Results 000000000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Learning Heuristic Functions Through Supervised Learning Master Thesis

Đorđe Relić

Natural Science Faculty of the University of Basel Department of Mathematics and Computer Science Artificial Intelligence

June 30, 2017

Results 0000000000000000 Conclusion and Future Work

◆□> <畳> <目> <目> <目> <目> <</p>

Outline

2 Learning a Heuristic Function

- Machine Learning
- Gradient Descent Methods

3 Results

- Experimental environment
- Parameters
- Final result

MDP

Definition (Markov Decision Process)

A MDP is a 6-tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, H, s_0 \rangle$ where:

- S the finite set of states
- \mathcal{A} the finite set of actions
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$ the transition function
- $\mathcal{R} : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ the reward function
- $H \in \mathbb{N}$ the finite horizon
- $s_0 \in \mathcal{S}$ the initial state

earning a Heuristic Function

Results

Conclusion and Future Work

Example of a MDP

Background 00●0 Learning a Heuristic Function

Results

Conclusion and Future Work

MDP

A policy $\pi : S \times \{1, ..., H\} \to A$. State-values: $V_{\pi}(s, d)$ and action value: $Q_{\pi}(s, \pi(s, d))$.

Background 00●0 Learning a Heuristic Function

Conclusion and Future Work

MDP

A policy $\pi : S \times \{1, ..., H\} \to A$. State-values: $V_{\pi}(s, d)$ and action value: $Q_{\pi}(s, \pi(s, d))$. A factored MDP:

- A finite-domain variable v associated with \mathcal{D}_v
- $\bullet\,$ A finite set of finite-domain variables ${\cal V}$
- \bullet Define state using ${\cal V}$
- For state $s \in S$ we have a set of facts $\mathcal{F}(s) = \{ \langle v, d \rangle \mid v \in \mathcal{V} \land d \in \mathcal{D}_v \}$

Background 00●0 Learning a Heuristic Function

Results

Conclusion and Future Work

MDP

A policy $\pi : S \times \{1, ..., H\} \to A$. State-values: $V_{\pi}(s, d)$ and action value: $Q_{\pi}(s, \pi(s, d))$. A factored MDP:

- A finite-domain variable v associated with \mathcal{D}_v
- $\bullet\,$ A finite set of finite-domain variables ${\cal V}$
- Define state using ${\cal V}$
- For state $s \in S$ we have a set of facts $\mathcal{F}(s) = \{ \langle v, d \rangle \mid v \in \mathcal{V} \land d \in \mathcal{D}_v \}$

Search algorithm: UCT*

- Action Selection
- Expansion
- Backup

Background 000● Learning a Heuristic Function

Results

Conclusion and Future Work

UCT* - Expansion

Results

Conclusion and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Outline

Learning a Heuristic Function Machine Learning

• Gradient Descent Methods

3 Results

- Experimental environment
- Parameters
- Final result

Learning a Heuristic Function

Results

Conclusion and Future Work

Learning a Heuristic Function

Machine Learning

Automated learning from data.

Learning a Heuristic Function

Results

Conclusion and Future Work

Learning a Heuristic Function

Machine Learning

Automated learning from data.

For each action $a \in A$:

- We want to learn $h^*:\mathcal{S}
 ightarrow\mathbb{R}$
- A given data set $\mathfrak{D} = \{(s, \hat{Q})\}_{i=1}^m$ with samples $h^*(s) = \hat{Q}$
- We want to find $\hat{h}:\mathcal{S}
 ightarrow \mathbb{R}$ which approximates h^*
- Search in \mathfrak{L} the space of linear functions

$$\hat{h}(s) = \sum_{f \in \mathcal{F}(s)} w_f$$

• Evaluating \hat{h} with the Mean Square Error function:

$$J(\mathcal{W},s) = \sum_{(s,\hat{Q})\in\mathcal{D}} (\hat{h}(s) - \hat{Q})^2$$

Learning a Heuristic Function

Results

Conclusion and Future Work

Learning a Heuristic Function

Background	d

Learning a Heuristic Function

Results

Conclusion and Future Work

Gradient Descent Methods

Update of weights in the opposite direction of the MSE gradient.

$$w_f := w_f - \alpha \frac{\partial J(\mathcal{W}, s)}{\partial w_f}, \forall w_f \in \mathcal{W}$$

Image credits: Sebastian Raschka (https://sebastianraschka.com)

Learning a Heuristic Function

Results

Conclusion and Future Work

Gradient Descent Methods

Based on the portion of ${\mathfrak D}$ we have three gradient descent types:

- Stochastic Gradient Descent each data set entry
- Batch Gradient Descent whole data set
- Mini Batch Gradient Descent subset of the data set

Learning a Heuristic Function

Results

Conclusion and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Underfitting and Overfitting

Image credits: Radim Rehurek (http://radimrehurek.com).

Learning a Heuristic Function

Conclusion and Future Work

Gradient Descent Methods

Improvements:

- Early stopping
- Learning rate decay
- Momentum

Background	

Learning a Heuristic Function

Conclusion and Future Work

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Momentum

w

Backgrou	und

Learning a Heuristic Function

Results 000000000000000 Conclusion and Future Work

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Momentum

w

Learning a Heuristic Function

Conclusion and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Gradient Descent Methods

To recap what we have:

- A data set $\mathfrak{D} = \{(s, \hat{Q})\}_{i=1}^n$
- Function approximation:

$$\hat{h}(s) = \sum_{f \in \mathcal{F}(s)} w_f$$

 Parameters – GD type, number of epochs, learning rate, momentum, learning rate decay, early stopping

Learning a Heuristic Function

Results

Conclusion and Future Work

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

Outline

2 Learning a Heuristic Function

- Machine Learning
- Gradient Descent Methods

3 Results

- Experimental environment
- Parameters
- Final result

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Results

Experimental environment:

- 12 domains and 10 instances per domain from IPPC 2014 and IPPC 2011
- Benchmarking against
 - DP-UCT
 - Winning algorithm of IPPC 2011
 - Winning algorithm of IPPC 2014

Goal

Find a parameter configuration for learning a heurstic function which outperforms baseline algorithms.

Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Results

Parameters:

- Heuristic Function
- Data set size
- Gradient Descent Types
- Learning rate
- Number of epochs
- Momentum and learning rate decay
- Combination of features

Learning a Heuristic Function

Results

Heuristic Functions

We wanted to learn two heuristic functions: IDS and UCT* using IDS.

Figure: $\alpha = 0.00001$, $\sigma = 0.05$, $\gamma = 0$ and number of epochs 1000

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Results

Parameters:

- $\bullet\,$ Heuristic Function IDS ~ 75 and UCT* ~ 35
- Data set size
- Gradient Descent Types
- Learning rate
- Number of epochs
- Momentum and learning rate decay
- Combination of features

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Results

Parameters:

- $\bullet\,$ Heuristic Function IDS ~75 and UCT* ~35
- Data set size Bigger data set is better
- Gradient Descent Types
- Learning rate
- Number of epochs
- Momentum and learning rate decay
- Combination of features

Backgro	und

Learning a Heuristic Function

Results

Conclusion and Future Work

Gradient Descent Types

SGD performing best:

DP-UCT	IPPC2011	IPPC2014	SGD	BGD	MBGD
0.0	0.0	0.75	1.0	0.63	0.81

Figure: $\alpha = 0.0001$, $\sigma = 0$, $\gamma = 0$ and number of epochs 1000

Backgro	und

Learning a Heuristic Function

Results

Conclusion and Future Work

Gradient Descent Types

BGD performing best:

DP-UCT	IPPC2011	IPPC2014	SGD	BGD	MBGD
0.71	0.93	0.75	0.91	1.0	0.85

Figure: $\alpha = 0.0005$, $\sigma = 0.05$, $\gamma = 0$ and number of epochs 1000

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Results

Parameters:

- $\bullet\,$ Heuristic Function IDS ~75 and UCT* ~35
- Data set size Bigger data set is better
- Gradient Descent Types Best choice depends on the task
- Learning rate
- Number of epochs
- Momentum and learning rate decay
- Combination of features

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

Results

Parameters:

- $\bullet\,$ Heuristic Function IDS \sim 75 and UCT* \sim 35
- Data set size Bigger data set is better
- Gradient Descent Types Best choice depends on the task
- Learning rate Best choice depends on the task
- Number of epochs Best choice depends on the task
- Momentum and learning rate decay
- Combination of features

Backgr	ound

Learning a Heuristic Function

Results

Conclusion and Future Work

Momentum

Figure: IDS, $\alpha = 0.00001$, $\sigma = 0.05$, $\gamma = 0$ and number of epochs 1000

Results

Parameters:

- $\bullet\,$ Heuristic Function IDS ~75 and UCT* ~35
- Data set size Bigger data set is better
- Gradient Descent Types Best choice depends on the task
- Learning rate Best choice depends on the task
- Number of epochs Best choice depends on the task
- Momentum and learning rate decay No momentum and small learning rate decay
- Combination of features

Learning a Heuristic Function

Results

Conclusion and Future Work

Combination of features

Combining state features into pairs and generating new features.

$$\mathcal{F}^2(s) = \{ \langle v_1, d_1, v_2, d_2 \rangle \mid v_1, v_2 \in \mathcal{V} \land d_1, d_2 \in \mathcal{D}_v \land s[v_1] = d_1 \land s[v_2] = d2 \}$$

Learning a Heuristic Function

Results

Combination of features

Combining state features into pairs and generating new features.

$$\mathcal{F}^2(s) =$$

 $\{\langle v_1, d_1, v_2, d_2 \rangle \mid v_1, v_2 \in \mathcal{V} \land d_1, d_2 \in \mathcal{D}_v \land s[v_1] = d_1 \land s[v_2] = d_2\}$

Outcome:

- Number of new features $\binom{n}{2} \frac{n}{2}$
- More accurate action-values but worse result
- More exploitation
- Less trials

Results

Parameters:

- $\bullet\,$ Heuristic Function IDS ~ 75 and UCT* ~ 35
- Data set size Bigger data set is better
- Gradient Descent Types Best choice depends on the task
- Learning rate Best choice depends on the task
- Number of epochs Best choice depends on the task
- Momentum and learning rate decay No momentum and small learning rate decay
- Combination of features Without expected improvement

earning a Heuristic Function

Results

Conclusion and Future Work

◆□> <畳> <目> <目> <目> <目> <<=>

Results

Final result

No single parameter configuration which outperforms the baseline algorithms.

Learning a Heuristic Function

Results

Conclusion and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Results

Final result

No single parameter configuration which outperforms the baseline algorithms.

There is a *Set of Best Parameter Configurations* for which the baseline algorithms are outperformed.

Learning a Heuristic Function

Results ○○○○○○○○○○○○ Conclusion and Future Work

Results

	DP-UCT	IPPC 2011	IPPC 2014	SBPC OH
Wildfire	0.79	0.83	0.69	0.86
Triangle	0.42	0.39	0.88	0.7
Academic	0.68	0.3	0.31	0.6
Elevators	0.59	0.96	0.96	0.9
Tamarisk	0.64	0.9	0.88	0.9
Sysadmin	0.61	0.74	0.8	0.99
Recon	0.58	0.98	0.94	0.98
Game	0.71	0.91	0.97	0.96
Traffic	0.86	0.93	0.98	0.7
Crossing	0.42	0.81	0.99	0.83
Skill	0.93	0.93	0.94	1.0
Navigation	0.67	0.58	0.92	1.0
Total	0.66	0.77	0.86	0.87

◆□ >
◆□ >
●
●
●
●
●
●

earning a Heuristic Function

Conclusion and Future Work

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Conclusion

"All models are wrong, but some models are useful." - George Box

Conclusion

"All models are wrong, but some models are useful." - George Box

Conclusion:

- No single parameter configuration for learning an offline heuristic in domain independent probabilistic planning.
- Many parameters which demand a large number of experiments and fine tuning.
- A set of parameter configurations was found that outperforms the baseline algorithms for 0.01.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Future Work

Future work:

- Other Gradient descent methods
- More domain knowledge for better analysis of the data set
- Investigating the underperformance of combined features approach
- Multiple iterations of learning
- Online learning

earning a Heuristic Function

Conclusion and Future Work

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Questions?

Additional slides

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Policy

Definition (Value functions)

Let $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, H, s_0 \rangle$ be a MDP, $s \in \mathcal{S}$ a state and π a policy. The **state-value** $V_{\pi}(s, d)$ of s under π with d steps to go is defined as

$$V_{\pi}(s,d) = Q_{\pi}(s,\pi(s,d))$$

where the action-value $Q_{\pi}(s, \pi(s, d))$ under π is defined as

$$Q_{\pi}(s,a) = egin{cases} \mathcal{R}(s,a) + \sum_{s'\in\mathcal{S}}(\mathbb{P}_{\mathcal{T}}[s'|s,a]\cdot V_{\pi}(s',d-1)) &, d>0\ \mathcal{R}(s,a) &, d=0 \end{cases}$$

for all state-action pairs (s, a).

Policy

Definition (Optimal policy)

Let the Bellman optimality equation for a state $s \in S$ be a set of equations that describe $V^*(s, d)$, where

$$V^*(s,d) = \max_{a \in \mathcal{A}} Q^*(s,d,a)$$
 $Q^*(s,d,a) = egin{cases} \mathcal{R}(s,a) + \sum\limits_{s' \in \mathcal{S}} (\mathbb{P}_\mathcal{T}[s'|s,a] \cdot V^*(s',d-1)) &, d > 0 \ \mathcal{R}(s,a) &, d = 0 \end{cases}$

A policy π^* is an **optimal policy** if $\pi^* \in \arg \max_{a \in \mathcal{A}} Q^*(s, d, a)$ for all $s \in S$.

Planning task

Definition (Planning task)

A planning task is a 4-tuple $T = \langle \mathcal{V}, \mathcal{A}, \mathcal{H}, s_0 \rangle$ where:

- \mathcal{V} the finite set of finite-domain variables v with domain \mathcal{D}_v
- \mathcal{A} the finite set of actions $\langle \textit{effect}_a, \textit{reward}_a
 angle = a \in \mathcal{A}$ where
 - effect_a is a probability distribution over partial variable assignment $\{(p_i^a, e_i^a)\}_{i=1}^n$ where p_i^a is a probability, e_i^a is a partial variable assignment and $\sum_{i=1}^n p_i^a = 1$
 - reward_a the reward of applying action a
- $H \in \mathbb{N}$ the finite horizon
- $s_0 \in \mathcal{V}$ the initial state

Example of a factored MDP

◆□> <畳> <目> <目> <目> <目> <<=>

UCT* - Action Selection

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

UCT* - Action Selection

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

UCT* - Backup

Gradient Descent Methods

Gradient descent methods:

$$w_f := w_f - \alpha \frac{\partial J(\mathcal{W}, s)}{\partial w_f}, \forall w_f \in \mathcal{W}$$

Where we have the error function over the data set $\mathfrak{D}^{\,\prime}\colon$

$$J(\mathcal{W},s) = rac{1}{2m} \sum_{(s,\hat{Q})\in\mathfrak{D}} (\hat{h}(s) - \hat{Q})^2$$

and by deriving we get:

$$rac{\partial}{\partial w_f} J(\mathcal{W},s) = rac{1}{m} \sum_{(s,\hat{Q})\in\mathfrak{D}} (\hat{h}(s) - \hat{Q}) \cdot rac{\partial}{\partial w_f} \hat{h}(s), orall w_f \in \mathcal{W}$$

Gradient Descent Methods

Based on the portion of ${\mathfrak D}$ we have three gradient descent types:

Gradient Descent Methods

Based on the portion of ${\mathfrak D}$ we have three gradient descent types:

• Stochastic Gradient Descent

$$rac{\partial}{\partial w_f} J(\mathcal{W},s) = (\hat{h}(s) - \hat{Q}) \cdot rac{\partial}{\partial w_f} \hat{h}(s), orall w_f \in \mathcal{W}$$

• Batch Gradient Descent

$$\frac{\partial}{\partial w_f}J(\mathcal{W},s) = \frac{1}{m}\sum_{(s,\hat{Q})\in\mathfrak{D}}(\hat{h}(s) - \hat{Q}) \cdot \frac{\partial}{\partial w_f}\hat{h}(s), \forall w_f \in \mathcal{W}$$

• Mini Batch Gradient Descent

$$rac{\partial}{\partial w_f} J(\mathcal{W},s) = rac{1}{k-j} \sum_{(s,\hat{Q})\in\mathfrak{B}} (\hat{h}(s) - \hat{Q}) \cdot rac{\partial}{\partial w_f} \hat{h}(s), orall w_f \in \mathcal{W}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@