimensional lattice. Because of its large branching factor of 2n− 1, it has found broad

attention in the artificial intelligence community. Finding a globally optimal solution for

more than a few sequences requires sophisticated heuristics and bounding techniques in order

to solve the problem in acceptable time and within memory limitations. In this thesis, we

show how existing heuristics fall into the category of combining certain pattern databases.

We combine arbitrary pattern collections that can be used as heuristic estimates and apply

cost partitioning techniques from classical planning for MSA. We implement two of those

heuristics for MSA and compare their estimates to the existing heuristics.
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1
Introduction

Multiple Sequence Alignment (MSA) is the problem of aligning multiple biological sequences

by adding gaps within the sequences in such a way that corresponding letters of the sequences

are ligned up in the same column. In general, correspondence between letters is determined

by their biological similarity. MSA is mainly used in computational biology to detect rela-

tionships between organisms and how biological sequences of related species changed during

evolution.

The quality of an alignment of two sequences is typically judged by a score matrix first

introduced by Dayhoff et al. (1978), who created the popular PAM (point accepted mutation)

matrix. Other commonly used score matrices are the BLOSUM (blocks substitution matrix )

matrices (Henikoff and Henikoff, 1992). A score matrix assigns costs to each pair of letters

(including the cost of aligning a gap letter) in a column of an alignment. Biologically more

plausible alignments can be obtained using affine gap costs, that does not score gaps in a

linear fashion. Instead, extending an already existing gap costs less than opening a new gap.

The pair score is the sum of costs over each column. An optimal solution is the pairwise

alignment with minimal pair score. For multiple sequences, the pairwise alignments for all

possible pairs of sequences are summed (the sum of pairs score). The sum of pairs scoring

method is a common approach in the literature. Other methods use an iterative approach

or progressively align all sequences to one consensus sequence or use a phylogenetic tree

to align siblings to their ancestors (Wallace et al., 2006). However, most of the alternative

methods only approximate an optimal mathematical solution or find exact solutions only

for parts of the sequences. While the sum of pairs scoring method poorly compares in terms

of computational complexity and may not be the most accurate method from a biological

viewpoint, it can be better used to find mathematically exact solutions. Solving the MSA

problem with sum of pairs score has been shown to be NP-complete and its space and time

complexity depends exponentially on the number of sequences to align (Wang and Jiang,

1994).

The MSA problem can be formulated as the shortest path problem through an n-

dimensional lattice, where each dimension corresponds to one of n sequences. A path

through the whole lattice corresponds to an alignment of these sequences. In the two-

dimensional case, each move through the lattice corresponds to either adding a gap in one
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of the sequences (vertical or horizontal move) or aligning the next letter in both sequences

(diagonal move). An optimal solution is the least cost path through the whole lattice. This

formulation as a path finding problem makes the MSA problem interesting from an optimal

planning perspective. Finding globally optimal solutions to the MSA problem has been an

active research topic for the last three decades.

The dynamic programming approach from Needleman and Wunsch (1970) produces op-

timal alignments for a two-dimensional lattice. Although it can be extended to more dimen-

sions, it only works for at most three sequences in acceptable time.

In order to reduce the exponentially growing space and time complexity with the number

of sequences, Carrillo and Lipman (1988) suggested to prune the search space in a certain

way. Vertices with costs higher than a certain upper bound do not need to be considered in

the search. A simple upper bound would be any path through the whole lattice.

Ikeda and Imai (1994) first make use of the A∗ algorithm for multiple sequences also

using an upper bound. They use an estimator that sums the optimal alignment cost for

each pair of sequences. This heuristic is calculated once and can then be applied in every

state of the main search. Kobayashi and Imai (1998) improve the accuracy of this estimator

by using higher-dimensional optimal sub-alignments.

The best-first search algorithm A∗ stores child nodes in an open list. For n sequences,

MSA has a branching factor of 2n− 1. Yoshizumi et al. (2000) presented Partial Expansion

A∗(PEA∗), which does not open the child nodes if they will likely never be expanded and

return the parent node with lower priority to the open list. This way, they effectively reduce

the memory requirements of the open list.

Schroedl (2005) introduced the Iterative-Deepening Dynamic Programming (IDDP) al-

gorithm, which combines the predetermined search order from dynamic programming with

repeated searches with iteratively narrowing bounds. They effectively reduce the number of

nodes to be stored. Their algorithm can visit 4 times as many nodes as A∗.

Because IDDP can still exhaust the amount of available memory, Hatem and Ruml

(2013) propose Parallel External Partial Expansion A∗(PE2A∗). Their algorithm combines

the heuristic estimates from Kobayashi and Imai (1998) with parallel external memory

best-first search. They first could solve all instances of the popular BAliBASE Benchmark

Reference Set 1 (Thompson et al., 1999) using affine gap costs.

In this thesis, we are concerned with global optimal alignments and use the sum of pairs

scoring method. We formalize exisiting heuristics through the concept of pattern databases

(PDBs). We show, how these heuristics can be generalized to combining arbitrary non-

conflicting pattern collections. We then combine arbitrary PDB heuristics for MSA with

post-hoc optimization. To directly apply other cost partitioning techniques from classical

planning, we present a factored representation of the edges in the original search lattice of

the MSA problem. We experimentally evaluate, how these techniques compare to existing

heuristics in a best-first search environment.



2
Multiple Sequence Alignment

In this chapter, we introduce the formal definition of the Multiple Sequence Alignment

problem.

2.1 Formal Definition
Kobayashi and Imai (1998) and Lermen and Reinert (2000) define the MSA problem formally

by a family of sequences S = {s1, . . . , sn}, n ≥ 2 that shall be aligned, where each sequence

si ∈ S consists of a series of letters of length li from an alphabet Σ, e.g. Σ = {A,C, T,G}.
Alphabet Σ must not contain the reserved gap letter {−}. sij ∈ Σ refers to the j-th letter

of sequence si.

Definition 2.1.1. Given a family of sequences S = {s1, . . . , sn} over alphabet Σ. Let

Σ′ := Σ ∪ {−}. An alignment of S is a matrix An×m = (aij), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where aij ∈ Σ′ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m and after deleting all {−}, ai is exactly the

corresponding sequence si and columns with only {−} are not allowed.

The quality of an alignment is evaluated by a score matrix sub : Σ′ × Σ′ → N, which

assigns costs to each pair of letters from alphabet Σ′, including the cost for inserting the

gap letter. Aligning evolutionary similar letters in the same column leads to fewer costs.

Definition 2.1.2. Given an alignment A and score matrix sub. The pair score of two

sequences si, sj is defined as:

CAij =

m∑
k=1

sub(aik, ajk)

The sum of pairs score of alignment A is defined as:

CA =
∑

1≤i<j≤n

CAij

With this definition, each insertion or extension of a gap is treated and scored equally.

This is commonly referred to as linear gap costs, where the gap costs are proportional to

the gap length. However, one larger mutation of k successive changes in sequence naturally

occurs more likely than k single mutations at different positions. To account for this, affine
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gap costs were introduced by Altschul (1989), where insertion and extension of a gap is

distinguished. In practice, gaps are then scored depending on the alignment of the preceding

column, where lower costs are assigned to an extension of an existing gap. In the following,

we use linear gap costs.

In our experiments, we use the popular PAM250 substitution matrix, introduced by

Dayhoff et al. (1978). It scores pairs of amino acids based on the biological likelihood that

the first amino acid of that pair mutates to the second during evolution. PAM250 means

that 250 mutations per 100 amino acids have been accepted in the genetic code.

2.2 Shortest Path Problem
Ikeda and Imai (1994) formulate the MSA problem for Sequences S = {s1, . . . , sn} with

respective lengths of li with 1 ≤ i ≤ n as a shortest path problem through a directed acyclic

graph (DAG) G = (V,E), where

V = {(x1, . . . , xn) | xi = 0, . . . , li}

E =
⋃

e∈{0,1}n
{(v, v + e) | v, v + e ∈ V, e 6= 0}.

A score matrix is used to evaluate potential alignments during search in an n-dimensional

lattice between two corners. Each of the sequences are considered as one of the n lattice

dimensions. Hence, n is called the dimensionality of the MSA problem. A vertex in the

lattice is defined by its index, indicating the current position of each sequence. Vertices

are connected by edges, such that each sequence can either progress by one or maintain its

position. Edges, where all sequences maintain their position are forbidden and omitted. The

optimal alignment corresponds to the cheapest path between the two vertices at positions

(0, . . . , 0) and (l1, . . . , ln).

A C T

C

T

G

Score matrix:

A

A

C

C

T

T

G

G

0 4 2 2 3

1 4 3 3

0 6 3

1 3

0

Alignment A:

A C T

C T G

CA = 3+1+0+3 = 7

Figure 2.1: Two-dimensional optimal sequence alignment using a score matrix.

Figure 2.1 shows an example of aligning two DNA sequences 〈A,C,T〉 and 〈C,T,G〉.
From left to right, the figure shows the two-dimensional search lattice, the score matrix

and the optimal alignment with its cost. In this two-dimensional case, the edge costs are

directly given by the score matrix. A horizontal or vertical move corresponds to inserting

the gap letter in one of the sequences while progressing the other sequence. A diagonal move

progresses both sequences at the same time. The cost of the example alignment is the pair

score CA = sub(A, ) + sub(C,C) + sub(T,T) + sub( ,G) = 3 + 1 + 0 + 3 = 7.
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In a case with three or more sequences, edge costs are defined as the sum of the corre-

sponding edges induced by all pairwise projections of the alignment (the sum of pairs score).

Finding an alignment with minimal sum of pairs score (Definition 2.1.2) is an optimal solu-

tion to the MSA problem.



3
Solving MSA

In this chapter, we first describe the earliest techniques for solving optimal MSA problems.

In particular, we describe how to compute optimal alignments with dynamic programming

and A∗ with admissible heuristics. Afterwards, we formally define pattern databases for

MSA and show how previous heuristics fall into this category.

3.1 Needleman-Wunsch Algorithm
Needleman and Wunsch (1970) describe a dynamic programming algorithm for computing

optimal scores between two biological sequences s1, s2 of lengths l1 and l2. For a simple

definition of the algorithm, we use linear gap costs. The algorithm generates a zero-based

index table T (i, j) with 0 ≤ i ≤ l1 and 0 ≤ j ≤ l2 holding optimal scores for each index.

First the goal index is initialized to T (l1, l2) = 0. Then the last row and column are filled

with

T (i, l2) = T (i + 1, l2) + gap cost, for all l1 > i ≥ 0

T (l1, j) = T (l1, j + 1) + gap cost, for all l2 > j ≥ 0

The rest of the table is then filled backwards using the following formula.

T (i, j) = min


T (i + 1, j) + gap cost

T (i, j + 1) + gap cost

T (i + 1, j + 1) + sub(s1i, s2j)

Figure 3.1 shows the example from Figure 2.1 solved using the Needleman-Wunsch algo-

rithm. Table entries correspond to vertices in the search graph. The table approach allows

to get the optimal alignment as well as the costs for each position to the goal. Obtaining

the shortest path can then be done by following the cheapest neighbor from the start to the

goal node.

The algorithm can be extended to n-dimensional alignments, but its complexity of O(ln)

for n sequences of lengths l limits its practical application to dimensions of at most three.
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A C T

C 7 4 6 9

T 8 6 3 6

G 8 6 6 3

9 6 3 0

Score matrix:

A

A

C

C

T

T

G

G

0 4 2 2 3

1 4 3 3

0 6 3

1 3

0

Figure 3.1: Needleman-Wunsch score table using a score matrix.

3.2 Heuristic Search
Ikeda and Imai (1994, 1999) use A∗ (Hart et al., 1968) to solve MSA problems. A∗ is a

best-first search algorithm for graphs that maintains a priority queue of search nodes sorted

by their f -values. The f -value of a node is the sum of its g- and h-values, where the g-value

is the cost of reaching the vertex (in the search lattice) of the node from the initial vertex,

and h is a heuristic estimate of the cost of reaching the goal vertex.

A heuristic h is a function that assigns each vertex v a value h(v) that estimates the cost

of reaching the goal vertex from that vertex. A heuristic is perfect, written h∗, if h(v) is the

exact cost of reaching the goal vertex from all vertices v. It is admissible if h(v) ≤ h∗(v) for

all vertices v.

A∗ is guaranteed to find optimal solutions if the used heuristic is admissible. Hence

one central question is how to come up with informed admissible heuristics for the MSA

problem.

3.3 Pattern Databases for MSA
Ikeda and Imai (1994) suggest to use the sum of the costs of all pairwise optimal alignments

as admissible heuristic estimate for higher-dimensional alignments. We generalize this idea

and define pattern databases for MSA.

Definition 3.3.1. Let S = {s1, . . . , sn} be a family of sequences. An (ordered) subset

P ⊆ S with |P | ≥ 2 is called a pattern. The pattern database (PDB) heuristic, written

hP equals the perfect heuristic h∗ for the subproblem induced by the pattern P .

PDBs are called databases because the perfect heuristic for a subproblem is usually

computed once and stored in a simple look-up table that allows fast acces of heuristic values

during search. To access the corresponding PDB value of a vertex v on the search graph

induced by S, we project v to its corresponding vertex on the search graph induced by P

by removing all indices from v of sequences that do not appear in P . In the following, we

refer to the search graph induced by S as search graph if S refers to the original problem.

With this definition of PDBs, we can now formalize the pairwise heuristic of Ikeda and

Imai (1994).

Definition 3.3.2 (Ikeda and Imai, 1994). Given a family of sequences S = {s1, . . . , sn}, n ≥
2, let hij be the PDB for pattern {si, sj}. The pairwise heuristic for a vertex v in the
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search graph is

hpair(v) =
∑

1≤i<j≤n

hij(v)

They compute and store all hij using the algorithm by Needleman and Wunsch (1970).

They further show that hpair is admissible.

More generally, the tables computed with the Needleman and Wunsch (1970) algorithm

can be seen as the look-up table used in two-dimensional PDBs because they store perfect

heuristic values for all abstract search vertices of the subproblem. Alternatively to using dy-

namic programming, one could also use an exhaustive search version of Dijkstra’s algorithm

(Dijkstra, 1959) to compute PDBs.

Kobayashi and Imai (1998) generalize the hpair heuristic by extending it from using only

the information of two-dimensional subproblems to k-fold subproblems of sizes k ≥ 3. We

formalize their hall-k heuristic again as combination of PDBs.

Definition 3.3.3 (Kobayashi and Imai, 1998). Given a family of sequences S = {s1, . . . , sn},
n ≥ 2, let hx1,...,xk be a PDB of size k for pattern {sx1

, . . . , sxk
}. The hall-k heuristic for a

vertex v in the search graph is

hall-k(v) =
1(

n−2
k−2
) ∑

1≤x1<···<xk≤n

hx1,...,xk(v)

This heuristic combines the information of all k-fold subalignments. When chosing all

k-fold patterns out of n sequences, every sequence pair appears
(
n−2
k−2
)

times in the patterns.

Because we defined the cost function as the sum of pairs score, the overall estimate needs

to be normalized by the number of sequences appearing pairwise in the patterns in order to

ensure admissibility. They also prove that hall-k gives a tighter lower bound on the perfect

heuristic h∗ than hpair, i.e. hpair(v) ≤ hall-k(v) ≤ h∗(v) for all v ∈ V . The hall,2 heuristic is

equal to the hpair heuristic.

They define another heuristic hone-k that uses less higher-dimensional PDBs in order to

fit the heuristic in memory. They use one k-fold, one (n− k)-fold and 2-fold alignments.

Definition 3.3.4 (Kobayashi and Imai, 1998). Given a family of sequences S = {s1, . . . , sn},
n ≥ 3, let hx1,...,xk be the PDB of an arbitrary chosen pattern of size k, and hxk+1,...,xn be

the PDB of the remaining (n− k) sequences not appearing in the k-fold pattern. The hone-k

heuristic for a vertex v in the search graph is

hone-k(v) = hx1,...,xk(v) + hxk+1,...,xn(v) +

k∑
i=1

n∑
j=k+1

hxi,xj (v)

They further show that hpair(v) ≤ hone-k(v) ≤ h∗(v) for all v ∈ V . This makes sense,

because the cost of the sum of all m-fold optimal alignments is dominated by the cost of a k-

fold optimal alignment for m ≤ k when choosing the same sequences (Carrillo and Lipman,

1988). Choosing numbers of k close to 1
2n intuitively works best, because this minimizes

the space and time used to store and calculate the k-fold and (n − k)-fold heuristics. Also

note, that the overall estimate does not need to be normalized due to the fact, that the

higher-dimensional patterns are chosen to be disjunct and the 2-fold patterns consist of one

sequence of each of the two higher-dimensional patterns.
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Combining Multiple Pattern Databases

With multiple admissible heuristics available, it would be ideal to combine all heuristics

by summing their estimates. Unfortunately, the sum of heuristics is not guaranteed to be

admissible, especially if the heuristics consider overlapping parts of the problem. The trivial

solution to admissibly combine these heuristics is to use the maximum heuristic value in each

state. This selects the single most accurate estimator among the heuristics while staying

admissible. However, this approach yields a loss of all the information that other heuristics

could have contributed to the estimate.

The motivation of Cost Partitioning (CP) is to get better estimates than using the

maximum estimate of the available heuristics. The idea is to combine multiple heuristic

values by distributing operator costs between the heuristics in order to stay admissible.

Since each pattern only considers parts of the problem, more aspects of the problem can be

taken into account by combining their estimates.

In the following, we introduce non-conflicting pattern collections for MSA and show how

they can be combined to create additive heuristics for MSA. We introduce a factored repre-

sentation of operators for the MSA search lattice. Then we apply different cost partitioning

techniques to the MSA problem.

4.1 Additive Heuristics
To discuss how to sum heuristics without violating admissibility, we first define the notion

of additive heuristics.

Definition 4.1.1. A set of heuristics H = 〈h1, . . . , hn〉 for an MSA problem S over Σ is

additive if their sum is admissible, i.e., if
∑n

i=1 hi(v) ≤ h∗(v) for all vertices v of the search

graph induced by S.

In this work, we are concerned with sets of PDB. To reason about their additivity, we

need to define properties for their underlying patterns.

Definition 4.1.2. Given a family of sequences S = {s1, . . . , sn}, n ≥ 2. A pattern collec-

tion of S is a collection P = {P1, . . . , Pm} where Pi ⊆ S for all 1 ≤ i ≤ m. A pair Pi, Pj of
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patterns in P conflict if |Pi ∩ Pj | > 1. P is called non-conflicting if no pair of elements

of P conflict, otherwise it is called conflicting.

Non-conflicting pattern collections ensure that no pair of sequences is contained in more

than one pattern. It is easy to see that non-conflicting pattern collections are additive

because costs are always defined for pairs of sequences, and no pair of sequences is contained

in more than one pattern.

Theorem 1. The pattern collection heuristic hP is admissible when given a non-conflicting

pattern collection.

Proof. Given a family of sequences S = {s1, . . . , sn} and any alignment A for S and let CAij
be the cost function for 2 sequences si, sj . Given a pattern collection P = {P1, . . . , Pm} for

S and let Pki be the i-th sequence of pattern k. If P is non-conflicting, written |Pi∩Pj | < 2

for all 1 ≤ i < j ≤ m, then admissibility follows from the requirement:

∑
1≤i<j≤n

CAij ≥
m∑

k=1

∑
1≤i<j≤|Pk|

CAPkiPkj

With non-conflicting pattern collections we can now define a more general version of the

heuristics from Kobayashi and Imai (1998) that is admissible for arbitrary non-conflicting

pattern collections.

Definition 4.1.3. Given a family of sequences S = {s1, . . . , sn}, n ≥ 2 and a pattern

collection P = {P1, . . . , Pm}. Let hPi be the PDB for pattern Pi. The pattern collection

heuristic hP for a position v in the search graph is

hP(v) =

m∑
i=1

hPi(v)

The pattern collection heuristic equals hpair, if P contains exactly all possible pairwise

patterns of S.

4.2 Canonical PDB Heuristic
If a pattern collection is conflicting, summing PDB values may violate admissibility. How-

ever, such a collection may still exhibit parts that are non-conflicting. The canonical PDB

heuristic (Haslum et al., 2007) exploits such non-conflicting subsets optimally. To do so,

it computes the maximal non-conflicting subsets of the collection and adds heuristic values

within each subset and maximizes over all resulting summed heuristic values.

Definition 4.2.1. Given a family of sequences S = {s1, . . . , sn}, n ≥ 2 and a pattern

collection P. Let MNS be the maximal (w.r.t. set inclusion) non-conflicting subsets of P.

The canonical PDB heuristic for a vertex v of the search graph is

hCAN(v) = max
S∈MNS

∑
P∈S

hP (v).
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4.3 Post-Hoc Optimization
Pommerening et al. (2013) show that even better heuristic values can be derived from

conflicting pattern collections by applying the so-called post-hoc optimization technique.

The idea is to constrain the component heuristics based on their conflicts. Then linear

programming is used to solve the constrained problem.

In order to identify the constraints of the components we define strictly conflicting

pattern collections.

Definition 4.3.1. A pattern collection P = {P1, . . . , Pm} is called strictly conflicting if

|
⋂m

i=0 Pi| > 1.

This means that all elements of the pattern collection conflict pairwise on the same

pair of elements. Strictly conflicting pattern collections can be seen as the complement to

maximal non-conflicting subsets of a pattern collection used in the canonical PDB heuristic

(Definition 4.2.1). Pommerening et al. (2013) show that the dual of the linear program

solved for the post-hoc optimization heuristic equals the canonical heuristic value when

constraining the LP to integer solutions. With the notion of strictly conflicting pattern

collections we can now define the hPHO heuristic for MSA.

Definition 4.3.2. Given a family of sequences S = {s1, . . . , sn} and a pattern collection

P = {P1, . . . , Pm}. Let hPi be the PDB of pattern Pi ∈ P. Let 〈ω1, . . . , ωm〉 be a solution to

the linear program that maximizes the post-hoc optimization heuristic hPHO(v) for vertex

v in the search graph:

hPHO(v) =

m∑
i=1

ωi · hPi(v)

s.t.
∑

i:Pi∈S′

ωi ≤ 1 for all strictly conflicting pattern collections S′ ⊆ P

s.t. 0 ≤ ωi ≤ 1 for all Pi

For each pair of sequences that appears in multiple patterns, we need to make sure

that the corresponding weights of the affected patterns add up to at most one. To get all

strictly conflicting pattern collections in practice, we create a bucket for each possible pair

of sequences. We then store identifiers of patterns that contain a certain pair of sequences

in their corresponding bucket. Then we use IBM ILOG CPLEX1 to create the constraints

and for solving the linear program. We need to solve the linear program for every vertex

in the search graph we encounter during search. Comparing to the heuristics considered so

far, this leads to a lot of time being spent in the search to compute the heuristic value.

As we later confirm in our experiments, the estimate of hall,3 is at least as good as

the estimate of hPHO. Only if the pattern collection used for post-hoc optimization is

chosen to consist of exactly all possible 3-fold alignments, its outcome is the same as hall,k.

Nonetheless, even in this case hPHO will never give better estimates than hall,k. The reason

lies in the interdependencies of the patterns.

1 IBM ILOG CPLEX Optimization Studio Version 12.8.0, http://www-01.ibm.com/support/docview.wss?
uid=swg24044295

http://www-01.ibm.com/support/docview.wss?uid=swg24044295
http://www-01.ibm.com/support/docview.wss?uid=swg24044295
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Theorem 2. hall,k dominates hPHO.

Proof sketch. Given four sequences of length one S = {s1, s2, s3, s4} and a pattern collection

P = {P1 = {s1, s2, s3}, P2 = {s1, s2, s4}, P3 = {s1, s3, s4}, P4 = {s2, s3, s4}}. The require-

ment for hPHO to give a better estimate than hall,k is, that the estimate of one pattern is

significantly higher than all others. We try to achieve this for P1 by chosing a score matrix,

where the costs of aligning any sequence with s4 has the minimal cost of 0 and aligning all

other pairs or adding a gap costs 1. This results in the following intial heuristic estimates

for start vertex s: hP1(s) = 3, hP2(s) = 1, hP3(s) = 1, hP4(s) = 1. The linear program

maximizes the estimate to hPHO(s) = 1 ·3 + 0 ·1 + 0 ·1 + 0 ·1 = 3 = 3+1+1+1
2 = hall,3(s).

4.4 A Factored Representation of MSA with Operators
To directly apply cost partitioning techniques from planning, we present a factored rep-

resentation of MSA with operators in the following. Consider a family of sequences S =

{s1, . . . , sn}, n ≥ 2. In this representation, each edge of the search graph can be factored as

a set of operators. In particular, for each pair of sequences si, sj ∈ S, we define operators

oi,j〈x,y〉→〈x′,y′〉 for each edge 〈x, y〉 → 〈x′, y′〉 of the search graph induced by {si, sj}.
This set of operators for S, written O, contains the basic factors that we can use to

represent edges in search graphs of higher dimensions, i.e., over at least three sequences.

Each edge in such a search graph can be represented as a combination of operators from

the pairs over all sequences. In particular, each pair of sequences contributes exactly one

operator if the edge in the search graph changes at least one of the sequences of that pair,

and no operator otherwise.

Given n sequences, we formalize all factored operators as O = {oi,j〈x,y〉→〈x′,y′〉 | 1 ≤
i < j ≤ n, 0 ≤ x ≤ li, 0 ≤ y ≤ lj}.

An operator oi,j〈x,y〉→〈x′,y′〉 affects heuristic hP if the pattern P contains the sequences

si, sj . We write aff(hP ) = {o ∈ O | o affects hP }.
As an example, consider the edge 〈3, 3, 5〉 → 〈4, 3, 6〉 of a three-dimensional search

graph. This edge has the factored representation consisting of the following 3 operators:

{o1,2〈3,3〉→〈4,3〉, o
1,3
〈3,5〉→〈4,6〉, o

2,3
〈3,5〉→〈3,6〉}.

One advantage of this factored representation is that we can now associate a path-

independent cost with each operator. The cost of operator c(oi,j〈x,y〉→〈x′,y′〉) is defined by the

entry of the score matrix at index sub(six′ , sjy′) because applying the operator means to

align exactly the nucleobase pair at position x′, y′.

While this formalization requires a large number of operators, it is still much smaller

than defining a single operator for each edge in the original search graph, because intuitively

speaking, the number of operators is effectively reduced from all possible edges in the lattice

to all edges on its 2-faces.

With this formalization, we can now compute PDB heuristics using specific cost functions

for operators that may result in different values than using the original score matrix.

Definition 4.4.1. Given a family of sequences S = {s1, . . . , sn}, n ≥ 2 and let P ⊆ S be a

pattern for S. Let further O be the set of operators for S as above. Let c be a an arbitrary
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cost function for O. The PDB heuristic hP,c is the perfect heuristic for the subproblem

induced by P , however using cost function c for computing entries in the PDB.

4.5 Cost Partitioning
We are now ready to adapt cost partitioning techniques from classical planning to MSA

problems, using the notion of operators and operator cost functions. The following is based

on notation by Seipp et al. (2017).

Definition 4.5.1. Given a family of sequences S = {s1, . . . , sn}, n ≥ 2 and let P =

〈P1, . . . , Pm〉 be a pattern collection of S. Let O be the operators for S and c be the cost

function induced by the score matrix.

A cost partitioning over P is a tuple C = 〈c1, . . . , cn〉 of cost functions whose sum is

bounded by c :
∑n

i=1 ci(o) ≤ c(o) for all o ∈ O. The cost-partitioned heuristic hC is defined

as hC(v) :=
∑n

i=1 h
Pi,ci(v) for all vertices v of the search graph over S.

While we did not need the factored operator representation to define post-hoc optimiza-

tion, it still can be seen as a form of cost partitioning over the original PDBs, because it

partitions costs among them such that every pair of sequences occuring in the PDBs receives

a combined weight of at most one.

4.6 Greedy Zero-One Cost Partitioning
Greedy zero-one cost partitioning (Haslum et al., 2005; Edelkamp, 2006) assigns the full

cost of each operator to at most one of the available PDBs affected by that operator. When

multiple PDBs are affected by an operator it greedily choses the first PDB by a predefined

ordering to assign the full costs to.

Definition 4.6.1 (Seipp et al., 2017). Given a family of sequences S = {s1, . . . , sn}, n ≥ 2

and let P = 〈P1, . . . , Pm〉 be a pattern collection of S and let Ω(P) denote the set of orders

of P consisting of all of its permutations. Let hPi be the PDB of pattern Pi ∈ P. For a

given order ω = 〈hP1 , . . . , hPm〉 ∈ Ω(P), the greedy zero-one cost partitioning is the

tuple C = 〈c1, . . . , cm〉 where

ci(o) =

c(o) if o ∈ aff(hPi) and o 6∈ ∪i−1j=1aff(hPj )

0 otherwise

for all o ∈ O. We write hGZOCP
ω for the heuristic that is cost-partitioned by greedy zero-one

cost partitioning for order ω.

Unlike post-hoc optimization, we do not need to recompute the heuristic value in each

state when using zero-one cost partitioning. Instead, the heuristic is precomputed once

before search and then applied to every state.

For every pair of sequences appearing in the patterns, we store all operators in a two-

dimensional table. We then create the PDBs in a given order by using these operators.
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After creating each PDB, all operators used in this PDB are consumed and set to 0. The

next PDB using the operators of a pair of sequences already consumed can then be added

admissibly to the overall estimate.

4.7 Saturated Cost Partitioning
Seipp and Helmert (2014) proposed saturated cost partitioning to overcome some of the

shortcomings from greedy zero-one cost partitioning. In particular, instead of assigning the

full costs to a single operator it can also assign parts of the full costs to one component until

it is saturated while the remainder can contribute to other components. Like greedy zero-one

cost partitioning, saturated cost partitioning choses an order in which the components are

considered.

The saturated cost function for the heuristic hP and cost c, written saturate(hP , c)

is the minimal cost function c′ ≤ c with hc′(v) = hc(v) for all vertices v in the search graph.

Definition 4.7.1 (Seipp et al., 2017). Given a family of sequences S = {s1, . . . , sn}, n ≥ 2

and let P = 〈P1, . . . , Pm〉 be a pattern collection of S. Given an order ω = 〈hP1 , . . . , hPm〉 ∈
Ω(P), the saturated cost partitioning C = 〈c1, . . . , cn〉 and the remaining cost functions

〈c̄0, . . . , c̄n〉 are defined by

c̄o = c

ci = saturate(hPi , c̄i−1)

c̄i = c̄i−1 − ci

We write hSCP
ω for the heuristic that is cost-partitioned by saturated cost partitioning for

order ω.
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Figure 4.1: Saturated and remaining operator costs for a two-dimensional PDB.
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We show an example of how the saturated and remaining costs for a two-dimensional

PDB look like in Figure 4.1. After computing the optimal heuristic values for each state

of the PDB with the score matrix shown in Figure 3.1, each operator is assigned the new

saturated cost. The saturated cost for each operator is the least possible cost greater than

0 without changing the heuristic outcome of the PDB. These costs can not be exploited by

this PDB and can be assigned to the next PDB affected by the same operators.

4.8 Uniform Cost Partitioning
Katz and Domshlak (2008) proposed uniform cost partitioning. Unlike greedy zero-one and

saturated cost partitioning, no ordering is needed to compute the heuristic, because each

affected component is assigned an equal part of the operator cost.

Definition 4.8.1 (Seipp et al., 2017). Given a family of sequences S = {s1, . . . , sn}, n ≥ 2

and let P = 〈P1, . . . , Pm〉 be a pattern collection of S. The uniform cost partitioning is

the tuple C = 〈c1, . . . cn〉, where for all o ∈ O

ci(o) =


c(o)

|Pi∈P|o∈aff(hPi )| if o ∈ aff(hPi)

0 otherwise.

We write hUCP for the heuristic that is cost-partitioned by uniform cost partitioning.

The hall,k heuristic (Definition 3.3.3) also uses a simple form of uniform cost partitioning,

where the cost functions of the PDBs remain unmodified. The difference is, that hall,k uses

PDBs instead of operators as the smallest components to partition the costs among.



5
Experiments

In this chapter, we evaluate the estimates of some of the heuristics from chapter 4 and

compare them to the heuristics shown in chapter 3 (Ikeda and Imai, 1994; Kobayashi and

Imai, 1998).

5.1 Experimental Setup
For all our experiments, we use the MSASolver2 program by Matthew Hatem as a basis.

MSASolver is an in-memory best-first search solver for MSA written in Java. Included

is the BAliBASE Benchmark Reference Set 1 (Thompson et al., 1999) and the PAM250

(Dayhoff et al., 1978) score matrix. The 82 instances in the benchmark set range from 3

to 6 sequences with sequence lengths between 58 and 993. It implements 2-fold and 3-fold

sub-alignments computed with dynamic programming using affine gap costs and the hpair

and hone,3 heuristics, that combines these sub-alignments in their heuristic estimates.

We implemented the hall,3, hPHO and hGZOCP
w heuristics for MSASolver. For simplicity

and memory reasons, we modified the sub-alignments to use linear gap costs. This reduces

the required memory to store a 3-fold alignment by a factor of 23 − 1, because we do not

need to store the information, whether a gap is already existing for each parent state. This

allows us to store the hall,3 heuristic for 73 of the 75 easiest instances.

All experiments were run on an Intel(R) Core(TM) i5-6600K CPU @ 3.5GHz machine

with 16GB of main memory.

5.2 Choosing Patterns
The estimate of our implemented heuristics depend heavily on the patterns we choose.

We can intuitively see, that the information of all pairs of sequences should be used to

maximize the heuristic outcome. Because of memory limitations, the highest dimension of

sub-alignments we use is three.

The existing heuristics from chapter 3 essentially use certain patterns. In particular,

2 https://github.com/matthatem/MSASolver

https://github.com/matthatem/MSASolver
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hpair uses all possible 2-fold patterns, hone,3 uses one or two (depending on the number of

sequences) non-conflicting 3-fold patterns and all remaining 2-fold patterns and hall,3 uses

all possible 3-fold patterns. We use the same patterns that each of the existing heuristics

uses and compare them to our implemented heuristics. Additionally, we evaluate how our

heuristics perform on other conflicting pattern collections than the pattern collection used

for hall,3.

5.3 Results
Table 5.1 shows the initial heuristic values for instance 1aab ref1 for each implemented

heuristic given the pattern collections the existing heuristics implicitly use. Results for all

instances can be found in Appendix A.

1aab ref1.seq (4 sequences)

Pattern collection in order ω hpair(s) hone,3(s) hall,3(s) hPHO(s) hGZOCP
ω (s)

{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3} 14179 - - 14179 14179

{0, 1, 2}, {0, 3}, {1, 3}, {2, 3} - 14199 - 14199 14199

{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3} - - 14302 14302 14199

Table 5.1: Initial heuristic estimate comparison for the instance 1aab ref1.seq

5.3.1 Greedy Zero-One Cost Partitioning
We find that greedy zero-one cost partitioning can only exploit higher-dimensional patterns,

if none of their operators have already been consumed by an earlier component in the order

ω. When we choose all possible 3-fold alignments for our pattern collection, all operators

o0,1, o0,2 and o1,2 are consumed by the first PDB induced by {0, 1, 2}. The second again

uses o0,1 resulting in its remaining estimate being the same as it would be using the sum of

the PDBs induced by {0, 2} and {1, 2}. The third pattern only contributes the estimate of

the PDB induced by {2, 3} and the last pattern does not contribute anything, because all

operators have already been used. In this case, hGZOCP
w gives the same estimate as using

just one 3-fold alignment and the remaining 2-fold alignments. In the latter case, the best

heuristic estimate hGZOCP
w can achieve is the same as hone,3 depending on the order ω. The

same behaviour can be observed, when a 2-fold pattern is used before a conflicting 3-fold

PDB. In this case, the estimate is the same as it would be just using all 2-fold PDBs.

5.3.2 Post-Hoc Optimization
Post-hoc optimization gives the best possible combination and cost partitioning among the

PDBs for a given abstraction. When no pattern conflicts, the linear program does assign

weights of one for every component resulting in the same estimate that hpair generates.

When using only one 3-fold PDB, the best possible outcome is the same estimate that
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hone,3 generates. All 2-fold PDBs that conflict with the 3-fold PDB are assigned weights of

zero and do not contribute to the estimate. When we choose all possible 3-fold alignments

as our pattern collection the outcome is the same as hall,3. We show different heuristic

outcomes when using different pattern collections in Table 5.2.

We noticed, that when using up to two 3-fold PDBs, the linear program optimizes the

weights to either 1 or 0. When using three or more 3-fold PDBs, it weights every PDB

by either 0.5 or 0. We think this might be an implicit property of the given optimization

problem.

1aab ref1.seq (4 sequences)

#3-fold Pattern collection hPHO(s)

1

{0, 1, 2}, {0, 3} 9466

{0, 1, 2},���{0, 1},���{0, 2},���{1, 2}, {0, 3}, {1, 3}, {2, 3} 14199

{0, 1, 2}, {0, 3}, {1, 3}, {2, 3} 14199

2

{0, 1, 2},����{0, 1, 3},���{0, 1} 7186

{0, 1, 2},����{0, 1, 3}, {2, 3} 9466

����{0, 1, 2}, {0, 1, 3}, {1, 2},���{1, 3}, {2, 3} 11849

{0, 1, 2},����{0, 1, 3}, {0, 3}, {1, 3}, {2, 3} 14199

3

{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2} 11951

{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2}, {1, 3} 13119

{0, 1, 2}, {0, 1, 3}, {0, 2, 3},���{0, 1},���{0, 2},���{0, 3}, {1, 2}, {1, 3}, {2, 3} 14259

{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2}, {1, 3}, {2, 3} 14259

4 {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3} 14302

Table 5.2: Initial heuristic estimates of hPHO for the instance 1aab ref1.seq. Crossed out

patterns are assigned weights of 0 by the linear program
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Conclusion

In this master thesis, we looked into the Multiple Sequence Alignment (MSA) problem. We

showed how existing heuristics can be interpreted as pattern collection heuristics, and how

arbitrary pattern collections for MSA can be used in cost partitioning heuristics. We imple-

mented post-hoc optimization and greedy zero-one cost partitioning for MSA and evaluated

how they perform compared to the existing heuristics. We introduced a factored representa-

tion for the operators in the MSA search lattice such that cost partitioning techniques from

classical planning can be applied to MSA.

We conclude, that hGZOCP
w has no benefit to the existing heuristics. While its advantage

over the existing heuristics is, that we can use arbitrary pattern collections and do not need to

identify conflicting patterns, it never performs better than the existing hone,k heuristic. Also,

identifying the conflicts can be done in a precomputation step with minimal computational

effort and then be used in other heuristics, like hPHO.

While the post-hoc optimization heuristic performs better in most cases, the additional

heuristic information comes with some backdraws. Firstly, the heuristic requires the linear

program to recalculate the optimal component weights in every search step leading to a large

overhead in the main search. Secondly, sometimes choosing pattern collections with more

3-fold PDBs lead to the expensively computed PDB not being considered at all, because the

linear program decides, it can not contribute to the estimate based on the constraints.

6.1 Future Work
It would be interesting to implement and evaluate other cost partitioning techniques for

MSA. Because choosing a good pattern collection by hand seems not to be easy for post-hoc

optimization, one could generate and choose PDBs automatically (Haslum et al., 2007).

The merge-and-shrink heuristic (Dräger et al., 2009; Helmert et al., 2014) is another ab-

straction heuristic, that could make use of the factored operator representation. It would

be interesting to apply it to the MSA problem.
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A
Appendix

Instance hpair(s) hone,3(s) hall,3(s)

1aab 14179 14199 14302

1aboA 22380 22496 22664

1ac5 86117 86447 86748

1ad2 39202 39268 39320

1ad3 78476 78542 78663

1adj 75774 75822 75950

1aho 19202 19260 19320

1ajsA 75432 75930 76287

1amk 73200 73246 73332

1ar5A 35262 35312 35351

1aym3 43912 43980 44155

1bbt3 61648 61792 62343

1bgl 180887 181241 -

1cpt 80050 80522 80846

1csp 19740 19740 19762

1csy 32208 32250 32358

1dlc 109189 109443 109721

1dox 17510 17528 17565

1eft 73291 73391 73603

1ezm 87452 87462 87608

1fieA 122542 122700 122866

1fjlA 31976 32010 32112

1fkj 31454 31484 31584

1fmb 17492 17492 17513

1gdoA 47842 48066 48236

1gowA 89625 89971 90301

1gpb 235778 235928 -



Appendix 23

1gtr 127932 128024 128304

1havA 62804 63020 63550

1hfh 38172 38208 38329

1hpi 13685 13737 13766

1idy 18706 18746 18822

1krn 22980 22980 23021

1ldg 59604 59704 59812

1led 43397 43459 43608

1lvl 86616 86956 87493

1mrj 48099 48187 48266

1ped 35472 35950 35950

1pfc 34946 34980 35084

1pgtA 40054 40164 40288

1pii 48724 48786 48990

1pkm 83513 83689 83844

1plc 28218 28232 28312

1ppn 63216 63270 63339

1pysA 45391 45471 45571

1r69 14315 14393 14438

1rthA 159296 159336 159624

1sbp 84596 84840 85506

1sesA 133794 133966 134291

1tgxA 11147 11165 11259

1thm 49975 49991 50058

1tis 83460 83560 83739

1ton 74946 75100 75450

1tvxA 13021 13139 13211

1ubi 17125 17221 17287

1uky 41520 41792 42030

1wit 32572 32626 32788

1ycc 21054 21092 21240

1zin 38324 38382 38413

2cba 79214 79382 79818

2fxb 16354 16358 16362

2hsdA 50115 50335 50604

2mhr 33280 33292 33346

2pia 53071 53347 53608

2trx 18404 18456 18632

3cyr 19544 19614 19666

3grs 46819 46991 47252

3pmg 98190 98342 98449
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451c 26278 26302 26511

4enl 38084 38562 38562

5ptp 69548 69630 69721

9rnt 29072 29078 29105

actin 113450 113508 113666

glg 147708 147930 148536

kinase 90060 90352 90985

Table A.1: Initial heuristic estimates for the BAliBASE Reference Set 1
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