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Abstract

Probabilistic planning is a research field that has become popular in the early 1990s. It aims
at finding an optimal policy which maximizes the outcome of applying actions to states in
an environment that feature unpredictable events. Such environments can consist of a large
number of states and actions which make finding an optimal policy intractable using classical
methods. Using a heuristic function for a guided search allows for tackling such problems.
Designing a domain-independent heuristic function requires complex algorithms which may
be expensive when it comes to time and memory consumption.

In this thesis, we are applying the supervised learning techniques for learning two
domain-independent heuristic functions. We use three types of gradient descent methods:
stochastic, batch and mini-batch gradient descent and their improved versions using momen-
tum, learning decay rate and early stopping. Furthermore, we apply the concept of feature
combination in order to better learn the heuristic functions. The learned functions are pro-
vided to Prost, a domain-independent probabilistic planner, and benchmarked against the
winning algorithms of the International Probabilistic Planning Competition held in 2014.
The experiments show that learning an offline heuristic improves the overall score of the
search for some of the domains used in aforementioned competition.
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1
Introduction

Probabilistic planning has become a popular research field in the AI community since the
early 1990s. It is applied in environments that feature unpredictable events. An environment
is defined by a set of states, a set of actions and a reward function that maps states to actions.
An environment features unpredictable events if each action leads from one state to one or
more states with a given probability and a given outcome. The aim of probabilistic planning
is finding a mapping from states to actions, which is called a policy. A policy that maximizes
the outcome of taking actions is called an optimal policy. For a given starting state, finding
an optimal policy is done through the exploration of the search space.

Environments that feature a large number of states and actions make the problem of
finding an optimal policy intractable using classical methods due to resource constraints
such as time and memory. Using heuristic search algorithms allows for tackling planning
problems that include a large number of states and actions. It is based on the idea of using
a heuristic function for guided exploration of the search space by predicting the outcome of
actions while trading optimality for speed. Domain-dependent planners tend to use hand-
crafted heuristic functions. Deep Blue [1] was one of the algorithms that used a highly
complex hand-crafted heuristic function that contributed to the first ever win of a machine
over a human professional player in chess. Silver et. all [2] in 2016 presented AlphaGo,
an algorithm that uses artificial neural networks, a subset of machine learning, to learn a
heuristic function for the traditional game Go. Due to the enormous search space of Go,
AlphaGo’s success in beating world’s best professional Go players shows that the idea of
using machine learning techniques for learning a heuristic function can be highly successful.
However, domain dependence induces inapplicability of one heuristic function to different
domains.

Generation of a domain-independent heuristic function requires complex algorithms
which may result in expensive algorithms when it comes to time and memory consumption.
In this thesis, we implement learning of heuristic functions for domain independent proba-
bilistic planning tasks using machine learning techniques. We use gradient descent methods
to approximate two different heuristic functions. Furthermore, we optimize the gradient de-
scent by using the concepts of momentum, learning decay rate and early stopping. In order
to learn the heuristic more accurately, we apply the concept of feature combination. We
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compare the results against the winning algorithm of the International Probabilistic Plan-
ning Competition (IPPC) held in 2014 and showcase the improved performance for certain
domains.

This thesis is divided into five chapters. In the first chapter, we introduce the theoretical
background needed for defining a planning task using the model of Markov Decision Process
as our state space. Chapter 3 is the main contribution of this thesis where we introduce
machine learning as a concept and showcase how we applied supervised learning to learn
offline heuristic functions. In chapter 4 we evaluate the results by running experiments on
120 different problem setups including 12 different domains and 10 different instances of
each of the domains used at the IPPC 2014. In the last chapter of this thesis, we conclude
the work and provide suggestions for future work.



2
Background

This chapter will introduce the theoretical background needed to present the methods used
throughout this thesis. We formally define the Markov Decision Processes (MDPs) and
introduce the Trial-based Heuristic Tree Search (THTS).

2.1 Markov Decision Process
One of the approaches in modeling the problem of planning under uncertainty is using

the Markov decision processes (MDPs) [3]. The earliest definition of MDPs goes at least
back to the work of Bellman [4]. Here, we will use the notations from the work of Keller [5]
and adapt it for the use in this thesis.

Definition 2.1.1 (Markov Decision Process). A MDP is a mathematical framework defined
by a 6-tupleM = 〈S,A, T ,R, H, s0〉 where we have:

• S – the finite set of states

• A – the finite set of actions

• T : S ×A× S → [0, 1] – the transition function

• R : S ×A → R – the reward function

• H ∈ N – the finite horizon

• s0 ∈ S – the initial state

where T gives the probability PT [s′|s, a] that applying an action a ∈ A in state s ∈ S leads
to state s′ ∈ S. R represents the reward given when action a ∈ A is applied in state s ∈ S.

Definition 2.1.2 (Policy). For a given MDPM = 〈S,A, T ,R, H, s0〉 a policy is a mapping
π : S × {1, ...,H} → A.

Definition 2.1.3 (Value functions). Let M = 〈S,A, T ,R, H, s0〉 be a MDP, s ∈ S a state
and π a policy. The state-value Vπ(s, d) of s under π with d steps to go is defined as
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Vπ(s, d) = Qπ(s, π(s, d))

where the action-value Qπ(s, π(s, d)) under π is defined as

Qπ(s, a) =

R(s, a) +
∑
s′∈S(PT [s′|s, a] · Vπ(s′, d− 1)) , d > 0

R(s, a) , otherwise

for all state-action pairs (s, a).

s0

a3a0

s1

a1

a2 s2

a0a1

4

1/3

2/3

3
1

5 1

2

1/4

3/4

3

1

4

2/3

1/3

Figure 2.1: Example of a MDP with 3 states and 2 actions.

Choosing an optimal policy is the core problem of MDPs. Since the number of policies
in a MDP is in O(|A|(|S|·H)), the problem of finding an optimal policy is intractable for
MDPs with a large number of states and actions. The Bellman Optimality Equation [4]
describes the optimal policy.

Definition 2.1.4 (Optimal policy). Let the Bellman optimality equation for a state s ∈ S
be a set of equations that describe V ∗(s, d), where

V ∗(s, d) = maxa∈AQ∗(s, d, a)

Q∗(s, d, a) =

R(s, a) +
∑
s′∈S(PT [s′|s, a] · V ∗(s′, d− 1)) , d > 0

R(s, a) , otherwise

A policy π∗ is an optimal policy if π∗ ∈ arg maxa∈AQ∗(s, d, a) for all s ∈ S

Example 2.1.1. Figure 2.1 showcases a simple MDP where we have S = {s0, s1, s2} and
A = {a0, a1, a2, a3}. Taking an action a ∈ A in state s ∈ S is rewarded with the value in
the orange square, and it leads from s to a successor state with the given probability. An
example policy is "always pick an action with the maximum reward", i.e. π(s0, d) = a1,
π(s1, d) = a2, π(s2, d) = a1, for any d. If the horizon is H = 4 and we set the starting state
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s0, we have different outcomes due to the probabilistic property of action outcome. The best
case scenario is the following sequence s0 → a1 → s1 → a2 → s2 → a1 → s1 → a2 → s2

with total reward of 18 while one of the worst case scenarios results in the sequence s0 →
a0 → s0 → a0 → s0 → a0 → s0 → a0 → s0 and total reward of 12.

Depending on the domain, MDPs can become huge in terms of the number of states.
Enumerating states and keeping track of them becomes hard. In order to define a state in
a different way, we define a finite-domain variable. Usage of finite-domain variables allows
for a compact representation of a large number of states.

Definition 2.1.5 (Finite-domain variable). A finite-domain variable is a mathematical
object v, associated with a finite set of values, the domain Dv of v. The set D+

v := Dv∪{⊥}
is called the extended domain of v, where ⊥ /∈ Dv is the undefined value.

Definition 2.1.6 (State). A partial variable assignment over a finite set of variables
V is a mapping s : V → ∪v∈VD+

v such that for every finite-domain state variable v ∈ V, s[v]

is defined in D+
v . The scope of s is the set of variables where s does not have the undefined

value ⊥; it is denoted as vars(s) := {v ∈ V|s[v] 6= ⊥}. A partial variable assignment s is
called a state iff vars(s) = V.

Definition 2.1.7 (Fact). A fact is a tuple 〈v, d〉 where v ∈ V and d ∈ Dv. We define
the set of all facts as F = {〈v, d〉|v ∈ V ∧ d ∈ Dv} and the set of facts in state s as
F(s) = {〈v, d〉|v ∈ V ∧ d ∈ Dv ∧ s[v] = d} ⊂ F where s ∈ S.

(p, p)

a3a0

(p, q)

a1

a2 (q, q)
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Figure 2.2: Example of MDP with 3 states and 2 actions.

Definition 2.1.8 (Planning task). A planning task is a 4-tuple T = 〈V,A, H, s0〉 where:

• V – the finite set of finite-domain variables v with domain Dv

• A – the finite set of actions. An action a ∈ A is a tuple 〈effecta, rewarda〉 where



Background 6

– effecta – is a probability distribution over partial variable assignment {(pai , eai )}ni=1

where pai is a probability, eai is a partial variable assignment and
n∑
i=1

pai = 1

– rewarda – the reward of applying action a

• H ∈ N – the finite horizon

• s0 ∈ V – the initial state

The application of a partial variable assignment ea to a state s ∈ S is the state s′ ∈ S
where

s′[v] =

s[v], if e[v] = ⊥

e[v], otherwise
(2.1)

for all v ∈ vars(s′).

Definition 2.1.8 enables us to formalize the problem we are trying to solve. A planning
task T = 〈V,A, H, s0〉 induces MDPM = 〈S,A, T ,R, H, s0〉 in notation TM where:

• V induces set of states S = DVv

• R(s, a) = rewarda for a ∈ A and all s ∈ S

• T (s, a, s′) =
∑

(pa,ea)∈effecta
pa where pa is the probability that applying partial variable

assignment ea in state s results in state s′

Example 2.1.2. Let us describe the Example 2.1.1 by using definition 2.1.8. We define
set of variables V = {v0, v1} and domain Dv = {p, q}. In Figure 2.2 we have a factored
representation of states states s0 = [p, p], s1 = [p, q] and s2 = [q, q]. We have set of actions
A = {a0, a1, a2, a3} defined in tuples:

• a0 = 〈effecta0 , rewarda0〉

– effecta0 = {(ea01 , pa01 )} where ea01 = {v0 = ⊥, v1 = ⊥} and pa01 = 1

– rewarda0 = 3

• a1 = 〈effecta1 , rewarda1〉

– effecta1 = {(ea11 , pa11 ), (ea12 , pa12 )} where

∗ ea11 = {v0 = p, v1 = q} and pa11 = 2/3

∗ ea12 = {v0 = p, v1 = p} and pa12 = 1/3

– rewarda1 = 4

• a2 = 〈effecta2 , rewarda2〉

– effecta2 = {(ea21 , pa21 )} where ea21 = {v0 = q, v1 = q} and pa21 = 1

– rewarda2 = 5

• a3 = 〈effecta3 , rewarda3〉
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– effecta3 = {(ea31 , pa31 ), (ea32 , pa32 )} where

∗ ea31 = {v0 = q, v1 = ⊥} and pa31 = 3/4

∗ ea32 = {v0 = ⊥, v1 = p} and pa32 = 1/4

– rewarda3 = 2

From Example 2.1.1 we know what the best case scenario for applying policy "always pick
an action with the maximum reward" is. In terms of effects, the best case scenario looks
like this: (p, p)→ ea11 → (p, q)→ ea21 → (q, q)→ ea11 → (p, q)→ ea21 → (q, q). Furthermore,
from Definition 2.1.7 we have F(s0) = {〈v0, p〉, 〈v1, p〉} as the set of facts in state s0 and a
similarly we derive a set for each of the states in S.

2.2 Trial-based Heuristic Tree Search
Trial-based Heuristic Tree Search (THTS) is a framework that can model different ap-

proaches for solving finite horizon MDPs. THTS operates a search tree, which consists
of two types of nodes: decision nodes and chance nodes. A decision node is a 4-tuple
noded = 〈s, d, V̂ , n〉 where s ∈ S represents a state, d ≤ H ∈ N represents number of
steps to go, V̂ ∈ R state-value estimate and n the number of times noded was visited. A
chance node is a 5-tuple nodec = 〈s, d, a, Q̂, n〉 where s ∈ S represents a state, d < H ∈ N
represents number of steps to go, a ∈ A an action, Q̂ ∈ R action-value estimate and n

is the number of times nodec was visited. V̂ and Q̂ are estimates of value functions from
Definition 2.1.3. THTS is split into five parts: heuristic function, backup function, action
selection, outcome selection and trial length. Since THTS supports modeling many different
approaches, we will describe only the parts of the framework we use in this thesis. For more
details about THTS, consult the work of Keller and Helmert [6].

The heuristic function is used in the expansion phase. Unvisited chance nodes are initial-
ized using a heuristic function h : S ×A → R and added to the search tree.

The backup function updates nodes based on the values collected from one or more of
their successor nodes. To deal with the problems that include a large number of outcomes,
the decomposed representation of chance nodes presented in the work of Keller and Eyerich
[7] is used. The backup function that we use in this thesis is the partial Bellman backup.
The partial Bellman backup implements a partial version of the full Bellman backup [6],
with difference of not requiring all successor nodes to be visited. The backup of the nodes
is done by applying the following updates:

V̂noded = max
nodec∈ child(noded)

Q̂(nodec) (2.2)

While Q̂ values in chance nodes nodec are updated with:

Q̂nodec = R(nodec) +

∑
noded∈ child(noded)

P[noded|nodec] · V̂noded∑
noded∈ child(noded)

P[noded|nodec]
(2.3)
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In other words, V̂ in decision nodes is updated with the maximum Q̂ value of a child node
nodec while Q̂ values are updated using the weighted outcome proportional to the probabil-
ity of transition to its child nodes.

The action selection in THTS covers any action selection strategy including the ones
present in algorithms such as RTDP [8] and AO* [9] (which prioritize greedy approach) as
well as UCT [10] and AOT [11] (which prioritize balanced approach). The action selection
that we use in this thesis is the UCB1 [12].

UCB1(noded) = argmax
nodec∈ child(noded)

Q̂nodec +B

√
ln nnoded
nnodec

(2.4)

where B is a bias parameter set to V̂noded .

During the outcome selection, the outcome of a chosen action has to be determined.
Monte-Carlo sampling methods [13] are used which sample an outcome according to the
probability.

The trial length is determined by the time or the number of trials needed for reaching
a leaf node in the search tree.

The main contribution of this thesis is improving the heuristic function of THTS.

2.2.1 UCT*
UCT* is the algorithm presented in the work of Keller and Helmert [6]. Its basis is

the Upper Confidence Bound for Trees (UCT) [10] and it converges to an optimal policy if
given enough time [5]. The main differences to UCT is the usage of partial Bellman backup
instead of Monte-Carlo backup and limiting the search using the horizon. More details on
UCT* can be found in the work of Keller and Helmert [6]. Here, we will explain UCT* with
an example.

Example 2.2.1. Figure 2.3 shows an unfolding of the Example 2.1.2 into a search tree.
Furthermore, part of the UCT* search tree is showcased. Every node has additional infor-
mation attached to it which shows the value functions from Definition 2.1.3 as well as the
number of times the node was visited. The decision nodes noded contain the state-value
estimate V̂ and chance nodes nodec contain the action-value estimate Q̂. Information about
remaining steps to go is omitted from the graphical representation. If the root node (p, p)

has d steps to go then child action nodes from the root node and their children have d − 1

steps to go. Since Figure 2.3 showcases 3 steps, we know that d− 3 > 0 holds. One trial of
UCT* consists of the following phases:

• The action selection is done using the UCB1 formula (2.4).

• In the expansion phase, all child nodes of a noded are added to the search tree and
initialized using a heuristic function.
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Figure 2.3: Example of UCT* algorithm

• During the backup phase, all the nodes are updated using the partial Bellman backup
presented in the Equation (2.2) for the decision nodes and in the Equation (2.3) for
the chance nodes.

UCT* builds an asymmetric search tree and focuses on the more promising actions while
also taking all the actions into consideration. It also focuses on states that are close to the
root of the search tree, which results in convergence to an optimal policy when given enough
trials.



3
Learning the Heuristic

In Chapter 2, while describing THTS framework, we introduced the heuristic function.
The heuristic function is used in the initialization of new nodes in the search tree and it
greatly influences the performance of the search. However, general heuristic functions tend
to be expensive when it comes to resource consumption such as time and memory. The main
contribution of this thesis is learning a heuristic functions offline so that more resources can
be allocated to the UCT* algorithm during the search.

3.1 Heuristic Function
Let h∗ be the heuristic function we want to learn. In Section 2.2 we defined a chance

node nodec = 〈s, d, a, Q̂, n〉. The heuristic function h∗ initializes nodec with action-value
estimate Q̂. For a given state s ∈ S and action a ∈ A in nodec we have the following formula
for the action-value estimate:

h∗a(s) = Q̂ (3.1)

We can learn any function that, for a given state s ∈ S and action a ∈ A, estimates the
action-value Q̂ ∈ R. In this thesis we will learn two heuristic functions: Iterative Deepening
Search (IDS) and Trial-based Heuristic Tree Search (THTS).

Iterative Deepening Search (IDS) [7] is a breadth first search, which for a given state
s ∈ S applies all actions a ∈ A and estimates the action-values using reward function R de-
fined in previous chapter. The algorithm is recursively applied until a predefined maximum
depth is reached. IDS results in a list of actions with corresponding action-value estimates.

Trial-based Heuristic Tree Search (THTS) [6] is described in Chapter 2. The configu-
ration which we use here includes the IDS as a heuristic function, UCT* as action selection
and partial Bellman backup as backup function. For a given state s ∈ S, THTS applies all
actions and returns the corresponding action-value estimates.
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3.2 Data Set
The key ingredient we use for learning a heuristic function is the data set. From the

data set we get the information how the heuristic function h∗a behaves for a given state s ∈ S
and an action a ∈ A. We describe a state using a set of facts defined in Definition 2.1.7.
From set F(s) we derive state features.

Every data set entry consists of a given state features F(s) for a given state s ∈ S
and action-value estimate Q̂ = h∗a(s). Since we want to learn a heuristic function for every
action a ∈ A we have the following definition of a data set:

Definition 3.2.1 (Data set). The data set for an action a ∈ A is a set Da = {(s, Q̂)}mi=1,
where s ∈ S represents the state which we also call input data, Q̂ represents action-value
estimate which we also call the response value and m ∈ N represents the size of data set.

3.3 Machine Learning
We use machine learning (ML) techniques for learning the heuristic function from a

given data set. ML is one of the most used techniques for automated learning from data.
The result of applying ML techniques for automated learning is a function ĥa that predicts
the behavior of the function we want to learn, which is denoted with h∗a in our case. ML
is a whole sub-field of computer science and more details can be found in the textbooks of
Murphy[14] and Burch[15]. In this thesis we use the concept of supervised learning.

Depending on the properties of the response value, supervised learning is divided
into classification and regression. Classification is learning where the response values are
categorized and the number of categories is known while regression is learning where the
response values are continuous. In this thesis, the response values in our data sets are
continuous, hence we use regression.

F

.ĥ1

.ĥ2

.ĥ3
. .

. ĥn

.h
∗L

Figure 3.1: Approximating function h∗ with function ĥ in space of linear functions L

Let F = {h | h : S → R} be the space of all possible functions that map states to real
values. Function h∗a could be any function from space F. In this thesis, we approximate
function h∗a with a linear function ĥa ∈ L ⊂ F. Learned function ĥa is represented as a
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weighted sum of all features in F(s):

ĥa(s) =
∑

wf∈Wa

wf , f ∈ F(s) (3.2)

where wf is the weight assigned to state feature f ∈ F(s).

We start our learning by choosing a random function ha ∈ L. Through an iterative process
of learning we approximate function h∗a by updating the weights assigned to state features in
ĥa. One iteration of learning consists of updating weights and is called an epoch. Function
ĥa is the resulting function after the update in the last epoch.

We use the objective function J(Wa, s), also called the error function for estimating
how close are we in approximating function h∗a with function ĥa. The error function J(Wa, s)

is a function of weights and the most commonly used one is the mean squared error (MSE)
function.

J(Wa, s) = (ĥa(s)− h∗a(s))2 (3.3)

Figure 3.1 is a graphical representation of a linear value function approximation. After
n epochs, we get the function ĥn with the lowest value of the error function, denoted in red.
For the remainder of this thesis we will omit the notation of action when denoting a set of
weights W, the error function J(W, s), a data set D, the functions ĥ and h∗. If not stated
otherwise, those terms are related to the action a ∈ A.

3.3.1 Gradient Descent
One of the most used optimization algorithms is gradient descent [16]. It is used to

minimize the error function J(W, s). Minimization is performed in an iterative update of
the weights W in direction opposite to the gradient of the error function ∇WJ(W, s) w.r.t.
the weights. The step size α, also denoted as the learning rate, determines how impacting
the update is in every epoch. One epoch of gradient descent performs the following:

wf := wf − α
∂J(W, s)

∂wf
,∀wf ∈ W (3.4)

The error function J(W, s), together with the step size α, defines the rate of change of
parameters W. In Equation 3.3 we defined the error function for a single entry in the data
set. However, we can use more than one data set entry for computing the error function. A
more general form of the error function, which takes more data set entries into consideration
is:

J(W, s) =
1

2m

∑
(s,Q̂)∈D

(ĥ(s)− Q̂)2 (3.5)

and by deriving we get:

∂

∂wf
J(W, s) =

1

m

∑
(s,Q̂)∈D

(ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W (3.6)
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where m denotes the size of the data set used for computing the error function. If we look
at the definition of function ĥ in Equation 3.2, we get the following:

∂

∂wf
ĥ(s) =

1, if f ∈ F(s)

0, otherwise
(3.7)

where weight wf is assigned to state feature f . In other words, the weight is being updated
with the derivative if and only if the feature to which the weight is assigned is present
in set of facts of state s. In Equation 3.5, you can note the constant 1

2 in front of the
expression. Even when multiplied by a constant, the error function keeps its properties,
however, multiplying the error function with 1

2 enables a cleaner look of the derivative of
the error function.

Algorithm 1 Error function

1: function Error(weights, qV alue)
2: Declare qV alueest ← 0
3:
4: for w in weights do
5: qV alueest ← qV alueest + w

6: end
7: return qV alueest − qV alue

Depending on the number of data set entries used for computing the gradient, there
are three types of gradient descent: stochastic, batch and mini-batch gradient descent. From
Equation 3.6 the variable that is different for each of the gradient descent types is the
number of data set entries used for computing the derivative. The common function for all
gradient descents types is the Error function. The implementation of the Error function
is presented in Algorithm 1.

3.3.1.1 Stochastic Gradient Descent

In every epoch, stochastic gradient descent (SGD) performs an update of the weights for
every single data set entry (s, Q̂) ∈ D. The derivative in SGD is calculated in the following
way:

∂

∂wf
J(W, s) = (ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W (3.8)

Algorithm 2 showcases a single epoch of stochastic gradient descent. The SGD approach
results in high oscillation of the error function. On one hand, this enables SGD avoiding
local minimums by jumping to other, possibly better, minimums. On the other hand, high
oscillation might lead SGD to jumping out of global minimums and consequently ending in
local minimums or even overshooting and ultimately diverging.

3.3.1.2 Batch Gradient Descent

The batch gradient descent(BGD) takes the whole data set into consideration when
calculating the derivative for a single update. The derivative in BGD is calculated in the
same way as Equation 3.6:
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Algorithm 2 Stochastic gradient descent algorithm

1: function SGD(weights, dataSet, alpha)
2: Declare ∆f ← 0
3:
4: for s, qV alue in dataSet do
5: ∆f ← Error(weights, qV alue)
6: for f ∈ F(s) do
7: weight[f ]← weight[f ] + alpha ·∆f

8: end
9: end

∂

∂wf
J(W, s) =

1

m

∑
(s,Q̂)∈D

(ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W (3.6)

where m is the size of the data set D.

Algorithm 3 Batch gradient descent algorithm

1: function BGD(weights, dataSet, alpha)
2: Declare ∆[F(S)]
3:
4: for s, qV alue in dataSet do
5: for f ∈ F(s) do
6: ∆[f ]← ∆[f ] + Error(weights, qV alue)

7: end
8: end
9:

10: for f ∈ F(s) do
11: weights[f ]← weights[f ] + alpha · ( ∆[f ]

size(dataSet) )

12: end

BGD converges to the a minimum more slowly that SGD due to the fact that the
changes depend on whole data set in a single update per epoch. Unlike in SGD, fluctuation
of the error function is minimized. Algorithm 3 showcases an update of weights in a single
epoch.

3.3.1.3 Mini-Batch Gradient Descent

Mini-batch gradient descent (MBGD) is the mix of the two previous types. It takes a
fixed part of the data set, called a batch and computes the derivatives using data set entries
from the batch. The upper limit in the sum is k < m while the lower limit is j < k. From
Equation 3.6 we derive the following form of the derivative:

∂

∂wf
J(W, s) =

1

k − j
∑

(s,Q̂)∈B

(ĥ(s)− Q̂) · ∂

∂wf
ĥ(s),∀wf ∈ W (3.9)

where B = {(s, Q̂)}kj ⊂ D is a part of the data set with size of (k − j) where k > j.
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Algorithm 4 Mini-batch gradient descent algorithm

1: function MBGD(weights, dataSet, alpha, eta)
2: Declare ∆[F(S)]
3: Declare batches← GetBatches(dataSet, eta)
4:
5: for batch in batches do
6: for s, qV alue in batch do
7: for f ∈ F(s) do
8: ∆[f ]← ∆[f ] + Error(weights, qV alue)

9: end
10: end
11:
12: con←
13: for f ∈ F(s) do
14: weights[f ]← weights[f ] + alpha · ( ∆[f ]

size(batch) )

15: end
16: end

Algorithm 5 Get batches

1: function GetBatches(dataSet, eta)
2: Declare batches← []
3: Declare start← 0
4: Declare end← η
5:
6: while start < size(dataSet) do
7: batches.append(dataSet[start : end])
8: start← end
9: end← end+ η

10:
11: if end > size(dataSet) then
12: end← size(dataSet)

13: end
14: end

return batches

One epoch consists of as many updates as there are batches. Algorithm 4 showcases an
update done in one epoch of MBGD. The generation of batches is presented in Algorithm
5.

3.3.2 Summary and Challenges
If a function that we want to learn is complex, it can be really hard to converge to

a global minimum using gradient descent methods. This is due to the fact that there is
no best way to escape local minimums. While the SGD can be the fastest method to
converge, due to the big jumps in updates, the high variation of the error function can lead
to overshooting and divergence. The BGD, even though it is the slowest in convergence,
reaches the minimum with a lower chance of overshooting. Whereas MBGD combines both
approaches and minimizes the overshooting while converging to the minimum at a faster
rate than BGD.
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All methods share parameters such as the step size α and the number of epochs. Chal-
lenges lay in choosing the right values for these parameters. Setting the right value for
step size α is challenging because small α leads to slow convergence and demands a high
number of epochs while large α increases the variation of the error function and may even
lead to divergence. There are many optimization variants of gradient descent, which are
summarized in work of Ruder [16]. In this thesis, we apply three modifications: momentum,
learning decay rate and early stopping.

Algorithm 6 Optimized stochastic gradient descent algorithm

1: function OSGD(weights, dataSet, alpha)
2: Declare ∆f ← 0
3: Declare change← 0
4:
5: for s, r in dataSet do
6: ∆f ← Error(weights, qV alue)
7: change← change+ ∆f

8: for f ∈ F(s) do
9: weight[f ]← weight[f ] + alpha ·∆f + γ ·∆prev[f ]

10: ∆prev[f ]← ∆f

11: end
12: end
13:
14: if change < ε then
15: return False
16: end
17: return True

Momentum [17], denoted with γ, optimizes gradient descent by using concepts from
physics mechanics. The idea is in adding a value from the previous update ∆prev to the new
update value. This approach helps escaping local minimums. It also addresses the problem
gradient descent methods face while navigating ravines [18]. Introducing learning decay
rate [19], denoted with σ, also addresses the challenge of dealing with fluctuations of the
objective function. The step size is reduced in a predefined schedule by a faction σ of its
value. Furthermore, we implement early stopping which halts the process of updating
weights when the change in the objective function falls below the predefined threshold ε.
Changes in the implementation are minimal and are showcased for the SGD Algorithm in
6.

Problems that machine learning methods are facing are overfitting and underfitting.
Both overfitting and underfitting occur when the chosen model is too weak to describe the
data provided by the data set. Overfitting is detected when the approximated function
ĥ evaluates low error function values on the seen data (one seen during learning) while
for the unseen data (one during prediction) it evaluates too high error function values.
Overfitting is characteristic for models which contain a large number of parameters. Problem
of underfitting is resembled in high error function values both on seen and unseen data.

Detecting the problem of overfitting and underfitting is done through evaluation of the
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learned function using the data from the given data set. The idea is splitting the data set
into training set T and validation set V with following properties:

D = T ∪V

∅ = T ∩V

|T| > |V|

In this thesis, the ratio in which we split the data set is 7:3 in favour of the training set.
After using the training set to learn, the validation is performed by comparing evaluated
response values from the learned function against the response values from the validation
test. Comparing the error derived from training and the error derived from validation,
we can see the changes in learning and adjust the parameters so that we minimize the
error. Another mechanism for improving the learning of a heuristic function is shuffling
the training set before the start of every epoch. This is important because the weights are
not updated with values in the same order in every epoch but rather mixed order so that
the updates are not applied by a pattern.

Figure 3.2: The model of linear functions is too weak to learn a heuristic function from the
given data set represented in blue dots.

a. Data set b. Learning c. Predicting

Figure 3.3: This figure showcases three stages of learning: a. Data set, b. Learning from
a given data set and c. Validating the learned function. We can see that the initial data
set did not provide enough information for the unseen data. The model, even though it is
weak for the data set given, was subject to overfitting and produced different error function
values for the training set and validation set.
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Example 3.3.1. Figures 3.3 and 3.2 showcase the overfitting and underfitting. Denoted
in red color is the approximation function which is learned from the data set. We can see
from Figure 3.2 that the function cannot be properly learned due to the fact that the model of
linear function is too weak for learning from the provided data set. An example for overfitting
is showcased in Figure 3.3 where we see that on the seen data (Figure 3.3 b), the function
approximates the response values closely while on the unseen data (Figure 3.3 c), it performs
far worse.

3.3.3 Feature Combination

Algorithm 7 Optimized SGD algorithm with combined features

1: function CFOSGD(weights, dataSet, alpha)
2: Declare ∆f ← 0
3: Declare change← 0
4:
5: for s, r in dataSet do
6: ∆f ← Error(weights, r)
7: change← change+ ∆f

8: for f ∈ F2(s) do
9: weight[f ]← weight[f ] + alpha ·∆f + γ ·∆prev[f ]

10: ∆prev[f ]← ∆f

11: end
12: end
13:
14: if change < ε then
15: return False
16: end
17: return True

Combining features allows for more accurate function approximation. Using features
of a given state s ∈ S we generate new features that can be used for learning a heuristic
function. The number of newly generated features depends on the number of features we
want to combine. Using new features, increases the complexity of the resulting learned
function. In this thesis, we combined two features. New features are in the the set of facts
F2 = {〈v1, d1, v2, d2〉 | v1, v2 ∈ V ∧ d1, d2 ∈ Dv}. Hence, for a given state s, we have a set of
facts for state s:

F2(s) = {〈v1, d1, v2, d2〉 | v1, v2 ∈ V ∧ d1, d2 ∈ Dv ∧ s[v1] = d1 ∧ s[v2] = d2}

Using the new features, we applied SGD, BGD as well as MBGD for learning. Algorithm
7 showcases the changes in the SGD. Again, every feature f ∈ F2 has a weight wf ∈ W
assigned to it.



4
Experimental Results

This chapter is divided into four sections. In the first section we present the experimental
environment, in which the learned heuristic functions were evaluated. The second section
covers the details of different parameters used for learning an offline heuristic function.
The performance of UCT*, using the heuristic functions learned using single features is
evaluated in the third section, while fourth section evaluates the learned heuristic functions
using combined features in the same setup.

The goal of this thesis was to find a parameter configuration for learning an offline
heuristic function, which would show significant results in all the tests. From the experi-
ments we conducted, such a parameter configuration was not found. However, we derived
a set of offline learned heuristic functions using different parameter configurations which
when combined with UCT* showcased significant results. Furthermore, while examining
the influence of some parameter values on the total score of the experimental evaluation, we
showcase the best possible results for the values of the parameter in question in the following
setup: the value of the parameter in question is fixed while the set of best parameter combi-
nations of other parameters is taken into consideration for the task where such configuration
performs best. Tables that contain such results have a tag SBPC (abbreviation for Set of
Best Parameter Configurations) next to the name of the offline heuristic function, which is
being evaluated.

4.1 Experimental Environment
Mechanism for learning an offline heuristic is integrated in the state-of-the-art domain-

independent probabilistic planner Prost[7] which implements THTS framework described
in Section 2.2. Learned heuristic functions were provided to the UCT* algorithm as the
heuristic function for the initialization of new nodes in the search tree.

Evaluation was done on 12 different domains including 10 instances per domain from
the International Probabilistic Planning Competition 20141. The results are averaged ac-
cumulated rewards of 100 runs, scaled between 0 and 1. The artificial minimum derived

1 https://cs.uwaterloo.ca/ mgrzes/IPPC_2014/

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/
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Data set size 200 2000
Methods SGD BGD MBGD
Step size 0.0001 0.0005 0.00001 0.00005
Epochs 1000 10000
Learning rate decay 0 0.05
Momentum 0 0.1 0.3
Heuristic function IDS THTS
Features combined 1 2

Table 4.1: All the parameters used used in the experimental evaluation.

from IPPC 2014 has 0 assigned as a relative score while 1 is assigned to the algorithm that
achieves the highest durning search reward. We compare the results of using a learned
heuristic to the scores of the best algorithms from IPPC 20112 and IPPC 2014 as well as to
the DP-UCT[6] using the Uniform heuristic function, in the remainder of this thesis denoted
as the baseline algorithms.

Experiments were run on Intel Xeon E5-2660 CPUs running at 2.2 GHz. Each algorithm
was allowed 1 second to perform trials before choosing the best action.

4.2 Parameter Configurations
In this thesis we use 8 different parameters for learning an offline heuristic function.

Parameters and parameter values we used are listed in Table 4.1. The early stopping param-
eter is fixed to ε = 0.00001 for all configurations. The parameter values showcased represent
a subset of the parameter values used during the experimental evaluation which achieved
significant results compared to baseline algorithms.

4.2.1 Data Sets
A domain-instance pair represents a planning task, or shortly just a task. With 12

domains and 10 instances per domain there are 120 tasks in total. For each task, a data
set was generated by sampling random states, providing them to the heuristic we want to
learn and storing the resulting action-value estimates for a given state. In order to test the
impact of the data set’s size on learning, we set two different upper limits to the number
of states sampled. Not all tasks can provide the desired number of sampled states. For
example, Navigation 1 tasks feature only 13 states while Elevators 10 features 6397 states.

We experimented with two upper limits for the number of states sampled for generating
a data set: 200 and 2000. Experiments were run using parameter configuration including
all three gradient descent types with momentum γ = 0 and learning decay rate σ = 0.05

for all combinations of step size and number of epochs mentioned in Table 4.1. Learning
using a data set generated of 2000 sampled states was superior to learning using a data
set generated by sampling 200 states in all but the following 15 planning tasks: Academic
(1, 5, 7), Elevators (1), Tamarisk (1, 5, 7), Sysadmin (8, 9), Game (3), Skill (1, 4, 9) and

2 http://users.cecs.anu.edu.au/ ssanner/IPPC_2011/

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
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DP-UCT IPPC2011 IPPC2014 SGD BGD MBGD
0.0 0.0 0.75 1.0 0.63 0.81

Table 4.2: Results in task Navigation 10 using: α = 0.0001, σ = 0, γ = 0, 1000 epochs and
learning from the IDS heuristic function.

Navigation (9, 10) out of 120 planning tasks in total. Considering these results, for the
remainder of the experiments, all data sets were generated using the upper limit of 2000
sampled states. More details on particular tasks where using smaller data set for learning
was more successful can be found in the Appendix A.1.

4.2.2 Gradient Descent Methods
Batch size in MBGD method was set to 10% of the data set, if the data set was large

enough, else MBGD performed the same as BGD.
Even though MBGD is found to be the best type of gradient descent, in our experimental

evaluation we found that different methods show better results for different domains. In
average, SGD is the method that achieved the best results. However, there are tasks where
other methods perform better.

a. Training b. Testing

Figure 4.1: MSE graph for learning a heuristic function from IDS in task Navigation 10 with
parameters: α = 0.0001, σ = 0, γ = 0 and number of epochs 1000.

Figure 4.1 showcases the curve of the error function during the learning of the IDS
heuristic. Step size is set to α = 0.0001 and the number of epochs to 1000 with learning
decay rate of σ = 0 and momentum of γ = 0. This is an example where BGD applies early
stopping after 388 epochs while MBGD continues to learn with a slower pace but not falling
under threshold ε. Since SGD converged the fastest, it evaluated the lowest error function
and hence performed best during the search. The scores achieved are presented in Table
4.11. In the Appendix A.2, examples where other gradient descent types performed superior
can be found with short discussion.
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Epochs
Step size 0.0005 0.0001 0.00005 0.00001

1000 53 53 53 44
10000 60 59 54 53

Table 4.3: Number of results for epoch-step size combination over 120 tasks where an
offline learned heuristic function scored as well as or higher total score values than baseline
algorithms.

4.2.3 Step Size and Number of Epochs
During the experimental evaluation, step sizes used ranged from 0.000001 to 0.1. Step

sizes showcased in Table 4.1 are the ones that showcased the best results. Smaller step
size leads to slower convergence and demands a larger number of epochs while larger step
size tends to overshot and even lead to divergence. The number of epochs which was used
during the experiments varied from 100 to 10000. During the final stages of conducting
experiments, we fixed two numbers of epochs which showcased the best results. Table
4.3 shows the success of different step sizes in combination with different number of epochs
where numbers in cells show the number of domains where given combination scored equal or
higher scores to the baseline algorithms of all 120 planning tasks. The rest of the parameters
belong to the set of best parameter configurations as noted in the beginning of this chapter.

Since different combinations of the number of epochs and step sizes work better for
different domains, further experiments are carried out with all combinations.

4.2.4 Momentum and Learn Decay Rate

a. γ = 0 b. γ = 0.3

Figure 4.2: MSE graph for learning a heuristic function from IDS in task Skill 10 with
parameters: α = 0.00001, σ = 0.05 and number of epochs 1000. Values on the y-axis
showcase the difference in the learning success. For the value of γ = 0.3 we can notice the
problem of overshooting.

Momentum takes values from range γ ∈ [0, 1]. The recommended value for momentum
is γ = 0.9 [16]. Using such a high value for momentum resulted in overshooting in our
experiments. Therefore, we used smaller momentum values from the set {0, 0.1, 0, 3} which
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DP-UCT IPPC 2011 IPPC 2014 SBPC Offline Heuristic from IDS
Wildfire 0.79 0.83 0.69 0.85
Triangle 0.42 0.39 0.88 0.67
Academic 0.69 0.3 0.31 0.47
Elevators 0.6 0.97 0.96 0.83
Tamarisk 0.64 0.9 0.88 0.88
Sysadmin 0.61 0.75 0.81 0.99
Recon 0.59 0.99 0.95 0.95
Game 0.71 0.91 0.97 0.96
Traffic 0.86 0.93 0.98 0.69
Crossing 0.42 0.81 0.99 0.83
Skill 0.94 0.95 0.96 1.0

Navigation 0.67 0.58 0.93 0.99
Total 0.66 0.78 0.86 0.84

Table 4.4: The score of learning the offline heuristic function from IDS while choosing the
other parameters from the Set of Best Parameter Configurations of parameters.

produced significant results. Not using the momentum, or rather setting the value γ = 0,
proved to perform the best. Furthermore, with exception of the SGD, none of the methods
produced significant results. Learning decay rate is usually set to σ < 0.1. In this thesis
we used two values for learning decay rate σ ∈ {0, 0.05}. Step size α was decreased by a
fraction σ of its value every 50 epochs.

4.2.5 Heuristic Functions
In this thesis we learned two heuristic functions: IDS and THTS. Learning of the

heuristic functions was mostly possible in all tasks using at least one of the gradient descent
types.

IDS is the heuristic function presented in Section 3.1. The UCT* algorithm using IDS as
the heuristic function came to be the winning algorithm of IPPC 2014. The base idea for this
thesis was to improve the winning algorithm by providing a better or resource-wise cheaper
heuristic function. Table 4.4 showcases the scores of the best parameter configurations used
for learning the IDS heuristic functions.

THTS, in the setup we were using to learn a heuristic function, is much more complex
than IDS and hence is not feasible to be used as a heuristic function during search. It
was the initial expectation that results of an offline heuristic function learned from THTS
would achieve better results in the experimental evaluation. For most of the tasks, this
was not the case. However, learning of an offline heuristic function from THTS on tasks
such as Skill 10, was more successful than learning the IDS heuristic function. Figure 4.3
showcases the comparison of MSE in training an offline heuristic function for Skill 10 task
between learning THTS and IDS heuristic functions. The assumption for the reason of this
unexpected behavior is that the model of linear functions is too weak for learning the THTS
on some tasks.
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DP-UCT IPPC 2011 IPPC 2014 SBPC Offline Heuristic from THTS
Wildfire 0.85 0.86 0.73 0.36
Triangle 0.42 0.39 0.88 0.58
Academic 0.68 0.3 0.31 0.48
Elevators 0.6 0.97 0.96 0.89
Tamarisk 0.66 0.92 0.91 0.85
Sysadmin 0.64 0.78 0.84 0.99
Recon 0.58 0.98 0.94 0.98
Game 0.71 0.91 0.97 0.96
Traffic 0.87 0.93 0.98 0.32
Crossing 0.42 0.81 1.0 0.74
Skill 0.94 0.94 0.95 1.0

Navigation 0.67 0.58 0.94 0.99
Total 0.67 0.78 0.87 0.76

Table 4.5: The score of learning the offline heuristic function from THTS while choosing the
other parameters from the Set of Best Parameter Configurations.

a. IDS b. THTS

Figure 4.3: Comparison of the MSE graph for learning a heuristic function: a. IDS and
b. THTS in task Skill 10 with parameters: α = 0.00001, σ = 0.05, γ = 0 and number of
epochs 1000. From the values of y-axis, it can be noted that learning the THTS was more
successful than learning the IDS heuristic function for the given parameter configuration. In
this particular task, the algorithm that learned from IDS scored 0.7 while the one learning
from THTS scored 0.93. The highest score achieved by the baseline algorithms was 0.85.

Table 4.5 showcases the combined scores from multiple parameter configurations and
compares them against the baseline algorithms.

4.3 Evaluation of Learning using Single Features
There are several parameter configurations that score the same total score. In Table 4.6

we showcase averaged scores for one of them: SGD with step size α = 0.0005 and number
of epochs 1000. Learning decay rate and momentum are fixed to σ = 0 and γ = 0 for all
parameter configurations used for learning the offline heuristic functions used in the search.
Parameter configurations that achieve the same score are showcased in Table 4.7.
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DP-UCT IPPC 2011 IPPC 2014 SGD from IDS
Wildfire 0.79 0.83 0.69 0.72
Triangle 0.42 0.39 0.88 0.51
Academic 0.68 0.3 0.31 0.38
Elevators 0.59 0.96 0.96 0.63
Tamarisk 0.64 0.9 0.88 0.72
Sysadmin 0.61 0.74 0.8 0.86
Recon 0.58 0.98 0.94 0.88
Game 0.71 0.91 0.97 0.9
Traffic 0.86 0.93 0.98 0.3
Crossing 0.42 0.81 0.99 0.7
Skill 0.93 0.93 0.94 0.92

Navigation 0.67 0.58 0.92 0.93
Total 0.66 0.77 0.86 0.71

Table 4.6: Total scores for UCT* using an offline heuristic function learned from IDS with
SGD using α = 0.0005, σ = 0, γ = 0 over 1000 epochs.

Heuristic learned Method Epochs Step size
IDS SGD 1000 0.0005
IDS SGD 10000 0.0005
IDS SGD 1000 0.0001
IDS SGD 10000 0.0001
IDS SGD 10000 0.00005

Table 4.7: Combination of parameters for learning the offline heuristic functions that
achieved the highest score. Learning decay rate and momentum are fixed to σ = 0 and
γ = 0.

DP-UCT IPPC 2011 IPPC 2014 SBPC Offline Heuristic 1
Wildfire 0.79 0.83 0.69 0.87
Triangle 0.42 0.39 0.88 0.68
Academic 0.68 0.3 0.31 0.57
Elevators 0.59 0.96 0.96 0.9
Tamarisk 0.64 0.9 0.88 0.9
Sysadmin 0.61 0.74 0.8 0.99
Recon 0.58 0.98 0.94 0.98
Game 0.71 0.91 0.97 0.96
Traffic 0.86 0.93 0.98 0.69
Crossing 0.42 0.81 0.99 0.83
Skill 0.93 0.93 0.94 1.0

Navigation 0.67 0.58 0.92 0.99
Total 0.66 0.77 0.86 0.86

Table 4.8: Scores for UCT* using an offline heuristic function learned using single features
with parameters from the Set of Best Parameter Configurations. These results are achieved
by using a set of heuristic functions(learned with different parameters) where the offline
heuristic function was assigned to the task on which it performs the best.
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DP-UCT IPPC 2011 IPPC 2014 Offline Heuristic 2
Wildfire 0.85 0.86 0.73 0.1
Triangle 0.42 0.39 0.88 0.53
Academic 0.69 0.3 0.31 0.17
Elevators 0.6 0.97 0.97 0.74
Tamarisk 0.66 0.92 0.91 0.32
Sysadmin 0.75 0.91 0.99 0.38
Recon 0.6 1.0 0.96 0.37
Game 0.72 0.92 0.98 0.64
Traffic 0.87 0.93 0.98 0.21
Crossing 0.42 0.81 1.0 0.29
Skill 0.96 0.96 0.97 0.77

Navigation 0.67 0.58 0.94 0.95
Total 0.68 0.8 0.88 0.46

Table 4.9: Scores of the offline heuristic function learned from IDS using BGD with combined
features, σ = 0.05, momentum γ = 0 and the number of epochs is 1000.

If for each of the tasks, UCT* was assigned the offline heuristic function which performs
best for that particular task, the overall score meets the score of the winning algorithm of
IPPC 2014. Table 4.8 showcases the averaged scores for all domains.

4.4 Evaluation of Learning using Combined Features
By combining existing features we create new features. In this thesis we combined

every two features of a state in order to create a new feature. If a state in a planning task
is described with n features, we have total of

(
n
2

)
− n

2 new features and the same number of
weights assigned to them. The idea of using new features is to more accurately apply linear
value function approximation since every new feature consist of two features whose impact
on the result of the weighted sum depends on the presence of both of them. For feature
combination, we conducted the same experiments using the same parameter configurations
as for the learning using only 1 feature per weight.

The results of using combined features for learning an offline heuristic function were
not as good as we initially expected. The offline heuristic functions learned using combined
features were outperformed by both baseline algorithms and heuristic functions learned
using single features in all but two planning tasks: Elevators 1 and Navigation 9. Two
parameter configurations achieved a total score of 0.46. Learning decay rate is set to σ =

0.05, momentum γ = 0 and the number of epochs is 1000. BGD used the step size of
α = 0.0005 while SGD used the step size α = 0.00005. Table 4.9 showcases the averaged
scores for parameter configuration using BGD method.

Table 4.10 showcases the averaged scores of multiple parameter configurations that
achieved the best results over all planning tasks. Learning using combined features outper-
forms baseline algorithms only in the Navigation domain.

We failed to find the reason for the unexpected results in the evaluation of the offline
heuristic functions learned using combined features in our experiments. During the analysis,
we came to the conclusion that the algorithm using an offline heuristic function learned using
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DP-UCT IPPC 2011 IPPC 2014 SBPC Offline Heuristic 2
Wildfire 0.85 0.86 0.73 0.21
Triangle 0.42 0.39 0.88 0.63
Academic 0.69 0.3 0.31 0.2
Elevators 0.6 0.97 0.97 0.80
Tamarisk 0.66 0.92 0.91 0.37
Sysadmin 0.75 0.91 0.99 0.44
Recon 0.6 1.0 0.96 0.4
Game 0.72 0.92 0.98 0.7
Traffic 0.87 0.93 0.98 0.27
Crossing 0.42 0.81 1.0 0.31
Skill 0.96 0.96 0.97 0.83

Navigation 0.67 0.58 0.94 1.0
Total 0.68 0.8 0.88 0.51

Table 4.10: Scores of the offline heuristic functions learned using combined features and
parameters from the Set of Best Parameter Configurations.

σ γ Heuristic function Method α Epochs Number of features
1 0 0 THTS BGD 0.00005 1000 1
2 0 0 THTS BGD 0.00005 1000 1
3 0 0 THTS BGD 0.00005 1000 1
4 0.05 0 IDS MBGD 0.00005 10000 2
5 0 0 THTS SGD 0.0001 10000 1
6 0 0 IDS SGD 0.00001 10000 1
7 0 0 IDS BGD 0.00005 10000 1
8 0.05 0 IDS BGD 0.00001 10000 1
9 0 0 IDS BGD 0.00005 1000 1
10 0 0 IDS SGD 0.0001 1000 1

Table 4.11: Set of the best parameter configuration per instance for learning an offline
heuristic function which in combination with UCT* outperforms the baseline algorithms in
the Navigation domain.

combined features initially exploits a lower number of states than the the algorithm using
an offline heuristic function with the same parameters but using single features to learn
(task Navigation 10). Furthermore, in the Traffic 1 task we noted that the number of
trials performed by the algorithm using an offline heuristic function learned using combined
features is about 20% lower than the number of trials performed by the algorithm using an
offline heuristic function learned using single features but the same parameters. The reason
for the later anomaly might be the implementation of learning using combined features.
However, we did not investigate this issue fully.

4.5 Final Result
From the experimental results presented we conclude that, among the parameter config-

urations used in this thesis, there is no single parameter configuration that outperforms
baseline algorithms for all tasks. However, there exists a set of offline heuristic functions
which, when provided to UCT*, outperform the baseline algorithms for particular tasks. Set
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DP-UCT IPPC 2011 IPPC 2014 SBPC Offline Heuristic
Wildfire 0.79 0.83 0.69 0.86
Triangle 0.42 0.39 0.88 0.7
Academic 0.68 0.3 0.31 0.6
Elevators 0.59 0.96 0.96 0.9
Tamarisk 0.64 0.9 0.88 0.9
Sysadmin 0.61 0.74 0.8 0.99
Recon 0.58 0.98 0.94 0.98
Game 0.71 0.91 0.97 0.96
Traffic 0.86 0.93 0.98 0.7
Crossing 0.42 0.81 0.99 0.83
Skill 0.93 0.93 0.94 1.0

Navigation 0.67 0.58 0.92 1.0
Total 0.66 0.77 0.86 0.87

Table 4.12: The best scores for learned heuristic function over all possible configurations.

of parameter configurations which are used for learning the set of offline heuristic functions
is called Set of Best Parameter Configurations (SBPC). Table 4.12 showcases the averaged
score of UCT* using the offline heuristic function learned with parameters from SBPC. Set
of parameter configurations used for the Navigation domain is showcased in Table 4.11. Sets
of parameter configurations for rest 11 domains are presented in the Appendix A.3.



5
Conclusion and Future Work

5.1 Conclusion
In this thesis we present a framework for learning an offline heuristic function in domain-

independent probabilistic planning. Learning of an offline heuristic function is performed
by supervised learning using the gradient descent methods. The framework supports three
different gradient descent types: stochastic gradient descent (SGD), batch gradient descent
(BGD) and mini-batch gradient descent (MBGD). The framework allows for different con-
figuration for total of 5 parameters including: data set size, step size, number of epochs,
learning decay rate and momentum. The data set can be generated using any heuristic
function, which for a given state, evaluates the action-value for all actions in a given plan-
ning task. Furthermore, the framework supports learning using new features generated by
combining the existing state features into pairs.

We showcase that learning an offline heuristic function using the gradient descent meth-
ods is possible in the context of domain-independent probabilistic planning. In our experi-
ments, we provided the offline heuristic functions to UCT* and compared the results of the
search against the state-of-the-art probabilistic planning algorithms on 120 planning tasks
used in IPPC 2014.

Experiments we conducted showcase that it is possible to find a parameter configura-
tion for each planning task so that the UCT* algorithm using an offline learned heuristic
function outperforms the state-of-the-art planners. However, the process of finding the best
parameter configuration for each planning task requires a lot of experiments and fine tuning
of the parameters.

5.2 Future Work
Even though through using gradient descent methods for learning proved successful,

there are other machine learning techniques which could improve the learning process even
more. Among others, possible options are an improved version of the mini batch gradient
descent method ADADELTA[20] or artificial neural networks (ANN)[21]. The framework
allows for an easy integration of other learning techniques.

Combination of two features for generating a new feature did not prove to be as suc-
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cessful as we expected in our experiments. Exploration of the reason why combination of
features underperformed would be one of the important directions in future works. Further-
more, the concept of feature selection[22] was not addressed in this thesis. Preprocessing the
data set and determining the significant features in the states set would allow for more in-
formed updates of the weights assigned to the features and therefore more informed learning
of an offline heuristic function.

Data set size was only briefly addressed in this thesis. Although, the idea of this work
is learning an offline heuristic in domain-independent probabilistic planning, deeper analysis
of domains could allow for better understanding of the importance of the size of the data
set as well as the sampled states that are used for generating a data set.

In this thesis, only offline learning was applied. Another possible improvement to
the performance of the learned heuristic function would be if online learning would be
implemented. Online learning would mean updating the learned heuristic function during
the search. Furthermore, Gelly and Silver propose the combination of online and offline
learning and show the success of such an approach in learning a heuristic function for the
traditional game Go[23].
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A
Appendix

A.1 Data Sets
For a total of 15 out of 120 tasks using a smaller data set for learning an offline heuristic

function was more successful than using a larger data set. Those tasks are: Academic (1, 5,
7), Elevators (1), Tamarisk (1, 5, 7), Sysadmin (8, 9), Game (3), Skill (1, 4, 9) and Navigation
(9, 10). Apart from the scores achieved on Academic (5, 7), a function learned using the
larger data set was not outperformed by a high margin. However, for tasks Academic
(5, 7), an offline heuristic function learned using a smaller data set outperformed baseline
algorithms and offline heuristic functions using larger data set by >0.48 for Academic 2 and
>0.95. The maximum number of states that can be sampled in Academic 5 and 7 is 4099
and 2934 respectively. Being able to "see" only 5% and 14% of the states respectively, the
offline heuristic performed very good. Since this is an isolated case for 2 tasks, we did not
pay too much attention on researching for reasons for such behavior. Moreover, one of the
future works we mention is gathering more information on the influence of data set size to
learning an offline heuristic function.

A.2 Gradient Descent methods
In this section, we cover an example where BGD outperformed the baseline algorithms

as well as the other gradient descent methods.

A.2.1 Batch Gradient Descent
Figure A.1 showcases the graph of MSE function during learning on the planning task

Game of Life 2. This example showcases how both SGD and MBGD are performed worse
than BGD even though they evaluated lower MSE values. Early stopping was not applied

DP-UCT IPPC2011 IPPC2014 SGD BGD MBGD
0.71 0.93 0.75 0.91 1.0 0.85

Table A.1: Results for Game of Life 2
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a. Training error b. Testing error

Figure A.1: Error function graph for learning a heuristic function for task Game of Life 2

σ γ Heuristic function Method α Epochs Number of features
1 0 0 IDS SGD 0.00005 10000 1
2 0.05 0 IDS SGD 0.00005 10000 1
3 0.05 0 IDS SGD 0.00005 1000 1
4 0.05 0 IDS MBGD 0.0005 10000 1
5 0.05 0.3 IDS SGD 0.0005 10000 1
6 0.05 0 IDS SGD 0.00005 10000 1
7 0.05 0 IDS SGD 0.0001 1000 1
8 0 0 IDS SGD 0.00005 10000 1
9 0 0 IDS MBGD 0.0005 1000 1
10 0.05 0.1 IDS SGD 0.00005 1000 1

Table A.2: Set of best parameter configurations per instance for learning an offline heuris-
tic function which in combination with UCT* outperforms the baseline algorithms in the
Wildfire domain

due to the fact that the change in the error function did not fall bellow the threshold of
ε. From Figure A.1 we cannot derive that SGD and MBGD were subject to overfitting,
however, we can conclude based on MSE function values that BGD failed to converge as
fast as SGD and MBGD and hence was more general which was better approach for this
particular task. The scores BGD achieved against baseline algorithms and SGD and MBGD
are showcased in Table A.9. Step size was α = 0.0005 over 1000 iterations.

A.3 Final Result
Together with Table 4.11, Tables A.2 to A.12 showcase the best learning parameter

configurations for each of the domain-instance pairs.
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σ γ Heuristic function Method α Epochs Number of features
1 0 0 IDS BGD 0.0001 1000 1
2 0 0 IDS BGD 0.0001 1000 1
3 0 0 IDS BGD 0.0001 1000 1
4 0 0 IDS BGD 0.0001 1000 1
5 0 0 THTS BGD 0.00005 1000 1
6 0.05 0 IDS BGD 0.00001 1000 1
7 0.05 0 THTS MBGD 0.00005 1000 2
8 0.05 0 THTS SGD 0.0001 1000 2
9 0 0 IDS BGD 0.0001 1000 1
10 0.05 0 IDS SGD 0.00005 1000 1

Table A.3: Set of best parameter configurations per instance for learning an offline heuris-
tic function which in combination with UCT* outperforms the baseline algorithms in the
Triangle domain

σ γ Heuristic function Method α Epochs Number of features
1 0.05 0.1 THTS SGD 0.00005 1000 1
2 0.05 0 IDS SGD 0.0001 10000 1
3 0 0 THTS SGD 0.00001 10000 1
4 0 0 THTS SGD 0.0001 10000 1
5 0.05 0 IDS MBGD 0.0001 1000 1
6 0 0 IDS SGD 0.0001 10000 1
7 0 0 THTS SGD 0.0001 10000 1
8 0.05 0 IDS BGD 0.0005 1000 2
9 0.05 0.1 THTS SGD 0.00005 1000 1
10 0.05 0.1 THTS SGD 0.00005 1000 1

Table A.4: Set of best parameter configurations per instance for learning an offline heuris-
tic function which in combination with UCT* outperforms the baseline algorithms in the
Academic domain

σ γ Heuristic function Method α Epochs Number of features
1 0.05 0 IDS MBGD 0.00001 10000 1
2 0 0 THTS SGD 0.00001 10000 1
3 0 0 IDS SGD 0.00005 10000 1
4 0 0 IDS MBGD 0.00001 10000 1
5 0.05 0 THTS SGD 0.00005 1000 2
6 0.05 0 IDS SGD 0.0001 1000 1
7 0 0 THTS MBGD 0.0005 1000 1
8 0 0 THTS MBGD 0.00001 10000 1
9 0 0 THTS BGD 0.00001 1000 1
10 0 0 THTS MBGD 0.0005 1000 1

Table A.5: Set of best parameter configurations per instance for learning an offline heuris-
tic function which in combination with UCT* outperforms the baseline algorithms in the
Elevators domain
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σ γ Heuristic function Method α Epochs Number of features
1 0 0 IDS BGD 0.00005 10000 1
2 0.05 0 IDS MBGD 0.00005 10000 1
3 0 0 IDS BGD 0.00005 10000 1
4 0 0 IDS MBGD 0.00001 10000 1
5 0.05 0 IDS MBGD 0.00005 10000 1
6 0.05 0 IDS MBGD 0.0005 1000 1
7 0.05 0 IDS MBGD 0.0001 1000 1
8 0 0 IDS BGD 0.0001 10000 1
9 0.05 0 IDS BGD 0.0005 10000 1
10 0.05 0 THTS MBGD 0.0005 10000 1

Table A.6: Set of best parameter configurations per instance for learning an offline heuris-
tic function which in combination with UCT* outperforms the baseline algorithms in the
Tamarisk domain

σ γ Heuristic function Method α Epochs Number of features
1 0 0 IDS SGD 0.0001 10000 1
2 0.05 0.1 IDS SGD 0.0005 10000 1
3 0.05 0 THTS SGD 0.0001 1000 1
4 0 0 THTS MBGD 0.0005 10000 1
5 0 0 THTS MBGD 0.0005 1000 1
6 0.05 0 THTS SGD 0.00001 1000 1
7 0.05 0 IDS MBGD 0.00001 10000 1
8 0.05 0 IDS MBGD 0.00005 1000 1
9 0 0 IDS MBGD 0.0001 1000 1
10 0.05 0 IDS MBGD 0.00005 1000 1

Table A.7: Set of best parameter configurations per instance for learning an offline heuris-
tic function which in combination with UCT* outperforms the baseline algorithms in the
Sysadmin domain

σ γ Heuristic function Method α Epochs Number of features
1 0 0 THTS SGD 0.00001 10000 1
2 0.05 0 THTS SGD 0.00001 10000 1
3 0.05 0 THTS MBGD 0.0005 10000 1
4 0 0 IDS SGD 0.00005 1000 1
5 0 0 THTS MBGD 0.0005 10000 1
6 0 0 THTS SGD 0.00005 1000 1
7 0 0 THTS SGD 0.00005 10000 1
8 0 0 THTS SGD 0.00001 10000 1
9 0 0 THTS SGD 0.0005 10000 1
10 0 0 THTS SGD 0.00005 10000 1

Table A.8: Set of best parameter configurations per instance for learning an offline heuristic
function which in combination with UCT* outperforms the baseline algorithms in the Recon
domain
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σ γ Heuristic function Method α Epochs Number of features
1 0 0 THTS SGD 0.00001 1000 1
2 0.05 0 THTS BGD 0.0005 1000 1
3 0.05 0 IDS BGD 0.0005 10000 1
4 0 0 IDS MBGD 0.0005 10000 1
5 0 0 IDS SGD 0.00001 10000 1
6 0 0 IDS MBGD 0.0005 1000 1
7 0 0 IDS MBGD 0.00005 1000 1
8 0 0 IDS BGD 0.0005 1000 1
9 0 0 IDS SGD 0.0001 1000 1
10 0 0 IDS BGD 0.00005 10000 1

Table A.9: Set of best parameter configurations per instance for learning an offline heuristic
function which in combination with UCT* outperforms the baseline algorithms in the Game
domain

σ γ Heuristic function Method α Epochs Number of features
1 0 0 IDS SGD 0.0001 10000 1
2 0 0 THTS MBGD 0.0001 10000 1
3 0 0 IDS MBGD 0.00005 1000 1
4 0.05 0 IDS BGD 0.0005 10000 1
5 0 0 IDS BGD 0.0001 1000 1
6 0.05 0 IDS MBGD 0.0005 10000 1
7 0.05 0 IDS SGD 0.00001 10000 2
8 0.05 0 IDS SGD 0.00001 10000 1
9 0.05 0.1 IDS SGD 0.0005 10000 1
10 0.05 0 IDS MBGD 0.00001 10000 1

Table A.10: Set of best parameter configurations per instance for learning an offline heuristic
function which in combination with UCT* outperforms the baseline algorithms in the Traffic
domain

σ γ Heuristic function Method α Epochs Number of features
1 0 0 IDS SGD 0.0005 10000 1
2 0 0 IDS SGD 0.0005 10000 1
3 0 0 IDS SGD 0.0005 10000 1
4 0 0 THTS SGD 0.00001 10000 1
5 0 0 IDS SGD 0.0005 10000 1
6 0 0 IDS SGD 0.0005 10000 1
7 0 0 IDS SGD 0.0005 10000 1
8 0.05 0 THTS BGD 0.0005 1000 1
9 0 0 IDS SGD 0.00005 10000 1
10 0 0 IDS BGD 0.00001 1000 1

Table A.11: Set of best parameter configurations per instance for learning an offline heuris-
tic function which in combination with UCT* outperforms the baseline algorithms in the
Crossing domain
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σ γ Heuristic function Method α Epochs Number of features
1 0 0 IDS BGD 0.0001 1000 1
2 0 0 IDS SGD 0.00005 1000 1
3 0 0 IDS MBGD 0.00005 10000 1
4 0 0 IDS MBGD 0.00005 10000 1
5 0.05 0 THTS SGD 0.0001 10000 1
6 0 0 THTS SGD 0.0005 1000 1
7 0 0 THTS SGD 0.0001 10000 1
8 0.05 0 IDS MBGD 0.0001 1000 1
9 0 0 THTS SGD 0.0005 1000 1
10 0 0 THTS SGD 0.0005 1000 1

Table A.12: Set of best parameter configurations per instance for learning an offline heuristic
function which in combination with UCT* outperforms the baseline algorithms in the Skill
domain
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