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Abstract

In classical AI planning, the state explosion problem is a reoccurring subject: although
the problem descriptions are compact, often a huge number of states needs to be con-
sidered. One way to tackle this problem is to use static pruning methods which reduce
the number of variables and operators in the problem description before the planning.

In this work, we discuss the properties and limitations of three existing static pruning
techniques with a focus on satisficing planning. We analyse these pruning techniques
and their combinations, and identify synergy effects between them and the domains
and problem structures in which they occur. We implement the three methods into an
existing propositional planner, and evaluate the performance of different configurations
and combinations in a set of experiments on IPC benchmarks. We observe that static
pruning techniques can increase the number of solved problems, and that the synergy
effects of the combinations also occur on IPC benchmarks, although they do not lead to
a major performance increase.
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1. Introduction

Classical Planning is a field in Artificial Intelligence in which, given a specific problem,
the aim is to find a solution in form of an action sequence which can be applied to reach
a defined goal. One approach to find a solution is state space search, where a problem is
modeled as a state space in which executing an action equals a transition to a different
state. A solution to the problem, called a plan, is a sequence of actions leading from
the initial state to a goal state. We distinguish between satisficing search, where any
plan needs to be found for the problem, and optimal search, where the plan to be found
needs to have minimal cost among all plans.
A reoccurring problem that has been subject to much research is the state explosion
problem, i.e. the problem that the size of the search space quickly explodes when prob-
lems become bigger, and often a solution cannot be found anymore within reasonable
time and memory bounds, especially in optimal search. One possibility to decrease the
number of states that need to be considered is to use heuristic search, which is based
on computing a heuristic function to estimate the distance of a state to a goal state.
Heuristic search has been well studied and very good heuristics were discovered in the
last years, both for optimal (Helmert and Domshlak, 2009; Haslum et al., 2007; Pom-
merening et al., 2014) and for satisficing planning (Hoffmann and Nebel, 2001; Helmert
and Geffner, 2008).
An orthogonal method to tackle the state explosion problem is to prune parts of the
search space, in order to reduce the number of states that need to be expanded, thus
easing the effort of the search. Some pruning methods work in a dynamic way, meaning
they are active during the search, while static pruning methods reduce the problem size
before the search by modifying the problem description. Several of these static pruning
methods were discovered, but they are not fully explored yet.

In this work, we explore to what degree and in which domains problem solving algo-
rithms can benefit from using recent static pruning methods that preserve at least one
plan for the problem. Further, we investigate possible synergies between techniques, and
the costs in time and loss of plan optimality resulting from combining them.

The thesis is organized as follows.
In Chapter 2, we formally introduce planning tasks and other concepts which are relevant
for this work. Chapter 3 describes and explains the three static pruning techniques, and
also analyses some of their properties and limitations. In Chapter 4, we examine each
combination of two pruning methods and discuss synergy effects by means of examples
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or prove that no synergy effects exist.
We then describe the implementation of the three methods into an existing propositional
planner in Chapter 5. The implementation is used in Chapter 6 for a row of experiments
on IPC benchmarks, where we first evaluate the techniques separately and then in com-
bination with each other. We conclude the thesis with an idea for a possible extension
of one of the three techniques in Chapter 7, and summarize our results in Chapter 8.

Related Work

We conclude this introduction with a brief summary of the past research on static prun-
ing methods.

A central concept of this work is Safe Abstraction, which has been discovered by
Helmert (2006), later on applied to model checking (Wehrle and Helmert, 2009) and
further researched by Haslum (2007). The idea of this static pruning method is to iden-
tify safe variables, which can be abstracted from the problem in order to tackle the
state-space explosion. The property of a safe variable ensures that no state is reachable
in the abstract problem which is not reachable in the concrete problem. Consequently,
every plan for the abstract problem can be modified so it becomes a plan for the original
problem.

The second pruning method relevant to this work is Redundant Operator Reduction.
A redundant operator can be replaced in any plan by a sequence of different operators.
As shown by Haslum and Jonsson (2000), redundant operators can be removed from
the planning task before planning in order to reduce the problem complexity, and the
problem remains solvable.

Another method to reduce the size of the search space is Dominance Pruning, which
has recently been researched by Torralba and Hoffmann (2015). The authors propose to
detect states that dominate other states by computing simulation relations on Merge-
and-Shrink abstractions. If a state is dominated by a previously explored state, it can be
pruned during the search, meaning that it is not explored. This optimality-preserving
technique can also be used in a static way, to remove operators from the planning task
whose transitions are irrelevant as other transitions exist which lead to better states
(Kissmann and Torralba, 2015). This static pruning method is the third technique we
investigate in this work.

To complete the picture, we describe additional static pruning techniques in the fol-
lowing, which are not directly relevant to the work.

As some problems have structural symmetries between variables and between actions,
the search effort can be reduced by exploiting them. Fox and Long (1999) detect sym-
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metric objects by forming symmetric groups. This information can be used to extend
the problem description with symmetric-breaking predicates as shown by Crawford et al.
(1996), or during the search to avoid looking at plans which differ from already consid-
ered plans only in symmetric objects (Pochter et al., 2011; Domshlak et al., 2012, 2013).

Another method, called Tunnel Macros, has been proposed by Junghanns and Scha-
effer (2001) in the context of solving the Sokoban puzzle. Tunnel Macros have been
generalized in a recent work by Nissim et al. (2012) and allow the composition of several
actions, which naturally should be executed subsequently, into a single action, either
dynamically by pruning states, or statically by adding new operators to the problem.
Nissim et al. (2012) also discovered a method to prune the search space following the
idea to finish first what has been started. Their Partition-based Path Pruning uses a
decomposition of the planning task, which allows grouping actions that somehow be-
long together, and should be executed after another. The authors also suggest a way
to decompose a given problem based on a similarity score, and present a rule how the
Partition-based Path Pruning can be combined with Tunnel Macros while preserving
optimality.

Lastly, Partial Order Reduction prunes the search space by only considering a subset
of the applicable transitions in each state. To identify the transitions to be considered,
Valmari (1989) proposes stubborn sets, which contain all applicable transitions but those
independent of the transitions in the set, which can therefore still be applied later on.
Godefroid (1996) describes an orthogonal concept, so-called sleep sets, which contain
transitions that can be ignored since the states they lead to can be reached through
other paths. Both of these methods have recently found interest in the context of
planning (Wehrle and Helmert, 2012; Holte et al., 2015; Alkhazraji et al., 2012; Wehrle
and Helmert, 2014).
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2. Background

In this chapter, we will introduce the relevant concepts and definitions concerning plan-
ning tasks.

In classical planning, a problem is represented by a set of variables V = {v1, . . . , vn},
where each Variable v ∈ V is associated with a finite domain Dv. A specific state s of
the problem is captured by a distinct assignment of values to all variables:
s = {(v1, s(v1)), . . . , (vn, s(vn))}, s(vi) ∈ Dvi , where each variable-value pair (v, s(v))
in the set represents an assignment v ←− s(v) in the state s. A partial state p is an
assignment of values to a subset of variables denoted by V (p) = {v1, . . . , vk}, V (p) ⊆ V :
p = {(v1, p(v1)), . . . , (vk, p(vk))}, p(vi) ∈ Dvi .

The definition of a planning task (or planning problem) used in this work is based on
the SAS+ formalism (Bäckström and Nebel, 1995), extended with operator costs:

Definition 1. A Planning Task is a 4-tuple Π = 〈V ,O, s0, s?〉 consisting of

• a finite set of variables V,

• a finite set of operators O. Each operator o ∈ O is defined as a triple 〈preo, effo, c(o)〉
where preo and effo are partial states capturing the preconditions and effects of the
operator, and c(o) ∈ R+

0 is its cost value,

• an initial state s0,

• and a partial state s?, called the goal. For every variable v ∈ V (s?), we call s?(v)
its goal value.

The semantics of a planning task on the basis of states is formalized in a Labeled
Transition System.

Definition 2. A Labeled Transition System (LTS) for a given planning task
Π = 〈V ,O, s0, s?〉 is a tuple Θ(Π) = 〈S,L, T , I,SG〉 containing

• a set of all possible states of the planning task, S,

• a set of labels, L, which correspond to the operators O in the planning task. We
denote the cost of the operators corresponding to a label l ∈ L by c(l),
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• a set of transitions, T ⊆ S × L × S. A transition t = (s, l, u), s, u ∈ S, l ∈ L,

written as s
l−→ u, is in T , iff an operator corresponding to l is applicable in s and

leads to u. An operator o is applicable in s, iff ∀v ∈ V (preo) : s(v) = preo(v).
Applying an operator o in a state s leads to a state u in which the following as-
signment holds:

∀v ∈ V : u(v) =

{
effo(v) if v ∈ V (effo)

s(v) otherwise

• the initial state, I ∈ S,

• and the set of goal states, SG ⊆ S, with sg ∈ SG iff ∀v ∈ V (s?) : sg(v) = s?(v).

An LTS can be visualized as a directed graph (a state transition graph), where a state
is represented by a node, and the transitions as edges.

A planning task can be decomposed into several LTSs. We consider the formalism by
Sievers et al. (2014), where a planning task Π = 〈V ,O, s0, s?〉 is represented by a set
of LTSs, X = {Θ1, . . . ,Θk}, using the same labels L that correspond to the operators
O. X is initialized with Atomic Transition Systems (ATS), one for every variable in the
planning task: X = {ATSv(Θ(Π)) | v ∈ V}.
Definition 3. Given the LTS Θ = 〈S,L, T , I,SG〉 corresponding to a planning task and
a variable v in that task, we define the projection of a (partial) state s into the ATS of
v as a function

pv(s) =

{
{(v, s(v))} if v ∈ V (s)

∅ otherwise

The Atomic Transition System of v is a labeled transition system ATS v(Θ) =
〈Sv,L, Tv, Iv,SG

v 〉, where Sv = {pv(s) | s ∈ S}, Tv = {(pv(s), l, pv(u)) | (s, l, u) ∈ T },
Iv = pv(I) and SG

v = pv(SG).

Two LTSs can then be merged, meaning they are replaced in X with their synchronised
product.

Definition 4. Given two labeled transition systems with the same set of labels, Θi =
〈Si,L, Ti, Ii,SG

i 〉 and Θj = 〈Sj,L, Tj, Ij,SG
j 〉, we define their Synchronised Prod-

uct, written as Θi⊗Θj, as 〈Si×Sj,L, T ⊗, (IiIj),SG
i ×SG

j 〉, where (sisj)
l−→ (titj) ∈ T ⊗

iff si
l−→ ti ∈ Ti and sj

l−→ tj ∈ Tj.
The synchronisation of all atomic transition systems yields one single LTS which com-

pletely represents the planning task, as described in Definition 2. We call this LTS the
state space of the problem.

We further define the domain transition graph, to capture the internal structure of a
variable, and the causal graph, to capture the relations between variables:
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Definition 5. Given a planning task Π = 〈V ,O, s0, s?〉, we define the Domain Tran-
sition Graph (DTG) of a variable v ∈ V using O, written as DTGO(v), as a directed
graph containing one node for every value d ∈ Dv. The graph contains an edge from the
node corresponding to d1 ∈ Dv to the node corresponding to d2 ∈ Dv, iff an operator
o ∈ O exists where v ∈ V (effo), effo(v) = d2 and either v /∈ V (preo) or preo(v) = d1.
We define the free DTG of a variable v ∈ V as DTGOv(v), where Ov is the subset of
operators which have no precondition and no effect on any other variable:
Ov = {o ∈ O : V (preo) ⊆ {v}, V (effo) = {v}}.

Definition 6. Given a planning task Π = 〈V ,O, s0, s?〉, we define the Causal Graph
of the task as the directed graph CG(Π) = 〈V , E〉, where V are the nodes and E the
edges. E contains an edge (v1, v2), iff there exists an operator o ∈ O where v2 ∈ V (effo)
and v1 ∈ (V (preo) ∪ V (effo)).

We call a variable v1 ∈ V irrelevant, if there exists no path in the causal graph from
that variable to any variable v2 ∈ V where v2 ∈ V (s?), meaning that v1 has no influ-
ence on any variable for which a goal value is defined. We call a variable static, if no
state can be reached in which an operator is applicable that has an effect on this variable.

A solution to a planning task, called a plan, is a finite sequence of operators, 〈o1, . . . , on〉,
which, if applied successively starting from the initial state, lead to a goal state. A plan-
ning task is solvable, if such a plan exists, and unsolvable otherwise. The cost of a plan
equals the sum of the operator costs in the sequence. A plan is called optimal, if it has
minimal cost among all plans for the planning task.

Satisficing Planning is the problem of finding any plan for a given planning task,
optimal planning is the problem of finding an optimal plan for the task. We call a static
pruning method solution-preserving, if at least one plan exists after the application of
the method, and optimality-preserving, if at least one optimal plan is preserved.
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3. Static Pruning Methods Revisited

In this chapter, we explain three existing pruning techniques, which will be examined in
this work; two of which are solution-preserving, and one optimality-preserving. Further,
we investigate some of their properties and possible extensions.

3.1. Safe Abstraction

The technique of Safe Abstractions has firstly been described by Helmert (2006). Safe
Abstraction (SA) aims to abstract variables in a problem, so the search algorithm can
run on a smaller, abstracted problem without dependencies on these variables. We
formalize the abstraction of a variable from a planning task as follows:

Definition 7. Given a planning task Π = 〈V ,O, s0, s?〉 and a variable v ∈ V, we define
the effect of abstracting v from the planning task on a (partial) state s as a function

av(s) =

{
s \ {(v, s(v))} if v ∈ V (s)

s otherwise

Using that function, the planning task that results from abstracting v from Π is defined
as follows: SAv(Π) = 〈V \ v,O′, av(s0), av(s?)〉 where the set of operators is defined as
O′ = {〈av(preo), av(effo), c(o)〉 | o ∈ O}.

A special property of Safe Abstractions is that they fulfill the downward refinement
property: Every plan for the abstract problem can be extended into a plan for the
concrete problem, meaning no additional states are reachable in the abstract problem
compared to the concrete problem. This property is used in the formalization of SA by
Haslum (2007), to define safe (safely abstractable) variables:

Definition 8. Given a planning task Π = 〈V ,O, s0, s?〉, we call a variable v ∈ V safe,
if SAv(Π) fulfills the downward refinement property, meaning that a plan for SAv(Π)
can be refined into a plan for Π by inserting operators from the set {o ∈ O | V (preo) ⊆
{v}, V (effo) = {v}} which only depend on v and only affect v.

The original concept of SA by Helmert (2006) used the following conditions for safe
variables:

Theorem 1. (Helmert, 2006)
Given a planning task Π = 〈V ,O, s0, s?〉, a variable v ∈ V is safe, if its domain
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transition graph DTGO(v) is strongly connected and v is a source node in the causal
graph CG(Π).

The intuition behind these conditions is that if a variable can arbitrarily take on any
value independently of any other variable, it is ensured that any plan for the problem
resulting from removing that variable, called an abstract plan, can be modified to a plan
for the original problem, called a concrete plan. Whenever an operator in the abstract
plan has a precondition on the value of an abstracted variable, the precondition can be
satisfied by inserting operators into the plan that change the variable’s value as required.
If there exists a goal condition on the abstracted variable, it can be satisfied in a simi-
lar way by inserting operators at the end of the abstract plan. We call this process of
modifying an abstract plan to be a concrete plan refining the abstract plan.

The process of abstracting a set of safe variables {v1, . . . , vk} ⊆ V from a planning task
Π = 〈V ,O, s0, s?〉 removes the safe variables and any precondition, effect, or goal condi-
tion on them, creating an abstract planning task Π′ = SAvk(SAvk−1

(. . . (SAv1(Π)) . . . )).
It is possible that further variables become safe in Π′ and can be abstracted, since some
operators lost dependencies they had in Π. We call this process a cascading abstraction.
It can be repeated, until no more variables become safe.

The search is then executed on the most abstract planning task, yielding a plan for it
if the problem is solvable. It is possible that after the abstraction process every variable
with a goal condition has been abstracted, in which case the abstract problem is solved
by a plan of zero length. No actual search is required to solve the problem in this case,
we say that the problem has been solved by Safe Abstraction.
Since variables which were abstracted lastly have preconditions on previously abstracted
variables, the refining of the abstract plan also needs to be performed in a successive
way, inserting the abstracted variables in the reversed ordering. With every inserted
variable, the plan becomes more concrete.

As Haslum (2007) explains, the conditions by Helmert are stronger than they need
to be to make a variable safe. To ensure that every abstract plan can be refined, it is
not necessary that every abstracted variable is a source node in the causal graph, and
only a subset of the variable’s values needs to be connected in the variable’s free DTG.
Haslum identifies the relevant conditions based on the following definitions:

Definition 9. Given a planning task Π = 〈V ,O, s0, s?〉 and a variable v ∈ V, we call a
value d2 ∈ Dv free reachable from another value d1 ∈ Dv, iff a path exists from d1
to d2 in DTGOv(v).

We call a value d ∈ Dv externally required, iff there exists an operator o ∈ O
such that v ∈ V (preo), preo(v) = d and V (effo) 6⊆ {v}, meaning o has d as a precondition
on v, and at least one effect on a variable other than v.
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We call a value d ∈ Dv externally caused, iff there exists an operator o ∈ O such
that v ∈ V (effo), effo(v) = d and V (effo) 6⊆ {v}, meaning o has d as an effect on v, and
at least one effect on a variable other than v.

Theorem 2. (Haslum, 2007)
Given a planning task Π = 〈V ,O, s0, s?〉, a variable v ∈ V is safe, if all externally
required values of v are strongly connected in its free DTG and free reachable from every
externally caused value of v, and the goal value of v (if any) is free reachable from each
externally required value.

The intuition behind Theorem 2 is that every value the abstract plan might require
a previously abstracted variable to have must be free reachable from every value the
variable might take on as a consequence of the plan. This ensures that whenever a value
of the variable is needed, an operator sequence exists which assigns this value to the
variable and is independent of other variables.

Figure 3.1 visualizes the different conditions for Safe Abstraction on the free DTG
of a variable. The two depicted graphs show which structure has to exist in the free
DTG of the variable to make it safe. With Helmert’s condition, shown in Subfigure
(a), the free DTG must be strongly connected, meaning that every value has to be free
reachable from every other. Since free reachability is a transitive relation, at least one
of the caused/required values has to be free reachable from values outside of the group,
which is depicted by a single edge to and from the group of values.
As Helmert’s condition is stronger than it needs to be, some of the connections in the
graph are not necessary to make the variable safe. For example, it is not necessary that
other values are free reachable from the goal state G, since that value is only required
at the end of the plan - except G was an externally required value.
In Haslum’s condition, shown in Subfigure (b), fewer connections are required. The
initial value and the externally caused values do not need to be free reachable, except
they overlap with the externally required values or contain the goal value. Similarly, the
values of the variable do not need to be free reachable from the goal value.

Considering Theorem 2, one special case exists we’d like to discuss. When a variable
has no externally required values, and the goal value is not free reachable from the initial
state or an externally caused value, then the variable is safe according to the theorem.
If it is abstracted, however, the previously described straight-forward refining algorithm
is not necessarily going to produce a plan for the original problem. Figure 3.2 shows
an example instance in which this applies, a planning task Π = 〈V ,O, s0, s?〉 with the
variables V = {v1, v2}, the domains Dv1 = Dv2 = {I,G}, the initial state s0 = (I, I),
the goal state s? = (G,G), and the operators O = {e, f} where e has the preconditions
pree(v1) = I, pree(v2) = I and the effect v1 ←− G, f has the precondition pref (v2) = I
and the effect v2 ←− G.
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Istart C1 Ci Cn

R1 Ri Rk

G

. . . . . .

. . . . . .

(a) Helmert’s condition

Istart C1 Ci Cn

R1 Ri Rk

G

. . . . . .

. . . . . .

(b) Haslum’s condition

Figure 3.1.: Visualization of the difference between Helmert’s and Haslum’s conditions
for an example variable with the initial value I, the goal value G, the exter-
nally caused values C1, . . . , Cn and the externally required values R1, . . . , Rk.
An edge represents the free reachability of one value from another, by ap-
plying one or several operators which do not have any precondition or effect
on any other variable. The externally caused values are grouped together
(marked in blue), as are the externally required values (marked in red).

Istart G
e

f f

(a) DTG of variable v1. f (dotted
transitions) has no precondition
on this variable.

Istart G
f

e

(b) DTG of variable v2. e (dotted
transition) is only applicable if
v2 has the value I.

Figure 3.2.: Example instance where Theorem 2 allows to abstract v1 which is unsafe.

According to Haslum’s condition, v1 is safe, since every part of the condition is based
on the free reachability or strong connectedness of the externally required values, and
no externally required value exists in v1. After abstracting v1, a plan for the resulting
problem is < f >. Refining that plan would insert e at the end of the plan, since
no value of the abstracted variable is required throughout the plan except for the goal
value in the end. < f, e > is however not a plan for the concrete problem, since e is
not applicable after applying f . As we can form a plan by inserting e before f , the
downward refinement property holds here. However, the intuition behind safe variables
is violated since it is not possible to reach G in v1 independently of v2. To refine this
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plan correctly, the algorithm would need to look ahead, and detect that e needs to be
applied before f . In this example, v2 would be safely abstractable and v1 subsequently
without refinement problems, but with more than two variables this is not necessarily
the case.
We propose to capture this special case with a further condition in Theorem 2: If the
considered variable has no externally required values but a goal value, then the goal
value must be free reachable from every externally caused value and the initial value.

3.2. Redundant Operator Reduction

The aim of the technique described by Haslum and Jonsson (2000), which we call Redun-
dant Operator Reduction (ROR), is to remove redundant operators from the planning
task. An operator is called redundant, if we can replace its application in any plan by a
sequence of different operators and the resulting sequence, although potentially longer,
will still be a plan for the problem. The state-transition graph of a problem with redun-
dant operators contains many transitions which are not directly necessary to make the
problem solvable, meaning it is denser than it needs to be. Removing those operators
results in a decrease of the branching factor, so fewer edges have to be considered. This
can potentially speed up the search, as long as the solution depth (the plan length) does
not increase too much.

The original description of the technique by Haslum and Jonsson (2000) is based on
the STRIPS problem formulation. In STRIPS, every variable is binary, and precondi-
tions/goal conditions only exist on the True-value of the variables. Consequently, an
effect making a variable True can only increase the number of applicable operators,
which is called an add -effect, while a delete-effect sets a variable to False and possibly
causes operator/goal conditions to not be satisfied anymore. As we consider non-binary
variables in this work, such a split is not possible. Every effect is simultaneously an add-
effect for the assigned value and a delete-effect for every other value of the variable’s
domain. For that reason, we rephrase the original definitions (Def. 3 and 4 in Haslum
and Jonsson (2000)) in a SAS+ formulation.

To detect an operator o ∈ O as redundant, an operator sequence must exist that
implements o, meaning it is applicable in all states in which o can be applied, and it
must lead to the same state o would lead to. A concept needed to define this implements
relation is that of cumulative effects and preconditions of an operator sequence, which is
defined inductively in Definition 10: When the sequence is extended by an operator, its
cumulative preconditions grow by those variable assignments which aren’t ensured by the
cumulative effects of the sequence already. Only when these cumulative preconditions are
met in a state, the entire operator sequence can be applied successively. The cumulative
effects are extended by the effects of the new operator if the sequence had no effect on
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Figure 3.3.: Redundant operator: o (marked red) is implemented by 〈o1, o2〉.

the respective value, and overwritten by the new value if the sequence had an effect
on this variable. The cumulative effects and preconditions together form the minimal
assignment which is met after applying the operator sequence.

Definition 10. We define the cumulative preconditions and effects of a se-
quence of SAS+ operators, denoted pre..., eff ... respectively, as
preo1,...,on,o = preo1,...,on ∪ {(var, val) ∈ preo | @(var, val) ∈ eff o1,...,on}
eff o1,...,on,o = eff o ∪ {(var, val) ∈ eff o1,...,on | var 6∈ V (eff o)}

Definition 11. We say a sequence of operators o1, . . . , on implements an operator o,
iff
(i) o does not occur in the sequence,
(ii) preo1,...,on ⊆ preo

(iii) eff o = eff o1,...,on

Based on Definition 11, a redundant operator can then be defined as an operator o ∈ O
for which a sequence of operators o1, . . . , on ∈ (O\{o}) exists which implements o. Figure
3.3 visualizes the state-transition graph of a problem containing a redundant operator,
which is implemented by a sequence of length 2. Removing a redundant operator from
the planning task means that a short-cut transition is removed in the state-transition
graph, but the state is still reachable by applying a sequence of other operators, mean-
ing no state is pruned: In the example, all three states are still reachable after pruning o.

Definition 11 differs from the formulation found in Haslum and Jonsson (2000) in
the third condition, where add- and delete-effects are not separable. Also, in the orig-
inal version it was allowed for an operator sequence to have more delete-effects than
the operator it implements, iff the additional values it deletes (changing the variable’s
value to false) are incompatible with the preconditions of the operator. A variable’s
value is incompatible with the preconditions, if no state can be reached in which this
value is assigned and the preconditions of the operator are satisfied. Consequently,
deleting that value in the operator sequence does not change anything, since the value
does not hold. Haslum and Jonsson explain this special case with an example from
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the Blocksworld domain. The operator Move(block A, from block B, to block C)

is redundant with the operator sequence of applying Unstack(block A, from block

B) and Stack(block A, on block C). The operator sequence has a cumulative delete-
effect, ¬ ontable(block A), as the block was moved from the table onto block C. The
Move-operator does not have this delete-effect, the effect is, however, incompatible with
the precondition onblock(block A, on block B), since a block can’t be on top of an-
other block and on the table simultaneously.
As in SAS+ problem formulations such mutually exclusive facts are commonly expressed
as different values of the same variable, the value ontable(block A) is overwritten by
the value onblock(block A, on block C) in the cumulative effects of the described
operator sequence, which is a value the implemented Move-operator also assigns to the
variable. Therefore this special case does not need to be considered in the SAS+ formu-
lation. In the case of other mutually exclusive facts which span across multiple variables
being known, they could be incorporated into Definition 11 as a modification of the third
condition: If an operator sequence o1, . . . , on has one effect on a variable, v ←− d, d ∈ Dv,
on which the operator o has no effect, Definition 11 does not allow the sequence to im-
plement the operator. However, if every other value e ∈ (Dv \{d}) is mutually exclusive
with at least one precondition of o, whenever o is applicable, v must already have the
value d. In that case, permitting the additional effect of o1, . . . , on would allow to detect
o as redundant. Since this exceptional case depends on the availability of additional in-
formation about mutually exclusive facts, and to keep things simple, it is not considered
in Definition 11.

Haslum and Jonsson define a reduced set of operators as a set which does not contain
any redundant operators. Often operators are responsible for implementing each other,
and by removing a redundant operator another previously redundant operator is not
implemented anymore. Depending on the order of operators removed, the size of the
resulting reduced set can differ. As shown in the paper, finding a minimal reduced set is
NP-hard, so in practice they make use of a greedy algorithm that removes a redundant
operator directly when it is detected. To further reduce the complexity of the algo-
rithm, they define a maximum operator sequence length, and show that in the examined
instances (Blocks, Logistics, Grid) a limit of 2 operators produces almost as small
operator sets as higher limits do.

As Haslum and Jonsson (2000) point out, every reduced operator brings a reduction of
the branching factor, but also potentially an increase of the plan length. This means the
gain from using the technique is not consistent across all planning tasks, and can lead
to a speedup of the search as well as a slowdown. Consider Figure 3.4, which shows the
atomic transition system of a variable in a Miconic instance. In this domain, an elevator
moves up and down between floors, allowing passengers to board at their starting floor
and depart at their destination. The goal is reached when all passengers are at their
destination floor. An optimal plan for this problem would be to first move to the floor
f1, collect passenger p1, drop him off on floor f3 while boarding p0 at the same time,
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and then drop off the second passenger one floor lower.

f0start f1

f2 f3

board p1

depart p0

board p0

depart p1

Figure 3.4.: ATS of the elevator location variable in a Miconic instance. The label nota-
tions at the transitions between floors have been left out, because they are
not relevant. The dotted edges correspond to operators which are removed
by ROR. board pi and depart pi are operators with effects on other variables
and conditions on the elevator variable.

The elevator’s position is encoded in a variable whose values are strongly connected
in the graph of its ATS, so many redundant operators can be removed by ROR - in this
example, it removes 8 operators. This leads to an increase in the number of states that
need to be expanded (from 9 to 12 states), since some shortcuts, such as moving from
floor f1 directly to f3, are not possible anymore.

The above example shows that it is not always beneficial in planning to remove a
redundant operator. In that case, ROR is removing too many operators, since it only
uses redundancy as criterion. One idea regarding this problem is that ROR could be
extended with knowledge similar to what is used in the Tunnel Macros by Nissim et al.
(2012). If the dynamic method of action tunneling was used after removing the redun-
dant operators in this problem, it would tunnel the ascend from floor f1 to f3, since
without having passenger p0 boarded, there is nothing to be done on floor f2 except for
moving on to a different floor. A dynamically pruning version of ROR with this knowl-
edge could avoid pruning the f1 −→ f3 transition, since it is a tunnel for the implementing
sequence.
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3.3. Dominance Pruning

Another pruning method to speed up the search, recently researched by Torralba and
Hoffmann (2015), is Dominance Pruning (DP), which is in contrast to the previously
explained techniques optimality-preserving. It is based on the idea that some states are
better to be in than others, and that a state does not need to be explored when a better
state was previously considered already. Definition 12 describes the label-dominance
simulation that is used to define this state relation. It is calculated on labeled transition
systems, {Θ1, . . . ,Θn}, which represent the problem, and contains those pairs of states
(s, t) in an LTS where state t simulates s, written as s � t. Denoting the cost of the
shortest path for a given state p to a goal state as h∗(p) (the perfect heuristic), s � t
means that h∗(t) <= h∗(s) holds, so t is “at least as good” as s. Note, that Definition 12
is based on the concept of label domination (Definition 13) and vice versa. They form
a cyclic definition, which has to be accounted for using an iterative implementation.

Definition 12. (Label-Dominance Simulation). Def. 5 in Torralba and Hoffmann (2015)
Let X = {Θ1, . . . ,Θk} be a set of LTSs sharing the same labels. Denote the states of
Θi by Si. A set R = {�1, . . . ,�k} of binary relations �i ⊂ Si × Si is a label-
dominance simulation for X if, whenever s �i t, s ∈ SG

i implies that t ∈ SG
i ,

and for every transition s
l−→ s′ in Θi, there exists a transition t

l′−→ t′ in Θi such that
c(l′) <= c(l), s′ �i t

′, and, for all j 6= i, l′ dominates l in Θj given �j.
We call R the coarsest label-dominance simulation if, for every label-dominance

simulation R′ = {�′1, . . . ,�′k} for X , we have �′i ⊆ �i for all i.

s s′

t t′

l

l′

sim? simdom

Figure 3.5.: State simulation according to Definition 12 for one example transition start-
ing from s, for which a transition in t needs to exist which leads to a state
at least as good as s′.
Whether t simulates s (sim?) depends on whether l′ dominates l in all other
LTS (dom) and whether t′ simulates s′ (sim)

Figure 3.5 visualizes the conditions for a pair of states to be an element in the label-
dominance simulation: The state t simulates the state s, if for every transition from s to
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a different state s′ there exists a transition from t to a different state t′ which simulates
s′ (meaning the transition leads to a state which is at least as good as s in this LTS),
and the label of the second transition dominates the label of the first transition in all
other LTS.

The concept of label dominance is described in Definition 13, and visualised in Figure
3.6. As the definition of label dominance has a condition on the simulation relation �,
and the label-dominance simulation requires the computation of label dominance, the
simulation has to be iteratively re-computed until no more change occurs. Initially, all
pairs of states are in the simulation relation, except for those which can clearly never
fulfill the conditions: When s is a goal state, and t is not, then it’s clear that s cannot
be simulated by t.

Definition 13. (Label Dominance). Def. 4 in Torralba and Hoffmann (2015)
Given an LTS Θ = 〈S,L, T , I,SG〉 and a label-dominance simulation � for a set of LTS
including Θ, we say a label l′ ∈ L dominates l ∈ L in Θ given � if for every transition

s
l−→ s′ ∈ T there exists a transition s

l′−→ t ∈ T s.t. s′ � t.

s s′

t

l

l′

sim

dom?

Figure 3.6.: Label dominance according to Definition 13 for one example transition s
l−→

s′.
Label l′ dominates label l (dom?) in this LTS if for every such transition of
l a transition of l′ exists which leads to a state that is better (sim) than s′.

The intuition behind Definition 13 is that whenever a label l is dominated by another
label l′ in one LTS, every time (an operator corresponding to) l could be applied, applying
l′ is possible and leads to a better state in this LTS than applying l would lead to. As
shown by Kissmann and Torralba (2015), the label-dominance simulation can be utilized
to prune transitions which are subsumed, meaning there exists a transition which is
applicable in the same states and leads to a better state in all LTS. Therefore, removing
the subsumed transition does not destroy any optimal plan for the problem. Definition
14 describes the conditions needed for a transition to be subsumed, which are visualized
in Figure 3.7.
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Definition 14. (Subsumed Transitions). Definition 2 in Kissmann and Torralba (2015)

Given a set of LTS T = {Θ1, . . . ,Θk}, where Θi = 〈Si,L, Ti, Ii,SG
i 〉, a transition si

l−→
ti ∈ Ti is subsumed if and only if there exists another transition si

l′−→ t′i ∈ Ti such that

ti � t′i and l′ dominates l in all Θj for j 6= i. In that case, we say that transition s
l−→ t

is subsumed by s
l′−→ t′.

si ti

t′i

l

l′
dom

sim

Figure 3.7.: A subsumed transition according to Definition 14.

si
l−→ ti (marked in red) is subsumed by the transition si

l′−→ t′i if t′i simulates
ti, and l′ dominates l in all other LTS.

In some cases, the pruning of transitions allows to remove entire operators from the
planning task if the corresponding label in a transition system becomes dead, meaning
there exist no more transitions of that label. That makes it possible to use DP as a static
preprocessing method, while maintaining at least one optimal plan for the problem.
As mentioned in Kissmann and Torralba (2015), we can obtain a coarser simulation by
adding a noop-Operator without costs, that is applicable in every state and leads to no
state change. Transitions which only lead away from good states to worse ones can then
be subsumed by noop-Transitions.
By merging the labeled transition systems successively, potentially more transitions can
be detected to be subsumed. Instead of then recomputing the entire simulation on the
new set of LTS, Kissmann and Torralba (2015) suggest an incremental computation, in
which only the simulation of the new LTS is computed. This strategy saves a lot of com-
putation overhead, although with the drawback of obtaining a less coarse simulation.
Also, the simulation relation does not need to be computed for every state pair in the
new LTS, the relation of some of them can be concluded from the known simulation in
the LTS which are being merged. Assume two LTS Θi and Θj are merged, and the sim-
ulation for a state pair (s, t) is to be determined, where s and t are the synchronizations
of states in the two merged LTS: s = (s1s2), t = (t1t2), s1, t1 ∈ Si, s2, t2 ∈ Sj. It is a
sufficient criterion for s �ij t, if s1 �i t1 and s2 �j t2 holds. If one of the relations does
not hold, the simulation needs to be computed for the state pair.
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One important question when using DP as a static preprocessing method is when sub-
sequent pruning of entire operators is solution- and optimality-preserving. As Kissmann
and Torralba (2015) point out, after pruning a single subsumed transition it is in general
not safe to prune further transitions which were previously detected to be subsumed.
We try to answer the question when subsequent pruning is safe in the following theorem.

Theorem 3. A subsumed transition tx is still subsumed after pruning a subsumed tran-
sition tr, except tr was only subsumed by tx.

Lemma 1. Pruning a subsumed transition tr does not remove any state pairs from the
label-dominance simulation �.

Proof. for Lemma 1
We assume the contrary, i.e. there exists a state pair (s, t) ∈ � which is not in � after

pruning tr. According to Definition 12, (s, t) is in �, if for every transition s
l−→ s′ a

transition t
l′−→ t′ exists such that s′ � t′, l′ has less or equal costs than l and dominates

l in all other LTS.

If (s, t) was in � and is no longer in it after pruning tr, there must exist a transition

s
l−→ s′, for which after pruning tr no longer any such transition t

l′−→ t′ exists, meaning
either s′ � t′ does not hold anymore, or l′ does not dominate l anymore in some other

LTS, or the transition t
l′−→ t′ was pruned. The first two cases would assume that �

changed already for some other state pair, which has to be at some point caused by the
pruning of a transition; we can assume without loss of generality that (s, t) is the first

pair for which the simulation changes. For that to be the case, for some s
l−→ s′, tr needs

to be the only transition t
l′−→ t′ which fulfills that s′ � t′ and l′ dominates l in all other

LTS. Once tr is pruned, no such transition exists anymore.
As we assumed the removed transition tr was subsumed, that means there exists a tran-

sition ts = t
k−→ u such that t′ � u and k had less or equal costs than and dominated

l′ in all other LTS. From definitions 12 and 13 we can conclude that � and the domi-
nation relation are transitive, so if s′ � t′, and t′ � u, then s′ � u. Similarly for label

dominance, k must also dominate l. Therefore, for the transition s
l−→ s′, ts takes over

the role of tr, as a transition t
k−→ u such that s′ � u, k has less or equal costs than and

dominates l in all other LTS. That contradicts that there exists no such transition other
than tr. Therefore, all pairs (s, t) stay in the label-dominance simulation � (see Figure
3.8 for a visualization).

A very similar reasoning could be applied to show that the label-dominance simulation
does not change at all, meaning no additional state pairs are added to it by pruning tr.
We do not show it here, as it is not needed to prove the above theorem.
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Figure 3.8.: Visualization for proving Lemma 1.

Transition t
l′−→ t′ is subsumed by transition t

k−→ u, whose existence ensures

that s � t after pruning t
l′−→ t′

Proof. for Theorem 3

To contradict the theorem, we assume a previously subsumed transition tx = s
l−→ t is

not subsumed anymore after pruning tr, and that the transition which subsumed tr is

not equal to tx. Since tx was subsumed before pruning tr, another transition s
l′−→ t′

existed such that s′ � t′ and l′ dominated l in all other LTS. tx is assumed not to be
subsumed, no such transition exists anymore. As shown in Lemma 1, s′ � t′ cannot
change by pruning a subsumed transition, and therefore the dominance of l by l′ does
not change, either (see Definition 13). The only way for tx not to be subsumed anymore

is therefore if the subsuming transition was pruned, meaning tr = s
l′−→ t′, and that

there exists no other transition that subsumes tx.
As we assumed that the pruned transition tr is subsumed itself, there exists a transition

ts = s
k−→ u′ such that t′ � u′ and k dominates l′ in all other LTS. This means that

also s′ � u′ and k dominates l in all other LTS, meaning ts also subsumes tx. This is
a contradiction to the above assumption, that tx is not subsumed anymore. The only
exception, as according to Definition 14 a transition can’t subsume itself, is ts = tx, which
is the case we excluded from above’s theorem (see Figure 3.9. for a visualization)

This theorem will be useful for the implementation: In successive transition pruning,
for every transition we prune we only need to ensure that at least one transition that
subsumes it continues to exist in the problem.
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Figure 3.9.: Visualization for proving Theorem 3.

Transition s
l′−→ t′ is subsumed by transition s

k−→ u′, whose existence ensures

that s
l−→ s′ is still subsumed after pruning s

l′−→ t′

Subsumption relation is marked in green.

Another question of importance for the later implementation is whether it is beneficial
to prune transitions when they are subsumed, even though the corresponding label does
not become dead at that point. Theorem 4 prepares for that question by showing that
the pruning of subsumed transitions can be delayed to a later point in time, at which
the entire label becomes dead.

Theorem 4. Any subsumed transition is still subsumed after merging two labeled tran-
sition systems.

Proof. Assuming a planning task represented by a set of labeled transition systems

{Θ1, . . . ,Θn}, we denote the subsumed transition by ai
l−→ si ∈ Ti and the subsuming

transition by ai
l′−→ ti ∈ Ti such that si � ti and l′ dominates l in all other LTS.

In the case that the transition system Θi, in which the transition is subsumed, is merged
with another LTS, Θj, we can conclude from l being dominated in Θj that for every

transition aj
l−→ sj a transition aj

l′−→ tj exists such that sj � tj. According to the
definition of the synchronized product (see Definition 4), two transitions will therefore

exist in the merged LTS: (aiaj)
l−→ (sisj), and (aiaj)

l′−→ (titj). As Kissmann and Torralba
(2015) discussed, we can then conclude from si � ti and sj � tj that also (sisj) � (titj)
holds. Together with the given label domination of l by l′ in the other LTS, which
stayed the same during the merging process, the necessary conditions for subsuming the
transition are met.
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In the case that Θi is not among the merged transition systems, the same reasoning

applies. Assuming that Θj is merged with Θk, for every transition (ajak)
l−→ (sjsk)

there exists a transition (ajak)
l′−→ (tjtk) such that (sjsk) � (tjtk), which means that

l stays dominated by l′ in all LTS except Θi after the merge (see Figure 3.10 for a
visualization).

ai si

ti

l

l′

sim

dom

(a) Θi before merging.

aj sj

tj

l

l′

sim

dom

(b) Θj before merging.

aiaj sisj

titj

l

l′

sim

dom

(c) Θi ⊗Θj

Figure 3.10.: Transition ai
l−→ si (marked in red) is subsumed by transition ai

l′−→ ti
before merging Θi and Θj. The corresponding transition aiaj

sisj−−→ stays
subsumed after the merge in Θi ⊗Θj.
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4. Combinations and Synergy Effects

In this chapter we will examine the previously introduced pruning methods in combina-
tion with each other. As all three techniques prune the search space in a different way,
potentially an even smaller search space can be obtained by applying two techniques sub-
sequently. Particularly interesting are synergies between two pruning methods, where
the set of operators/variables pruned by the combination differs from the union of the
pruning achieved by each technique individually. We say a pruning technique has a pos-
itive synergy on a subsequently applied technique, if the second method benefits from
the pruning of the first one and is able to prune more than it is able to on the original
problem. Equivalently, a negative synergy lets the second technique prune less than it
would have been able to on the original problem, although less pruning is not considered
a negative synergy when the first technique already pruned the operator/variable which
the second method would have been able to. We abbreviate the three pruning techniques
as SA (Safe Abstraction), ROR (Redundant Operator Reduction) and DP (Dominance
Pruning), and denote them, when applied successively to a planning task, with a plus.
ROR+SA therefore describes an application of Redundant Operator Reduction, followed
by Safe Abstraction.

For some of these combinations theoretical results can prove that no negative synergies
exist. In combinations where negative or positive synergies are possible, we find example
instances from the IPC benchmarks or construct instances in which they occur. In this
chapter, we consider Haslum’s conditions for Safe Abstraction. Since the set of variables
abstracted with Helmert’s condition is a subset of the variables abstracted with Haslum’s,
proofs which show that negative synergies do not exist also hold for the Helmert version.
Similarly, we consider Dominance Pruning using the coarsest simulation.
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4.1. Safe Abstraction and Redundant Operator
Reduction

Negative synergies of Safe Abstraction on ROR do not occur, as Theorem 5 shows.
SA+ROR allows ROR to remove all operators it could have on the original task, except
for those which SA already removed.

Theorem 5. The planning task resulting from the application of SA+ROR does not con-
tain any operator which is not contained in the planning task resulting from applying
Redundant Operator Reduction.

Proof. We assume the contrary, i.e. there exists an operator o in the planning task
which is redundant, has at least one effect on a variable which is not safe abstractable
(otherwise Safe Abstraction could remove this operator), and is not redundant anymore
after applying Safe Abstraction.
Then, according to the definition of redundancy as implementation by an operator se-
quence, and Definition 11, there must exist a sequence of operators o1, . . . , on in the
original planning task which implements o, and after abstracting a variable v this is not
the case anymore. This could have the following causes:

1. The operator sequence has a (cumulative) precondition which o does not have:
Clearly this means that a precondition of o was removed, as no preconditions are
added by the abstraction process. Only preconditions on v are removed by Safe
Abstraction, which means the preconditions in the operator sequence on v are also
removed and the operator o stays redundant.

2. The (cumulative) effects of the operator sequence differ from those of o:
In analogy to the preconditions, only effects on v are removed, and in both the
operator sequence and the operator o.

3. An operator oi in the operator sequence is removed by Safe Abstraction:
If an operator is removed by Safe Abstraction, its only effects were on the variable
v. As the preconditions on v are removed by Safe Abstraction, a shorter operator
sequence without oi now implements o and therefore o can still be removed.

Potentially, more operators can be removed by ROR after applying Safe Abstraction,
as described in Theorem 6.

Theorem 6. SA+ROR can have positive synergy effects, if a sequence of operators would
implement an operator apart from preconditions or effects on safe variables.
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Proof. An example that shows this type of positive synergy can be found in a Tpp

instance, where two trucks are available to move to different locations and buy goods.
For each good, each location and each truck, one buy operator is available which moves
the truck to that location and loads the good into the store. After Safe Abstraction
removes the variables encoding the truck location, every two of these buy operators
implement each other, since they become equivalent when the location of the truck is
not stored; which results in the removal of all buy operators for one of the two trucks.

In reversed order, ROR+SA, negative synergies are again not possible as shown in The-
orem 7.

Theorem 7. Safe Abstraction, executed after ROR, can abstract at least as many vari-
ables as Safe Abstraction can on the original task.

Lemma 2. If there exists a variable v which is safe and an operator o which is redundant,
then after removing o from the planning task, v is still safe.

Proof. for Lemma 2
As explained in Theorem 2, the conditions for Safe Abstraction only depend on the free
reachability of values of v. Under the assumption that after the removal of o the variable
is not abstractable anymore, we can draw the conclusion that o needs to be part of the
free DTG, otherwise it could not have an effect on the safe abstractability.
Being part of the free DTG of v, o does not have any precondition nor effect on any
other variable. As o was assumed to be redundant, it is implemented by a sequence of
operators o1, . . . , on, which, according to Definition 11, cannot have preconditions nor
effects on variables o has not. Therefore the sequence o1, . . . , on is also part of the free
DTG of v. Definition 11 also ensures that o1, . . . , on is applicable in at least all the
states in which o is applicable, and leads to the same target states. That means the free
reachability of states of v does not change by removing o from the planning task, and v
can still be abstracted.
Theorem 7 directly follows from Lemma 2.

Positive synergies of ROR+SA are not straight-forward to see, but do exist as the fol-
lowing theorem shows.

Theorem 8. ROR+SA can have positive synergy effects, if redundant operators are re-
sponsible for values in a variable being externally caused or required.

Proof. Figure 4.1 shows an example of a Pegsol problem instance where positive syner-
gies are possible. We examine the DTG of a variable which keeps track of the last move
that was made, omitting the details about other variables for the sake of simplicity.
The straight edges resemble operators which belong to the free DTG of the variable,
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while the dotted edges mark operators with effects or preconditions on other variables
(external operators).

move− endedstart

0− 2

0− 4

1− 2
1− 4

2− 2

2− 4

. . .

(a)

move− endedstart

0− 2

0− 4

1− 2
1− 4

2− 2

2− 4

. . .

(b)

Figure 4.1.: DTG of a variable from a Pegsol instance that becomes safe after removing
redundant operators. The labels corresponding to the transitions are not
denoted in the graphs, since they are irrelevant.

The centered value move− ended (a, marked in red) is externally required by the ex-
ternal operators which lead to the other values in this DTG (bent dotted edges), making
those values externally caused. The other values in the DTG are also externally required
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by the external operators which connect them with each other in this DTG (straight
dotted edges). The variable is not safe abstractable, since the externally required values
marked in purple are not free reachable from the move− ended value.
All connections of the outer values (straight dotted edges) are redundant with a detour
to the center value, therefore ROR can remove them. After removing the redundant
operators, the outer values are not externally required anymore (b, marked in blue),
hence they do not need to be free reachable from the move− ended value. The variable
became safe.

4.2. Dominance Pruning and Safe Abstraction

The following two sections explore the application of Dominance Pruning in combina-
tion with a satisficing pruning technique. The consequence of such combination is that
the optimality-preserving property of Dominance Pruning is lost. A decrease in time
needed to solve instances this way is not to be expected, since the gain of an optimality-
preserving method applied to domains used for satisficing planning is often too small
compared to the overhead. Still, it is of interest to investigate their relative pruning
capacities, including potential synergies, on a conceptual level. In this section, we in-
vestigate DP combined with SA.

The combination of SA+DP removes at least the same operators from the problem as
just applying DP does: Theorem 9 shows this by proving that no operator can exist in a
problem which DP is able to prune, and that is still existent and not prunable anymore
after applying SA. Since DP does not actively remove any variables from the problem,
but variables can become static if the relevant operators are pruned, the same can be
said for variables: The combination of SA+DP never leaves behind a variable which could
have been removed if just DP had been applied.

Theorem 9. Applying SA+DP removes at least the same operators from the planning
task as only applying DP to it does.

Proof. Let X = {Θ1, . . . ,Θn} be a set of LTS representing a planning task, and let
Θi ∈ X be the atomic transition system of an abstracted variable vi. In all other LTS

Θj 6= Θi, Safe Abstraction only removes those transitions sj
l−→ tj ∈ Tj which belong to

an operator it removed. Safe Abstraction only removes an operator from the problem if
it had no effect and no precondition on any non-abstracted variable. Since the removed
operators had no condition and no effect on any of the remaining variables, the removed
labels were dominated by the noop-label in all Θj 6= Θi. This means that the state sim-
ulation relation �j does not change in any Θj 6= Θi, since for every removed transition
there exists a noop-transition with the same origin, destination, and equal or less cost.
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Assume Theorem 9 to be false, i.e. there exists an operator o which can be pruned
by DP in the original planning task, but not anymore after Safe Abstraction has been
applied abstraction, and it has not been removed by Safe Abstraction. This means a
transition must exist which was previously subsumed, but is not subsumed anymore
after Safe Abstraction was applied.
A transition to is not subsumed anymore according to Definition 14, if either the simu-
lation relation changed, or the subsuming transition is not existent anymore. As shown
above, the simulation relation is unchanged. Further, if to was previously subsumed
by a transition tSA that has been removed by Safe Abstraction, it has to be subsumed
by a noop-transition tnoop now, since tSA was subsumed by tnoop, and the subsumption
relation is transitive (since label domination and state simulation are transitive).

So, if a transition was subsumed before abstracting vi and its corresponding operator
was not removed by Safe Abstraction then it is still subsumed after the abstraction
process. That means abstracting one variable does not reduce the set of operators that
can be removed from the planning task by DP, and therefore abstracting an arbitrary
amount of variables does not do so, either, which proves Theorem 9.

Positive synergies of Safe Abstraction on DP are possible, meaning Dominance Prun-
ing is able to prune operators it couldn’t have otherwise.

Theorem 10. SA+DP can have positive synergy effects, if for subsuming the transitions
of one label, label dominance is not given in some atomic transition systems, and Safe
Abstraction abstracts the variables corresponding to those ATS.

Proof. Figure 4.2 shows an example from a Gripper instance, in which a ball needs to
be transported from room a to room b. Four variables exist in the instance, vloc encodes
the roboter’s location, vball the ball’s location, and two arms of the roboter, varm1 and
varm2 are either free or carry the ball. Two operators exist, move a and move b, to move
the roboter from either room to the other, and for every room and every arm there exists
an operator pick a/b arm1/arm2, to pick up the ball in that room with that arm, and
equivalently drop a/b arm1/arm2 to drop it in that room. To simplify the figure, some
edges are labeled containing a placeholder (∗) and represent one transition for every
room {a, b}, equivalently for the arms {arm1, arm2}.

Before abstracting the roboter’s location vloc, DP can’t prune any operators. The
drop a ∗ transitions (in ATS c, edge marked in red) lead to a worse state than drop b ∗,
but the corresponding label is not dominated in ATS (a) since drop b ∗ is not applicable
in the state drop a ∗ is applicable in. The label is dominated in ATS (b) and (d), so after
abstracting vloc, the transitions can be pruned and the labels drop a ∗ become dead, the
operators can be removed.
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room astart room b

move b

move a

pick a ∗, drop a ∗

pick b ∗, drop b ∗

(a) ATS of vloc, which is safely abstractable.
The transitions resembled by dotted
edges modify only the other variables.
The move ∗ transitions are applicable in
any state of the other LTS, and are not
drawn there.

freestart

carry

pick ∗ arm1drop ∗ arm1

(b) Atomic Transition Systems of
varm1

room astart robby room b

pick a ∗

drop a ∗ pick b ∗

drop b ∗

(c) Atomic Transition System of vball.

freestart

carry

pick ∗ arm2drop . . .

(d) Atomic Transition Systems of
varm2

Figure 4.2.: Example of a positive synergy of SA on DP from the Gripper domain.

In the reverse direction, DP+SA, both positive and negative synergies are possible, as
shown in Theorem 11 and 12.

Theorem 11. DP+SA can have positive synergy effects, where a variable becomes safe by
pruning operators.

Proof. Figure 4.3 visualizes a positive synergy in a constructed example. The instance
contains two variables, v1 and v2, whose ATS are depicted in (a) and (b). The operators
f1, f2, f3, f4 do not have any precondition or effect on v2, and are not depicted in the
subfigure (b) since they’re applicable in each of the states. Equivalently, the operators
f5, f6, f7 are not drawn in the ATS 1.
If Safe Abstraction is applied to that example, it is not able to abstract any variable, but
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(a) ATS 1 before pruning.

v2

Astart

C

B

D

G

p

s

f5

e

f6
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(b) ATS 2 before pruning.

v1

Ystart

Z

X

TG

s f1

f2 f3

f4

(c) ATS 1 after pruning.

v2

Astart

C

B

D

G

s

f5 f6

f7

(d) ATS 2 after pruning.

Figure 4.3.: Constructed example to show the positive synergy of DP on SA.
Externally required values are marked in red, externally caused values in
blue.

after applying Dominance Pruning it can do so. v1 is not safe (a), as the goal value G is
not free reachable from the externally caused value X. v2 is also not safe (b), as the ex-
ternally required value A is not free reachable from the externally caused values B and C.

Transition Y
p−→ X is subsumed in ATS 1 by Y

s−→ Z, and the label s dominates label
p in ATS 2, so after applying Dominance Pruning, p becomes dead in this LTS. After
merging the two transition systems it is possible to prune the operator e as well.
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After pruning the p transition in ATS 1 (c), X is not externally caused anymore,
with the consequence that v1 becomes safe: Y is free reachable from Z, and G is free
reachable from Y. v2 is still not safe (d), as the goal value G is not free reachable from
the externally required value A, although the variable becomes safe after abstracting
v1.

In practice, these positive synergies often appear when a variable becomes static
through Dominance Pruning, an example from the IPC benchmarks is shown in Fig-
ure 4.4. In the Zenotravel instance depicted, a plane can fly between three cities (a),
allowing a passenger to board and debark from it (b). In this instance, the passenger
is already at his destination initially, and only the plane needs to reach city2. In the

passenger LTS (b), the transition city2
board2−−−→ plane (marked in red) is subsumed by

city2
noop−−→ city2, since the transition leads away from a goal state. After removal of

the transition, all board and debark operators become inapplicable and can be removed.
There are no operators left with conditions/effects on the passenger variable, and the
initial state is equal to the goal state, thus the variable can be safely abstracted. A
positive synergy with Safe Abstraction apart from static variables is not common, it
appears in none of the examined domains (more details later in Chapter 6).

city1

city0start

city2

fly1
fly2

fly3

fly4

fly5
fly6

debark1 board1

debark0 board0

debark2 board2

(a) Airport LTS

city0

city1city2start

plane

board0debark0

board1

debark1board2

debark2

(b) Passenger LTS. The fly∗ transitions are
applicable in every state and have not
been drawn.

Figure 4.4.: Example instance from the Zenotravel domain, where a variable becomes
static after applying DP.
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wp0

wp1 wp2

wp3start

Figure 4.5.: Example instance of a negative synergy of DP on SA from the Rovers

domain.

Theorem 12. DP+SA can have negative synergy effects, when Dominance Pruning re-
moves an operator from the planning task which is necessary to keep a variable safe. We
can conclude that the removed operator was needed to ensure the free reachability of a
value, so it had no effects and conditions on any other variable.

Proof. An example of this behavior is given in Figure 4.5, which shows the free DTG of a
Rovers variable that becomes unsafe after applying Dominance Pruning to the problem.
The variable encodes the rover’s location at 4 waypoints wp0, . . . , wp3, all of which are
externally required values. The labels are not denoted in the graph, since they are not
relevant; we again omit the details about other variables in this instance.
The operator corresponding to the transition marked in red can be removed by Domi-
nance Pruning, rendering the variable unsafe as wp0 is not free reachable anymore.

In the case of this instance, the value wp0 becomes unreachable and could be removed
from the problem, making the variable safe again in turn.

4.3. Redundant Operator Reduction and Dominance
Pruning

The pruning power of these two methods seems to overlap much more than is the case
with Safe Abstraction in the sense that often for one operator that DP prunes, ROR can
remove one operator less - though not necessarily the same operator - and the same is
true in the reverse direction. This is especially the case with strongly connected DTGs,
as an example in Figure 4.6 shows. Since Dominance Pruning is an optimality-preserving
method, the operators it leaves behind are better than those left by ROR, in the sense
that the plans do not get any longer.

Theorem 13. Both positive and negative synergies of combining ROR with DP are
possible, in both directions.
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f0start f1

f2 f3

(a) Original DTG

f0start f1

f2 f3

(b) ROR (also ROR+DP)

f0start f1

f2 f3

(c) Dominance Pruning

f0start f1

f2 f3

(d) DP + ROR

Figure 4.6.: Example Miconic instance, showing the overlapping pruning/reducing of
DP and ROR. The labels corresponding to the transitions are not denoted,
since they are irrelevant.
(a) DTG of the variable encoding the elevator’s location.
(b) Applying ROR to the problem thins out the strongly connected DTG,
after which DP is not able to prune anything.
(c) Applying Dominance Pruning first, it is detected that a return to the
state f0 is not necessary and the operators leading to it can be pruned.
(d) When ROR is applied after DP, it again thins out the DTG, the same
number of operators stays in the problem as when just using ROR, but the
plan can potentially be shorter, as reaching f2 from f3 does not need the
detour over f0 as it does in (b).

We do not show examples of these synergies here, since that would require to explain
the label-dominance simulation in detail for instances with a bigger number of variables.

One interesting case to look at are the positive synergies of DP on ROR, which are
only possible when by pruning an operator a variable becomes static and can be removed.
In that case, it is possible for an operator to become redundant, if its conditions/effects
differed only on that variable from the cumulative conditions/effects of a now imple-
menting sequence, and since the variable is removed, the sequence is able to implement
the operator. Otherwise, positive synergies are not possible, as shown in Theorem 14.
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Theorem 14. An operator o, which is not redundant, cannot become redundant by
applying DP to the problem, except a variable becomes static and can be removed.

Proof. The effect of DP on the planning task, if no variable becomes static, is a reduction
of the set of operators O to O′. As o is assumed not to be redundant, no sequence of
operators in O exists which implements it, and since O′ ⊆ O, no such sequence can exist
in O′.

4.4. Summary on Synergy Effects

To conclude this chapter, we summarize the information gathered about the synergies.
Consider Table 4.1, which lists each of the combinations.

Combination Positive Synergies Negative Synergies
SA+ROR yes no
ROR+SA yes no
SA+DP yes no
DP+SA (yes) yes
ROR+DP yes yes
DP+ROR (yes) yes

Table 4.1.: Summary of synergy effects. Parenthesized entries indicate a synergy which
is often or always caused by variables becoming static.

Positive synergies exist for each combination, and appear in instances of the IPC
benchmarks. In DP+SA, the synergies are limited on these benchmarks in the sense that
DP often makes variables safe when it also makes them static. In DP+ROR, a variable has
to become static to cause positive synergies. Negative synergies are possible between
ROR and DP in either direction, but also in DP+SA.

Considering the benefit for the search, we can conclude from these synergies which
technique should preferably be applied first to the problem.
For both SA+ROR and ROR+SA no negative synergies exist, and both allow positive syner-
gies. Since removing redundant operators is not consistently beneficial for the search as
shown in Section 3.2, it can be argued that the positive synergies of ROR+SA are likely
to be more important for reducing search effort than the positive synergies of SA+ROR.
Since DP+SA allows negative synergies, and the positive synergies are rare, SA+DP should
be able to remove more variables and operators from any planning task. Additionally,
abstracting variables before running Dominance Pruning has the benefit of speeding up
the heavy simulation computation.
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Both ROR+DP and DP+ROR allow negative synergies, the positive synergies in DP+ROR how-
ever are very infrequent. Additionally, similarly to SA+ROR, it can be argued that the
positive synergies on DP are more important than the positive synergies on ROR since
DP does not cause an increase in the plan length.
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5. Implementation

In this chapter, we describe the implementation of Safe Abstraction, Redundant Oper-
ator Reduction and Dominance Pruning as static preprocessing methods into the Fast
Downward (Helmert, 2006) planning system. Fast Downward is a propositional planner
which consists of three components: The Translator takes as input a problem descrip-
tion specified in PDDL and translates it into a SAS+-like (Bäckström and Nebel, 1995)
formalism using finite-domain state variables. The Preprocessor performs a relevance
analysis, removes irrelevant and static variables, and computes data structures such as
the causal graph and the domain transition graphs. The Search component then runs
heuristic search on the output of the preprocessor.

5.1. Safe Abstraction

Although Haslum (2007) describes other preprocessing methods than Safe Abstraction
- Reformulation of problem descriptions and composition of operators - they have not
been implemented in this work, as they were at least partly performed manually and it
is not clear whether and how they can be fully automated.

Safe Abstraction has been implemented into the preprocessor component of Fast
Downward, since after abstracting, some data structures need to be computed, for which
methods are available in that component. The translator output file is parsed, and the
data is being stored inside a task object, which is then passed on to the abstraction.

For every variable of the task the conditions for safe abstractability are checked. At
this point, the two conditions for Safe Abstraction demand different properties: The one
described by Helmert (2006) requires all values in the variable to be strongly connected,
and the variable to be a source node in the causal graph. Haslum (2007) also needs a
test for connectedness and reachability, but with only a selection of the values. For that
purpose, the operators are separated into external operators, which have an effect on
another variable than the examined one, and internal operators, which have no condi-
tion nor effect on other variables. The values of the variable’s domain are separated into
externally required (precondition to an external operator) and externally caused (effect
of an external operator, or initial state value).
To detect whether each externally required value and the goal value are free reachable
from all externally required and caused values, graph connectedness algorithms, such as
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the one by Tarjan (1972), can be used. While Helmert’s condition can be implemented
straight-forwardly with an algorithm for strong connectedness, it is not as easy to cap-
ture all relevant cases in Haslum’s condition. For that reason, this implementation uses
an algorithm that creates a 2-dimensional array whose entries represent free reachability.
Every value is free reachable from itself, and every internal operator further adds reacha-
bility entries. As reachability is a transitive relation, the filling of the array was realized
as a recursive method. The reachability-array approach has a higher complexity than
Tarjan’s algorithm, but it can easily be adapted to check either of the two conditions.

If at least one variable can be abstracted, a new task is generated in which the ab-
stractable variables as well as conditions and effects of operators and goal conditions on
these variables, along with entries in mutually exclusive groups, are removed. Since by
abstracting variables, other variables can become safe, the conditions for safe variables
are then again evaluated on all variables in the new task object, a repetitive process until
either no more variable can be abstracted or no more goal conditions remain (meaning
the problem is solved without search). Thus, each time the problem is abstracted, a new
task is created, which is stored inside a task vector.
To be able to later on refine the abstract plan found by the search, the information is
needed which variable was abstracted in which order, and which operator has precondi-
tions and effects on the abstracted variables. For that reason, each abstracted task in
that vector is saved to a file. As the preprocessor automatically performs a relevance
analysis for the remaining variables, it is possible that an abstracted problem loses vari-
ables which weren’t directly abstracted. These irrelevant variables cannot be part of any
plan, though.
The process of refining an abstract plan loads the vector of abstracted tasks, and tra-
verses the abstract plan (also loaded from a file output by the search engine) once for
each abstraction layer. It detects which variables have been abstracted, and keeps track
of them with a variable-value mapping, which is updated every time an operator in the
plan requires the variable to change its value. When such a precondition on the variable
exists, an operator sequence is inserted into the plan right before the value is needed.
This operator sequence is determined by finding the shortest path (using the algorithm
by Dijkstra (1959)) from the variable’s old value to its new one in the free domain tran-
sition graph. The same procedure is done after traversing the plan, adding operator
sequences to the end of it to ensure that every abstracted variable gets assigned its goal
value.

Complexity Analysis of the Implementation

The complexity of determining whether a variable is abstractable is dominated by the
free reachability analysis. In the recursive array implementation used, assuming nv as
the size of the variable domain, there are maximally nv(nv − 1) write operations on the
array, as the diagonal is already filled (every value is reachable from itself). For every
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write operation, all possible predecessors of the source, and all possible successors of
the target need to be read, leading to O(2(nv − 1)) reads per write operation. There-
fore, the total complexity is dominated by the number of write operations, which is
O(nv(nv − 1) ∗ 2(nv − 1)) = O(n3

v). If Tarjan’s strongly connectedness algorithm was
used for Helmert’s condition, this complexity could be reduced to O(nv + n2

v).
In the worst-case, every variable can be abstracted, but each one only after the previous
has been abstracted. With v variables that leads to v+(v−1)+(v−2)+ · · ·+1 = v∗(v+1)

2

abstractability checks, meaning a total complexity for the abstraction process of O(v2n3
v)

or, with Tarjan’s algorithm, O(v2n2
v).

Refining a plan requires to loop through the abstract plan once for every abstraction
layer but the last one. Each iteration, for each operator in the plan, the preconditions
and effects on each abstracted variable need to be considered. In the worst case, each
operator in the plan has a precondition on each abstracted variable, so the shortest
operator sequence from the old to the new value of that variable needs to be found.
The shortest-path algorithm from Dijkstra has a complexity of O(n2

v), leading to a total
complexity of O(v ∗ p ∗ n2

v) with p as the maximum plan length of the refined plan.
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5.2. Redundant Operator Reduction

The implementation of Redundant Operator Reduction is for the most part straight-
forward. Same as Safe Abstraction, it is located in the preprocessor part of Fast Down-
ward.
In a first preparation step, the effects and preconditions of operators are transformed
from condition/effect vectors into maps using the variable as key. This allows for faster
and simpler access later on.
Then, for every operator o in the problem, a recursive method is called to look for an im-
plementing operator sequence, using the operator sequence limit as maximum recursion
depth. It takes a sequence 〈o1, . . . , oi〉 as parameter, evaluates whether the sequence ful-
fills the conditions of implementing o (Definition 11), and returns the sequence if that’s
the case. The conditions used differ from those found by Haslum and Jonsson (2000),
where an implementing operator sequence is allowed to have additional effects which
are incompatible with preconditions of o. Because of the multi-valued domain variables
and the mutually exclusive value detection of the translator, most of these incompatible
value pairs appear in the problem as two values of one variable, so e.g. in the previously
described Blocks example, the deletion of the axiom ontable(block) is implicitly con-
tained in the move operation.
The method is initially called with an empty operator sequence 〈〉. If the conditions
for implementation of o are not satisfied by the given sequence, the method tries out
every possibly applicable operator (which doesn’t contradict a cumulative effect of the
sequence up to that point), except for o, appends the new operator to the sequence
and accumulates the cumulative effects and preconditions before recursively calling it-
self again. One criterion to abort appending operators to the sequence, besides the
recursion depth, is when a precondition of an operator is neither a precondition of o, nor
is it ensured by a cumulative effect of the operator sequence, because this sequence can
never be extended to one which implements o (Haslum and Jonsson, 2000).
It is important to note that this is a greedy implementation, which can produce very
different results on the same planning task depending on the order of operators.

Complexity Analysis of the Implementation

Let d be the maximum recursion depth (being the maximum length of an implement-
ing operator sequence), nv the number of variables and no the number of operators.
Then, the recursive method to find an implementing operator sequence is externally
called exactly no times (once for every operator), calling itself (no − 1) ∗ (no − 2) ∗ · · · ∗
(no − d) = (no − d+1

2
)d times for each in the worst case. Each call, the cumulative

effects/preconditions need to be compared to the effects/preconditions of the operator
which is to be implemented. In the worst case, the operator and the operator sequence
have effects/preconditions on every variable (so nv in total), leading to a total complexity
for the reduction of operators of O(no ∗ (no − d+1

2
)d ∗ nv) = O(nd+1

o ∗ nv).
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5.3. Dominance Pruning

Unlike the other techniques, Dominance Pruning was implemented into the search com-
ponent of Fast Downward because much of the required functionality regarding transition
systems could be reused from the implementation of the Merge&Shrink heuristic. Nev-
ertheless, it is implemented as a static preprocessing method. Therefore it effectively
only removes operators, whose labels become dead, and outputs a problem description
without them.
The implementation used in this work is based on the algorithm described by Kissmann
and Torralba (2015). The label-dominance simulation is initialized with all pairs of
states, except for goal states which can’t be simulated by non-goal states. State pairs
are then removed successively if they do not fulfill the conditions for simulation, an
iterative process until the simulation does not change anymore. Once the simulation
is computed, the subsumed transitions can be identified. As Kissmann and Torralba
(2015) point out, it is in general not safe to prune subsumed transitions successively.
When pruning a transition, the label-dominance simulation can change. To avoid hav-
ing to recompute it, they do not prune transitions which could cause such change. For
example, it is in general not safe to prune a transition of label A in one LTS, that is
only subsumed by a transition of label B, and later remove label B from the planning
task because it became dead in a different LTS.
Such caution is necessary when single transitions of a label are pruned. However, in our
application of Dominance Pruning as a static preprocessing method, it is not beneficial
to prune single transitions if the corresponding label does not become dead. Although
we then wouldn’t need to take those transitions into account in recomputations of the
simulation, directly pruning them has the drawback that mutually subsuming transi-
tions cannot be pruned at all, as mentioned above. To maximize the achievable pruning
of operators, the implementation used does not prune single transitions but an entire
label from the problem, if all of its transitions in one LTS are subsumed by transitions
of other labels.

Theorem 3 shows that it is safe to prune several subsumed transitions successively,
if we ensure that for each one at least one subsuming transition continues to exist. In
practice, this is realized by storing a list of (subsumed, subsuming) transition pairs.
When every transition of a label in one LTS is subsumed, the label is removed from the
planning task together with all of its transitions. Since we don’t allow transitions of
the same label to subsume each other, all transitions of one label can be safely removed
successively as they are subsumed by transitions which still exist. After the removal,
the list of subsumed transitions is cleaned from those transitions which were subsumed
by a just-removed transition. This ensures that we prune no further transition which
is not subsumed anymore. As an example, if two transitions subsume each other, and
the label of the first transition is removed because all its transitions are subsumed, the
second transition is not subsumed anymore, and the second label stays - except if there
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was a third transition subsuming both of these transitions, in which case it is possible
to also remove the second label.
One might think that by not pruning transitions right away when they are subsumed,
information about subsumed transitions might be lost. Theorem 4 shows, though, that
subsumed transitions stay subsumed throughout the merging process, and therefore we
can wait with the pruning until the entire label becomes dead without losing information.

In difference to Kissmann and Torralba (2015), who compute the coarsest simulation
before the first merging step yet only prune transitions after it, this implementation
does perform pruning on the atomic transition systems. After the pruning step, two
LTS are merged together using the DFP merging strategy (Sievers et al., 2014), and
labels are reduced if possible. Exact shrinking is not used, since it potentially reduces
the number of operators pruned, and irrelevance pruning is not performed during the
pruning, either.
The label-dominance simulation then needs to be updated. Kissmann and Torralba
(2015) suggest to use an incremental computation: Instead of recomputing the coarsest
simulation for all LTS after every merge step, only the simulation for the new LTS is
computed. Only when all LTS are merged together, the coarsest simulation is com-
puted. This reduces the work needed for pruning, but has the potential downside of
missing subsuming transitions because the intermediate simulations are not the coarsest
possible. Only after the final merge, the coarsest simulation is computed - but if the
pruning method time-outs before that, the pruning achieved is smaller. In this imple-
mentation, both versions were used; the one always calculating the coarsest simulation,
to determine how much more pruning is possible, and the one using the incremental
computation, which would be more viable in practice.
The mapping of reduced labels to the corresponding operators is stored during the merg-
ing process. Since reduced labels are locally equivalent in a merged LTS, in case one
label becomes dead in an LTS it can be translated back to the corresponding operators,
which are then removed from the planning task.
One option that was added in this implementation is to ignore the label costs, meaning
a transition can be subsumed by a transition of a label with higher costs. Clearly, opti-
mality of DP is lost using this option, but the pruning power could increase.

Potentially, after removing an operator, a variable can become static and be removed
in the preprocessor, and certain data structures such as the causal graph have to be
recomputed. For that reason, the dominance pruning component writes an output file
in the format of the translator output, containing the planning task without the pruned
operators. This output file can then be read from the preprocessor which is thus run
two times, once before dominance pruning and once before the search.
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Complexity Analysis of the Implementation

The most complex component of dominance pruning is the coarsest dominance simu-
lation computation. As described by Torralba and Hoffmann (2015), the simulation is
initialised with every two states simulating each other, except for goal states which are
not simulated by non-goal states. Let n be the number of labeled transition systems for
which the simulation is to be computed, t/LTS the maximum number of transitions in
one LTS, s/LTS the maximum number of states in an LTS, t/s the maximum number of
transitions of a state, and t/l the maximum number of transitions of a label in an LTS.
The initial state simulation relation then contains O(n× s2/LTS) state pairs which need
to be checked for simulation at least once. For each state pair, in the worst case every
transition of one state needs to be compared to each transition of the other state, and
for each of these transition pairs the label dominance of the corresponding labels needs
to be calculated, resulting in a complexity of O(t2/s × dom) per state pair, with dom
being the complexity of calculating the label dominance relation between two labels.
To calculate this relation, in every LTS minus one every transition of one label needs to
be compared to every transition of the other label, yielding a complexity of O(n × t2/l)
with the state simulation lookup being of constant complexity.
The domination of one label over the other in one LTS however doesn’t need to be
recomputed for every state comparison, because it can only change when a state simu-
lation pair from that LTS is removed. This means if we iterate over all state pairs in
one LTS before the next one, we can store all previously computed label dominations for
the other LTS and only have to recompute them for this LTS: so every label domination
only needs to be computed once per iteration, yielding a total complexity per iteration
of O(n× s2/LTS × t2/s + n× l2 × n× t2/l). Using l × t/l = t/LTS, this complexity can be

rephrased as O(n × (s2/LTS × t2/s + n × t2/LTS)), which becomes O(n × t2/LTS × (1 + n))
when using the equality of s/LTS× t/s = t/LTS. Finally, we can replace n× t/LTS by the
total number of transitions summed over all LTS, which leads to the final complexity
of O(t2total) per iteration. Although theoretically, n × s2/LTS iterations are possible, in
practice after few iterations a static point is reached in which nothing changes anymore.
Since with very big problems the simulation computation will probably not be finished
within a reasonable time and memory limit, a complexity threshold was introduced
for the implementation which always calculates the coarsest simulation, to abort the
computation if the effort would be too great. This complexity number is calculated as
n× (s2/LTS × t2/s + n× t2/LTS).

In the case of the incremental computation, only the simulation for the merged LTS
needs to be computed, as well as the label dominance relation. The complexity of
computing the simulation quickly increases during the merging process, though, as the
number of states and transitions rises.
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6. Experiments

In this chapter, the implemented techniques are evaluated in a row of experiments. Sec-
tion 6.1 describes how the experiments were performed, and which values were measured.
In section 6.2 we evaluate different conditions and parameters and choose those which
seem best-suited for our purposes. Those parameters are then used in the successive
experiments in section 6.3, where we investigate synergy effects and verify how well the
theoretical results hold, and in section 6.4, where we compare the overall performance
of different combinations with each other. Finally, we measure the performance of each
pruning technique on a set of unsolvable instances in section 6.5.
As in Chapter 4, we abbreviate the subsequent application of two pruning techniques as
A+B, where A and B are either SA (Safe Abstraction), ROR (Redundant Operator Reduc-
tion), or DP (Dominance Pruning).

6.1. Configuration

All experiments were performed on computers with Intel Xeon E5-2660 CPUs running at
2.2 GHz and with a time bound of 30 minutes (if not specified otherwise) and a memory
bound of 3 GB.
The experiments using Dominance Pruning alone were run on the optimal International
Planning Competition (IPC) tasks up to IPC2011 (46 domains with a total of 1456
tasks), using A? search (Hart and Raphael, 1968) together with the LM-Cut heuristic
(Helmert and Domshlak, 2009). Other experiments were run on satisficing and optimal
IPC tasks up to IPC2011 (92 domains with a total of 1886 tasks) using greedy search
together with the FF heuristic (Hoffmann and Nebel, 2001).
The time limit for the pruning techniques used is noted in seconds in the plots in brackets.
If no time limit is stated, then none was used. If several techniques are combined, then
each received the time limit noted in brackets separately. When the time limit is reached,
the pruning method is aborted, and the pruning information gathered up to that point
is used.
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Measures

In plots where the domain information is relevant, instances are displayed with a symbol
indicating the domain. Appendix A lists all domains used, together with the symbol
representing that domain in the plots.
The values displayed in the plots are:

• Reduced Operators: The number of redundant operators which could be re-
moved by ROR itself.

• Pruned Operators: The number of operators which could be removed by DP
itself because of subsumed transitions.

• Search Operators/Variables: The number of operators/variables remaining
after all preprocessing steps, indicating the size of the problem that needs to be
searched.

• Planning Time: The CPU time in seconds needed to solve a problem/prove it is
unsolvable, including the preprocessing (Fast Downward preprocessor and pruning
methods), the actual search, and, if necessary, the plan refining process of Safe
Abstraction. Instances which exceeded the overall time limit are located in the
plots at the value of the time limit (around 1800 seconds, above 103). Instances
which exceeded the memory bound during the search are located at the edges of
the plot (at 104).

• Expanded States: The number of states expanded in the search before a solution
was found. For experiments only using Dominance Pruning, the value of expan-
sions before the last layer is used to avoid tie-breaking noise. Instances which could
be solved without any search have zero expanded states. Instances with time- and
mem-outs are both located at the edges of the plot.

• Plan Costs: The sum of all operator costs in the final plan (after potential
refining). Problems without a plan (unsolvable, Time- or Mem-out) are located at
the edges of the plot.

One further important value to measure the benefit of a pruning technique is the
coverage, meaning the number of problems which could be solved in the given time
bound.
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6.2. Pruning Parameters

The experiments in this section evaluate the three pruning techniques separately. First,
different parameter and conditions are compared with each other. The configuration
obtaining the best result is then compared to the performance achieved without pruning,
using the same heuristic function and search algorithm on the same domains. We call
this second run the baseline for the configuration. For Dominance Pruning, the baseline
uses A* search with the LM-Cut heuristic, for the other two pruning techniques and any
combination of two techniques it uses greedy search with the FF heuristic.

6.2.1. Safe Abstraction

As there exist two different conditions for Safe Abstraction, it is of interest to determine
in which domains and by how much their abstraction power differs. Table 6.1 shows a
comparison of Helmert’s and Haslum’s conditions in coverage, abstraction achieved, and
plan overhead.

Coverage Solved by SA Abstractable Safe Variables Plan overhead
Baseline 1413
Helmert 1489 4.23% 35.19% 22.08% 10.98%
Haslum 1491 16.63% 58.08% 49.69% 20.33%

Table 6.1.: Comparison between Helmert’s and Haslum’s conditions. An instance is
called solved by SA if no goal conditions remain after the abstraction, so no
search is needed. It is called abstractable, if at least one variable in it is safe.
The last two values measure for abstractable instances which percentage of
the variables is safe with either condition and by how much the plan costs
increase.

The coverage increases by using Safe Abstraction as a preprocessing method with
either condition, the difference in coverage between them is marginal. Using the one
by Haslum (2007) allows to abstract variables in many more instances, and also more
variables in average: In more than half of the instances, roughly half of the variables can
be abstracted. The plans become more expensive, but only by about 20% on average
when an instance can be abstracted. Figure 6.1 visualizes the comparison. Since some
instances are solved without search with Haslum’s condition, but not with Helmert’s,
they do not require any states to be expanded and are located at the bottom of the plot
(a). A further considerable improvement is achieved in the Rovers domain. As plot (b)
shows, using Haslum’s condition causes a relatively small plan cost increase (about 10%).
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(a) Bottom edge: Miconic, Movie
Green crosses: Rovers

(b)

Figure 6.1.: Comparison of both Safe Abstraction conditions.

The two conditions also differ in how often cascading abstraction is possible. The
comparison is shown in Table 6.2. Zero cascading abstractions mean that variables can
be abstracted in a planning task, but abstracting them causes no further variables to
become safe. While with Helmert’s condition only one cascading abstraction is possible,
up to 3 cascading abstractions are possible with Haslum’s condition, mostly in Rovers

and Miconic instances.

Cascading abstractions No safe variables 0 1 2 3
Helmert 64.81% 30.96% 4.23%
Haslum 41.92% 38.16% 6.77% 10.46% 2.68%

Table 6.2.: Comparison of cascading power between Helmert’s and Haslum’s condition.
The numbers denote the percentage of total instances and add up row-wise
to 100%.

Table 6.3 shows a domain-wise comparison between the two conditions. While in
some domains the two conditions produce very similar or equal abstraction results, the
condition by Haslum is considerably stronger in several domains. Movie and Miconic

can be completely solved by Safe Abstraction, which is not possible with the condition
by Helmert.
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Domain Helmert-Cond. Haslum-Cond. Haslum (2007)
Gripper 1 – 15% 1 – 15% Solved
Logistics Solved Solved Solved
Movie None Solved Solved
Grid None None 50%
Blocksworld None None 0 – 20%
Elevator 25 – 40% 25 – 40% Solved
Depots 1 – 15% 1 - 15% 1 – 10%
DriverLog None 0 - 30% 0 – 25%
Rovers 5 – 10% 75 – 95% 60 – 90%
Satellite 1 – 5% 50 – 80% Solved
Airport None 45 – 55% 40 – 60%
Pipesworld-tankage None 0 – 40% None
PSR-small None 0 – 60% 0 – 50%

Barman None 0 – 15%
Floortile 5 – 15% 5 – 15%
Miconic 1 – 35% Solved
Parcprinter None 5 - 70%
Pathways None 20 – 35%
Storage None 5 – 55%
Tpp 1 – 20% 1 – 20%
Transport 10 – 35% 10 – 35%
Trucks None 85 – 97%
Visitall None 0 – 55%, one solved
Woodworking None 0 – 15%
Zenotravel None 0 – 50%

Table 6.3.: Safe Abstraction performance per domain. The values state how high the
minimum and maximum percentage of variables abstracted per instance in
the domain are. Domains marked with None do not contain safe variables,
Solved instances were solved by Safe Abstraction.
The following domains contained no safe variables under either condi-
tion: Mystery, Mprime, FreeCell, Pipesworld-notankage, Openstacks,
Parking, Pegsol, Scanalyzer, Sokoban, Tidybot. The first four of them
were also used by Haslum (2007) with the same results.

The table also contains the experimental results presented by Haslum (2007), al-
though they are not directly comparable, as they were produced in combination with
other techniques such as (partly manual) reformulation of the problem encoding and
composition of operators. Apparently this considerably increases the abstraction power
in domains such as Grid, Gripper, Elevators and Satellite. It is not clear why the
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performances reported by Haslum (2007) are worse in Depots, DriverLog, Rovers and
Pipesworld-tankage.

Since the abstraction power of Haslum’s condition is considerably stronger, it is used
in the successive experiments. In the following experiment, shown in Figure 6.2, it is
compared to the baseline. Recall that the baseline is defined to be an equivalent run with
the same search algorithm and heuristic, which is greedy search with the FF heuristic
in this case. The attributes depicted are explained in detail in Section 6.1.

Subfigure (a) plots an overview over the domains in which at least one safe variable
exists, corresponding to the numbers noted before in Table 6.3. The instances located at
the bottom were solved without search. In general, the plan costs (b) are not drastically
higher than in the baseline. Some noise is introduced by using suboptimal search, for
which reason some plans become shorter. In (c), the clear benefit of Safe Abstraction
is shown for the states which need to be expanded to find a solution. Many instances
which could previously not be solved become solvable. Again, in some instances, which
are solved without search, no states need to be expanded. Instances above the diagonal
are caused by technical reasons (e.g. variable order variations). A slight time overhead
(d) is introduced in small instances, as Safe Abstraction’s conditions are checked, but
with bigger instances a clear time benefit can be observed. As mentioned previously, the
instances located at the edge of the plot ran out of memory.

6.2.2. Redundant Operator Reduction

One important parameter in Redundant Operator Reduction is how long the operator
sequences that can implement an operator are allowed to be. Haslum and Jonsson (2000)
have shown on a very small test suite that the number of redundant operators detected
increases very little with a bound higher than 2. Table 6.4 shows the comparison of
limit 2, 3 and 4 in our experiments. Note that a sequence limit of 3 does not imply the
sequences are exactly of length 3, it also detects redundant operators which are imple-
mented by a sequence of two or one operators.

In most domains, a length greater than 2 does not improve the number of opera-
tors that can be removed, though there is a significant increase in the Rovers domain
where only sequences of 3 operators seem to implement another operator. In Miconic

instances, a greater length actually reduces the number of operators that can be removed
slightly. This is caused by the greediness of the algorithm, as sometimes an operator
which is implemented by a sequence of three operators could be used in a sequence
to implement two different operators. Allowing a sequence length of 3, that operator is
removed and thus the two previously redundant operators are not implemented anymore.

In Figure 6.3 we show a comparison between limit 2 and 3. Only a small benefit for
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(a) Bottom edge: Logistics, Movie, Miconic
Green crosses: Rovers
Red crosses: Trucks

(b)

(c) Bottom edge: Logistics, Movie, Miconic (d)

Figure 6.2.: Performance of Haslum’s condition.

redundancy reduction (a) is observed in domains besides Rovers when using the higher
sequence limit. In some instances (located at the bottom edge) the time limit was
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Sequence Limit <= 2 <= 3 <= 4
Barman + 3%
Depot 0-8%
Driverlog 7-28% + 1-9% + 1-11%
Elevators 5-20%
Grid 76-81% + 1% + 1%
Logistics00 0-4%
Logistics98 1-53%
Miconic 0-96% - 1-0% - 1-0%
Movie 74-96%
NoMystery 0-5% + 0-7% +4-31%
Parcprinter 0-3%
Pegsol 39-41%
Psr-small 0-98%
Rovers +18-51% +18-51%
Satellite 59-96%
Tpp 0-1% + 0-1% + 0-1%
Transport 0-5% + 0-1% + 0-5%
Trucks 1-5%
Woodworking 26-53% + 0-20% + 0-20%
Zenotravel 56-78% + 3% + 4-9%

Table 6.4.: Range of operators removed per domain (in percentage). Column 3 and 4
are relative to column 2, empty entries indicate that nothing changed in that
domain.
In the following domains, no redundant operators could be re-
moved: Airport, Blocks, Floortile, Freecell, Gripper, Mprime,
Mystery, Openstacks, Parking, Pathways-noneg, Pipesworld-notankage,
Pipesworld-tankage, Scanalyzer, Sokoban, Storage, Tidybot, Visitall

reached before redundant operators were found, since the number of operator sequences
increases exponentially with the limit. In terms of expanded states (b), there is no clear
benefit of using a longer sequence limit, except for the Miconic domain. Accordingly,
the planning time increases in all other domains (c).

The increase in complexity with a higher limit does not pay off, as in most instances
the number of operators does not change drastically. The Miconic domain is an excep-
tion, as using a sequence limit of 3 has the effect that fewer operators are reduced and
fewer search runs are aborted because of exceeded memory. It appears that the effects of
using this technique can go either way, depending on the instance structure. The effect
in Miconic is big enough for the limit of 3 to achieve a higher coverage.
As apart from Miconic the limit of 3 does not pay off, we will use ROR with limit 2 in
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the successive experiments.

(a) Green crosses: Rovers
Bottom right: Satellite, Elevators

(b) Red hexagons: Miconic (c)

Figure 6.3.: Comparison of sequence lengths for ROR.

Since ROR was originally implemented to be applied to a problem before irrelevant
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and static variables are removed, one further experiment was conducted to see how ben-
eficial it is to remove these variables before applying ROR. This was not considered for
Safe Abstraction, as it is capable of abstracting irrelevant and static variables itself. In
the case of Dominance Pruning, static variables are always removed before the pruning
since DP is implemented in the search component of Fast Downward.

(a) Red crosses: Rovers
Green triangles: Satellite
Golden triangles: Trucks

(b)

Figure 6.4.: Comparison of ROR with and without previous static variable removal.

Instances solved aborted (time) aborted (memory) unsolvable
Baseline 1406 401 71 8
ROR 2 1368 411 99 8
ROR 3 1382 418 78 8
P+ROR 3 1397 410 71 8

Table 6.5.: Comparison of solved and aborted instances in different ROR configurations
out of 1886 total instances. ROR 2 uses an operator sequence limit of 2, P+ROR
3 a limit of 3 and the removal of static variables.

Figure 6.4 shows the positive effect on reduced operators (a), together with a signif-
icant benefit in runtime (b). The increased coverage is shown in Table 6.5, although
higher than in the previous experiments, it is still lower than the baseline coverage. An
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(a) (b)

(c) (d)

Figure 6.5.: Redundant Operator Reduction (sequence limit 2, with static variable re-
moval)

increased number of timeouts during the search is the cause of this, sometimes having
fewer redundant operators available actually slows down the search. Considering the
obvious advantages of using static variable removal before ROR, it is performed in the
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successive experiments with ROR.

We compare the performance using ROR with an operator sequence limit of 2 against
the baseline in Figure 6.5. In a broad range of domains, redundant operators can be
removed (b), but having fewer redundant operators available can have both positive and
negative effects on the number of expanded states (a) and the planning time needed
(c). Many instances can be solved only without redundant operators, others can only
be solved with them. Except for Miconic, a clear positive-negative distinction between
domains is not possible. A considerable plan cost overhead (d) results from using ROR
in many cases.

6.2.3. Dominance Pruning

As Dominance Pruning is an optimality-preserving method, experiments in this subsec-
tion were run on a smaller test suite using optimal search, as noted in Section 6.1.

The first experiments with Dominance Pruning are using an implementation that cal-
culates the coarsest simulation after every merge step, as described in Section 5.3. In
practice, this full calculation is less viable because of the increased time complexity, but
potentially more operators can be pruned that way. Table 6.6 shows the configurations
used in these experiments, with varying complexity and time limits, one experiment
where merging was disabled, and one in which optimality was disabled, as described in
Section 5.3. The results of these experiments are summarized in Table 6.7.

Complexity Limit Time limit Merging enabled Optimality on
Low C-Limit 1.000.000.000 30 min Yes Yes
High C-Limit 10.000.000.000 30 min Yes Yes
No C-Limit None 30 min Yes Yes
High T-Limit None 4 h Yes Yes
No Merging None 30 min No Yes
Suboptimal 1.000.000.000 30 min Yes No

Table 6.6.: Configurations used for DP with the coarsest simulations. The first column
contains the label we will use to refer to that configuration. Complexity limit
prevents DP from calculating too big simulations, the Time Limit is for the
entire search, including DP.

The coverage becomes worse with a higher complexity limit, the effort needed to prune
operators this way is too high compared to the gain, but the amount of pruning which
is possible when investing enough time is considerable (compare runs Baseline, Low
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Solved Prunable H1 H2 Operators Price
Baseline 820
Low C-Limit 818 18.22% 85.94% 99.51% 40.18% 0%
High C-Limit 624 59.62% 66.19% 96.79% 41.00% 0%
No C-Limit 182 90.11% 69.78% 86.26% 52.45% 0%
High T-Limit 204 91.18% 70.10% 87.25% 51.90% 0%
No Merging 650 52.92% 34.29% 0%
Suboptimal 816 19.00% 85.42% 99.51% 40.52% 1.06%

Table 6.7.: Coverage with different DP configurations, percentage of instances which
contained at least one prunable operator, in which H1 and H2 hold. The last
two columns inform about how high the percentage of pruned operators and
the increase in plan costs is in average when the problem contains at least
one prunable operator.

C-Limit, High C-Limit, No C-Limit). The complexity of constantly recalculating the
simulation is so high that even a time limit of 4 hours (see run High T-Limit) hardly
increased the coverage. Using the suboptimal approach did not result in a big change
(compare runs Suboptimal with Low C-Limit), only in two domains, Scanalyzer and
Woodworking, it made a small difference so that more operators could be pruned - at
a small average plan cost increase of 1%, if pruning is possible. Since the increase in
pruning using this modification is very limited, it is not used in the later experiments.
When merging is disabled (see run No Merging), most of the instances in which pruning
is possible are also pruned, though not as many operators can be removed as with en-
abled merging. Two hypotheses were evaluated in these runs: The first one, H1, states
that if operators can be pruned before merging, operators can also be pruned after merg-
ing. The second one, H2, states that if no operators can be pruned before merging, no
operators can be pruned after merging. As the H1 results show, in general it does pay
off to merge. The results of H2 show that the performance of DP before merging seems
to be a good indicator on whether it will be possible to prune after merging.

Table 6.8 shows the pruning that could be achieved in these runs in each domain.
In some domains (Blocks, Gripper, Scanalyzer, Storage, Transport) no operators
could be pruned without merging, while pruning was possible after merging, so for these
domains merging seems to be vital to achieve any pruning. In reverse, merging did not
help to find any more operators in the Movie domain.
In a row of domains, pruning was not possible in any of the configurations used (Barman,
Elevators, Freecell, Grid, Mprime, Openstacks, Parking, Pegsol, Pipesworld-
tankage, Sokoban, Tidybot), though Kissmann and Torralba (2015) report possible
pruning in Elevators, Freecell and Sokoban. In general, there is no guarantee that
with a longer run time no further operators could be pruned, though if an instance was
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solved in a run without complexity limit, it has been completely merged, and pruning
is definitely not possible there (such instances exist in Miconic, Openstacks, Tpp and
Visitall). Compared to the results of Kissmann and Torralba (2015), by calculating
the coarsest simulation often a much higher percentage of operators can be pruned, but
the time invested for that pruning is so high that only very few problems can be solved
before reaching a time limit.

Domain #Instances Low C-Limit High C-Limit No Merging No C-Limit High T-Limit Pi

Airport 50 0-78%, 2/25 3-85%, 11/11 3-13%, 13/13 32-85%, 6/6 32-85%, 6/6 13.00%
Barman 20 0/4 0/4 0/4 0/0 0/0
Blocks 35 0/28 0/28 0/28 31%, 3/3 31%, 3/3
Depot 22 0/7 0/6 0/7 0/0 44%, 1/1
Driverlog 20 0-5%, 4/14 1-41%, 13/13 1-8%, 13/13 41%, 1/1 41%, 1/1 1.00%
Elevators 50 0/40 0/40 0/40 0/0 0/0 1 - 10%
Floortile 20 0/7 28-29%, 9/9 28-29%, 9/9 0/0 29%, 2/2 2 - 28%
Freecell 80 0/15 0/2 0/2 0/0 0/0 28.00%
Grid 5 0/2 0/0 0/0 0/0 0/0
Gripper 20 0/7 0-47%, 4/7 0/7 47-48%, 3/3 47-48%, 3/3 11.00%
Logistics 63 0-85%, 10/26 26-85%, 27/27 20-47%, 27/27 59-85%, 7/7 58-85%, 10/10 42, 67%
Miconic 150 0-45%, 30/141 0-45%, 88/93 11-45%, 90/95 0-45%, 20/25 0-45%, 24/29 58.00%
Movie 30 74-96%, 30/30 74-96%, 30/30 74-96%, 30/30 74-96%, 30/30 74-96%, 30/30
Mprime 35 0/22 0-1%, 1/6 0-1%, 1/6 0/0 0/0 0.00%
Mystery 30 0-1%, 1/17 0-2%, 3/5 0-1%, 1/7 41%, 1/1 41%, 1/1 0.00%
NoMystery 20 0/15 2-53%, 11/11 2-5%, 9/9 3-53%, 10/10 3-53%, 12/12 49.00%
Openstacks 80 0/44 0/36 0/36 0/7 0/7 0.00%
Parcprinter 50 0-59%, 6/34 28-67%, 39/39 11-63%, 11/11 28-57%, 12/12 28-61%, 16/16 38 - 77%
Parking 20 0/3 0/0 0/0 0/0 0/0
Pathways 30 0-60%, 4/5 47-73%, 5/5 47-60%, 5/5 59-73%, 2/2 59-73%, 2/2
Pegsol 50 0/46 0/46 0/46 0/0 0/0 0.00%
Pipesworld-not. 50 0/17 0-3%, 1/6 0/9 0/0 0/0 0.00%
Pipesworld-t. 50 0/12 0/6 0/6 0/0 0/0 0.00%
Psr-small 50 0-48%, 37/49 0-55%, 44/45 0-40%, 37/45 16-66%, 38/38 16-66%, 40/40 85.00%
Rovers 40 0-48%, 7/9 14-53%, 9/9 14-50%, 9/9 35-53%, 4/4 35-53%, 4/4 71.00%
Satellite 36 0-40%, 3/7 10-50%, 7/7 10-50%, 7/7 10-40%, 3/3 10-40%, 4/4 50.00%
Scanalyzer 50 0/28 9-99%, 14/14 0/13 99%, 4/4 99%, 4/4 1, 0%
Sokoban 50 0/50 0/27 0/42 0/0 0/0 8 - 9%
Storage 30 0-63%, 2/15 0-68%, 6/15 0/15 1-72%, 4/4 41-72%, 4/4
Tidybot 20 0/14 0/0 0/0 0/0 0/0
Tpp 30 0-13%, 2/7 0-13%, 2/7 9-13%, 2/7 0/4 0/4 25.00%
Transport 50 0/17 0/17 0/17 23-44%, 3/3 23-44%, 3/3 0.00%
Trucks 30 0/10 67-87%, 7/7 67-87%, 7/7 73-79%, 2/2 73-79%, 2/2 90.00%
Visitall 20 0-75%, 4/11 0-75%, 6/11 0-50%, 6/11 0-75%, 3/5 0-75%, 3/5 6.00%
Woodworking 50 0-87%, 3/29 48-89%, 22/22 26-47%, 32/32 61-87%, 4/4 61-87%, 5/5 85 - 89%
Zenotravel 20 0-58%, 4/13 42-58%, 13/13 42-53%, 13/13 55-58%, 4/4 55-58%, 4/4 43.00%

Table 6.8.: Domain-wise performance comparison of different DP configurations calcu-
lating the coarsest simulations. The first and second value state the range
between minimum and maximum percentage of operators pruned per instance
in that domain. The third value (behind the comma) states how many in-
stances contained at least one prunable operator, out of the instances which
were solved (4th value).
The last column shows the average percentage of operators pruned in the
Pi configuration in Kissmann and Torralba (2015), which used incremental
computation and a time limit of 30 minutes.
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Further experiments were conducted using the incremental calculation described by
Kissmann and Torralba (2015). Additionally, the previously mentioned H2 criterion was
evaluated, where, if no operators could be pruned before merging LTS together, Domi-
nance Pruning is aborted. The results of the incremental computation are visualized in
Figure 6.6. Almost as many operators are often pruned (a), sometimes it is even possible
to prune more operators, when with calculating the coarsest simulation the time limit is
reached before merging far enough. The simulation computation is sped up considerably
in some instances (b).

(a) (b)

Figure 6.6.: Incremental against full (coarsest) computation

The effect of using the H2 criterion is visualized in Figure 6.7. Only in a few instances,
less operators are pruned (a). These instances where merging is required to prune any
operators are located at the bottom edge. The instances located on the top left are
caused by time fluctuation, as sometimes DP finishes the simulation calculation just
before the time limit is reached, in other times it doesn’t. Using the abort criterion, the
time overhead (b) can be reduced in many instances in which previously the time limit
for DP was reached without gain for the search.

Both methods sacrifice some pruning power but potentially speed up the pruning
process. As Table 6.9 shows, neither the incremental calculation nor the usage of H2

helped to improve the coverage compared to the baseline. Since they both decrease the
planning time, though, Dominance Pruning is used in combination with the two in the

56



successive experiments.

(a) (b)

Figure 6.7.: Incremental Dominance Pruning using the H2 abort criterion.

Instances solved aborted (time) aborted (memory) unsolvable
Baseline 820 627 2 7
Full DP 818 628 3 7
Incremental DP 818 630 1 7
Incremental DP + H2 819 630 0 7

Table 6.9.: Coverage of different DP configurations compared to the baseline.

Figure 6.8 shows the results when comparing Dominance Pruning against the baseline.
The number of expanded states (a) is considerably smaller, a few exceptions (above the
diagonal) result from using the inconsistent LM-Cut heuristic. An increase in coverage
is not achieved with DP, though, as even with the usage of the two previously described
modifications, the time overhead (b) is immense - very often the time limit of 360
seconds is reached. This conclusion matches the results described by Kissmann and
Torralba (2015).
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(a) (b)

Figure 6.8.: Performance of DP with H2 and incremental computation.
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6.3. Pruning Power Synergies

In this section, we examine synergy effects by comparing the pruning power of each
technique on its own with the performance in combination with a different pruning
method. In order to isolate the influence of synergies, each of the techniques in this
section receives a time limit of 180 seconds, meaning a combination of two techniques
has a time limit of 360 seconds in total.

6.3.1. Safe Abstraction and Redundant Operator Reduction

As Figure 6.9 shows, positive synergies of SA+ROR, meaning that ROR can reduce more
operators, occur only in Tpp and some Rovers instances. As Safe Abstraction never
causes ROR to remove less operators, except for those which are already removed by SA
(proven in Theorem 5), the number of search operators remaining in the problem is never
greater when using the combination of both - though often less, when Safe Abstraction
was active enough (Satellite, Rovers, Logistics,..).

(a) Black triangles: Tpp
Green crosses: Rovers

(b) Bottom edge: Logistics, Miconic, Movie
Red triangles: Satellite

Figure 6.9.: Synergies of using Safe Abstraction before ROR.

The reverse direction, ROR+SA, is visualized in Figure 6.10, although the positive syn-
ergies are too small to be visible in the plot. In a large number of Woodworking, Pegsol,
and Trucks instances, a small number of around 1-3 variables can be additionally ab-
stracted when ROR has removed the redundant operators. Negative synergies do not
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(a) (b)

Figure 6.10.: Synergies of using ROR before Safe Abstraction

occur, meaning Safe Abstraction is never less active after ROR, as shown in Theorem 7.

6.3.2. Dominance Pruning and Safe Abstraction

Figure 6.11 compares SA+DP against using only DP. Positive synergies of applying Safe
Abstraction before DP appear in many instances, so that more operators can be pruned
(a, above the diagonal) - in the domains Depot, Elevators, Transport, Gripper,
Rovers, Tpp, Driverlog and one Zenotravel instance. In some instances, less op-
erators are pruned by DP, not because of negative synergies but because the operators
are removed by Safe Abstraction. As the experimental results in (b) show, the com-
bination does not leave behind more operators than using only DP. This supports the
previously proven Theorem 9. A few exceptions (above the diagonal) are caused by
slight time variances in the computation (noise).

The results of the equivalent experiment for DP+SA are shown in Figure 6.12. With the
exception of some Rovers and one Visitall instance (above the diagonal), which can
be abstracted before, but not after Dominance Pruning, the positive synergies seem to
outweigh the negative, both in operators and variables removed. Safe Abstraction can
abstract more variables after DP in Psr-small, Woodworking, Parcprinter, Pathways,
Airport, and Satellite instances.
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(a) Bottom edge: Logistics, Miconic, Movie (b)

Figure 6.11.: Synergy effects of SA+DP.

(a) Green crosses: Rovers
Blue triangle: Visitall

(b)

Figure 6.12.: Synergy effects of DP+SA.
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6.3.3. Redundant Operator Reduction and Dominance Pruning

Figure 6.13 visualizes the experiment which explores the synergies ROR+DP. Positive syn-
ergies are not infrequent (a), in a row of instances (above the diagonal) DP benefits
from less available redundant operators. Although nothing can be proven regarding
the negative synergies of this combination, the number of search operators left in the
problem is almost exclusively lower when using the combination (b). That’s the case,
because in most cases for one operator that is reduced by ROR, there’s maximally one
operator which Dominance Pruning is not able to prune anymore. Instances in which
DP can prune more operators after redundant operators are removed (positive synergies)
mostly include Miconic instances, but also instances from various other domains, such
as Parcprinter, and Woodworking.

(a) (b)

Figure 6.13.: Synergy effects of ROR+DP.

The experimental results of the reversed order, DP+ROR, are visualized in Figure 6.14.
Similarly to the case described above, we achieve having less search operators left (b)
than with ROR alone in almost all instances. Although there are negative synergies,
usually there is maximally one less operator which ROR can remove for every operator
pruned by DP. Only in a few Miconic the total number of operators removed is smaller
than what ROR alone is capable of removing, since by pruning one operator, several
operators are not removable by ROR anymore. The number of operators removed by
ROR is in general never higher when applying Dominance Pruning first, only in two
instances (above the diagonal in (a)) ROR is more active. These, however, are artifacts
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of a different variable ordering: Dominance Pruning did not remove any operator from
the tasks. As shown in Theorem 14, positive synergies would be possible, but only in
rare cases - since a variable needs to become static, which then has to cause an operator
to become redundant - this did not appear in any domain.

(a) (b)

Figure 6.14.: Synergy effects of DP+ROR.
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6.4. Performances in combination

In this section, we take a look at the different combinations, compare them with each
other and quantify how important the synergies are for achieving a better pruning re-
sult. Every technique in this section is given a time limit of 180 seconds, meaning a
combination of two techniques has a total time limit of 360 seconds.

Figure 6.15 compares the two possible combinations of SA with ROR. Although the
number of search operators (b) is in general smaller when applying SA first (because
of the positive synergy the abstracted variables have on ROR), and the planning time
(c) is also often smaller, the coverage is slightly greater when ROR + SA is used. The
increased coverage (shown in Table 6.10) is not caused by positive synergies of ROR on
SA, though - as we’ve seen, they only appear in Pegsol and Woodworking instances.
Since static and irrelevant variables are removed before ROR+SA, but not in SA+ROR (since
Safe Abstraction abstracts those variables), the variables are saved in a different order,
which allowed a few additional instances to be solved. Although fewer search operators
are available when applying Safe Abstraction first, the plan costs (d) are lower in most
instances compared to the reversed order.

The two combinations of DP with SA are compared with another in Figure 6.16. Ap-
plying SA before DP produces in general better results than the reversed order, meaning
that more operators are removed (b) and less states are expanded (a). The positive syn-
ergies of DP on SA seem to be outweighed by its negative effects, which appear mainly in
Rovers, and by the positive synergies of SA and DP. The planning time plot (c) visual-
izes two interesting effects: Instances in which Safe Abstraction is very active take much
shorter when SA is applied before DP (below the diagonal); in the vertically aligned
instances DP reaches its time limit on the original instance, but is very fast on the ab-
stracted instance. The horizontally aligned instances above the diagonal are a side-effect
of using an early-abort criterion: DP cannot prune any operators on the original tasks
and therefore aborts before merging, while after application of SA some operators can
be pruned and DP takes up its full time limit. Concerning the planning cost (d), no
major differences can be observed.

Lastly, the combinations of DP with ROR are shown in Figure 6.17. While there is
no significant difference in the expanded states (a), there are a few less search operators
(b) left when ROR is applied first, since the positive synergies in the opposite direction
are rare. In the planning time (c) we do not see a clear preference for one of the two. On
the one hand, ROR is faster in removing operators than DP, on the other it potentially
removes operators which are needed for a faster search time. The horizontally aligned
instances above the diagonal are again a side-effect of using the H2 abort criterion.
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(a) (b)

(c) (d)

Figure 6.15.: Comparison of both combinations with SA and ROR.

65



(a) (b) Green crosses: Rovers

(c) (d)

Figure 6.16.: Comparison of both combinations with DP and SA.
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(a) (b)

(c) (d)

Figure 6.17.: Comparison of both combinations with DP and ROR.
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Table 6.10 shows the coverage of the mentioned combinations along with the single
techniques. Dominance Pruning does not impact the coverage by a lot, a small reduc-
tion can be the case. The worst results are achieved by using ROR, alone or in either
combination with Dominance Pruning, though together with Safe Abstraction the cov-
erage did not suffer. Safe Abstraction clearly improves the coverage the most, and so
do the combinations of Safe Abstraction with other techniques, though there seems to
be no real benefit of using the other techniques together with Safe Abstraction. A small
increase in coverage was observed when redundant operators were removed before Safe
Abstraction, but as mentioned a different variable ordering was identified as the reason,
not a positive synergy of the two.

Solved aborted (time) aborted (memory) unsolvable
Baseline 1414 388 76 8
SA 1484 312 82 8
ROR 1390 394 94 8
DP 1413 409 56 8
SA + ROR 1484 316 78 8
ROR + SA 1490 316 72 8
SA + DP 1486 322 70 8
DP + SA 1486 322 70 8
ROR + DP 1394 403 81 8
DP + ROR 1384 404 90 8

Table 6.10.: Solved and aborted problems out of 1886 instances with different combi-
nations. Preprocessing had a time limit of 360 seconds in total for every
experiment (except for the baseline). Combinations/techniques with in-
creased coverage compared to the baseline are marked in bold.
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6.5. Unsolvable instances

In this section, we evaluate the three pruning techniques on a set of problem domains
in which all instances are unsolvable. We use the unsolvable benchmarks by Hoffmann
et al. (2014) as well as unsolvable benchmarks by Jendrik Seipp, Florian Pommerening,
Chris Fawcett, Silvan Sievers, Yusra Alkhazraji and Martin Wehrle (the latter bench-
marks have been generated in the context of their portfolio planner submission to the
unsolvability IPC 2016).

The aim of a planner in such an instance is to prove that it is unsolvable, for which
every state in the state space needs to be expanded. Since all three pruning techniques
are solution-preserving, proving that the pruned problem is unsolvable is sufficient to
prove the same for the original problem.

Figure 6.18 shows the expanded states and the planning time when using Safe Ab-
straction against a run without it (both with greedy search and FF heuristic). The
domains represented by the symbols are listed in Figure 6.19.

(a) (b)

Figure 6.18.: Performance of Safe Abstraction on unsolvable problem instances.

The advantage of Safe Abstraction in this context is that refining a plan is not neces-
sary, since no plan exists. We can see that in a row of domains Safe Abstraction reduces
the number of states in the search space considerably (a), while in other domains it has
no effect at all. Similarly, the planning time (b) needed to prove that a problem is un-
solvable is reduced for the same instances, it also completes expanding the search space
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Figure 6.19.: Legend for the plots in Figure 6.18.

in some instances where without Safe Abstraction the time limit is reached. (instances
on the right edge).

As every state in the search space needs to be expanded, Redundant Operator Reduc-
tion does not have any benefit since it does not prune any state. Dominance Pruning
allows to prune less states only in a small number of instances and at the same time
introduces a huge overhead in time for the computation, so often the search space cannot
be completely expanded anymore. Both these techniques do not seem to be well suited
to be used in the context of unsolvable instances.
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7. Discussion on Safe Abstraction

As the experiments in the previous chapter have shown, despite the existing positive
synergies between the pruning techniques, applying two of them in combination does
not yield a better coverage than either of the techniques does separately (when exclud-
ing noise effects). Safe Abstraction is responsible for the improved coverage in each of
its combinations, and it also causes that increase on its own. Being the most promising
of the three techniques, we discuss one possible extension to Safe Abstraction in this
chapter. This extension has not been implemented in this work, we describe the general
idea and the conditions for Safe Abstraction in an informal way.

Although the conditions for Safe Abstraction are defined on the domain transition
graphs of variables, they could as well be defined on the atomic transition systems, since
both contain the relevant information. The states in the ATS are then the equivalent of
the values of the variable. One extension that could possibly improve the power of Safe
Abstraction further is to merge these transition systems together and to compute Safe
Abstractions on the so-achieved LTSs, abstracting several variables together which are
not safe on their own, but whose merged transition system is safe. An example of such
an instance is shown in Figure 7.1.

After merging and abstracting (v1, v2) together, v3 also becomes safe, and a search is
not needed therefore. Refining that plan would first form a less abstract task by rein-
serting v3, for which 〈x〉 is a plan. Then (v1, v2) would be reinserted. For the operator
x in the abstract plan, a path must be found in the merged LTS from the initial state
I1I2 to R1R2, as x has that requirement. Either 〈e, f1, f2, x〉 or 〈e, f2, f1, x〉 are plans
that would be created by the refinement process.
In the extreme case in which all LTS are merged together, no operator has any condi-
tion/effect on an external variable, meaning the only condition for Safe Abstraction is
that a goal state is reachable from the initial state. All variables are safely abstractable
together if a plan exists. However, there is no benefit in merging up to that point, as
the entire effort of the search would be moved to the refinement process, in which a path
from the initial state to a goal state needs to be found. Considering that there is the
additional overhead of finding out whether a path exists, to fulfill the conditions for Safe
Abstraction, the work would be doubled compared to a simple search. Clearly a mea-
surement needs to be found to determine at which point this strategy is not beneficial
anymore.

The example shown in Figure 7.1 is too small, so that any abstraction slows down
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(a) ATS of three variables v1, v2, v3. No
variable is safe, as R1 / I2 / G are not
free reachable from I1 / R2 / I3.

I1I2start I1R2

TI2 TR2

R1I2 R1R2

f2

e

f2

f1

f2

f1

x

(b) LTS of v1 ⊗ v2. Safely ab-
stractable, as e, f1 and f2 have no
effect/condition on the third vari-
able.

Figure 7.1.: Problem instance (with variables v1, v2, v3) in which Safe Abstraction would
be possible on merged transition systems. Externally required values are
marked in red. The dotted edges correspond to operators which have no
effect on that variable.

the search. The state space of the original problem that needs to be searched contains
7 reachable states, including the initial state. Abstracting (v1, v2) means that the re-
maining abstract problem contains 2 states (those of v3) that need to be searched. For
the refinement, the merged LTS needs to be searched for a path, containing 6 reach-
able states. With the additional overhead for abstraction (merging the LTS, detection
whether it’s safe, building the abstract problem) there cannot be any gain.
In general, when abstracting an LTS with n states, the abstracted problem’s search
space (including unreachable states) has n times fewer states. The costs of this oper-
ation are the reachability checks for abstraction and shortest-path searches (both on
those n states) for every operator that needs to be inserted into the plan. If the total
number of states in the search space is considerably larger than n, then abstracting the
LTS should prove to be useful.

To abstract several variables together, the conditions for safe variables need to be
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reconsidered. In the above example, it is obvious that the state R1R2 is externally
required, since it is the only state in which the operator x is applicable. If the operator
was applicable in several states, though, meaning it had a precondition on only one of the
variables, defining all of them to be externally required states would be very restrictive.
The same applies to goal states, if only one of the two variables has a goal value, and
to externally caused states. If all of these states have to be connected according to
Haslum’s condition, not many additional variables can be abstracted in this way. Out
of the domains examined in this work, there’s only one instance in which two variables
exist which are not safe on their own, but could be abstracted using this concept. That
instance from the Zenotravel domain is shown in Figure 7.2.

In this Zenotravel instance, a plane can travel (fly) between 3 cities, c0, c1 and c2 (b).
Two passengers (a, c) can board the plane when the plane is located at their starting
city, and debark the plane later on again. Every flight costs the plane one level of fuel
(d), it can be refueled at any city. The goal is for the passengers to arrive at their desti-
nation, and for the plane to arrive at the city c1. A plan for this problem is 〈flyc0−→c1,f1〉,
since the passenger are already at their destination in the initial state.

The two variables encoding the passenger’s location (a, c) are both safe: Neither of
them has an externally required value, and their initial state is equal to their goal state.
The two variables encoding the plane’s location and its level of fuel cannot be abstracted,
since the fly and refuel operators have preconditions and effects on both of them. Merg-
ing the two ATS together, every state c∗f∗ in the resulting LTS is free reachable from
any other state. Therefore, abstracting those two variables together is possible. Since
no variables are left in the abstract problem, no search is needed. To refine the plan, a
path must be found in the merged LTS from the state c0f1 to any goal state c1f∗, either
by directly flying from c0 to c1, or by first refueling or making a detour to c2.

Requiring free reachability of all states, in which operators are applicable that work
on other variables, appears to be too restricting. The concept behind safe variables
is, that every abstract plan can be refined to a plan for the concrete problem. This
refining is still possible when not all relevant states are freely reachable, but it requires
a more complex refining algorithm. Consider Figure 7.3 for an example, which depicts
a problem instance with three variables. None of the variables is initially safe: In v1,
the externally required value R1 is not free reachable from the initial state. In v2, the
externally required value I is not free reachable from R2. In v3, the goal value is not
free reachable from the initial state.
Subfigure (b) shows the LTS resulting from merging the ATS of v1 and v2 together.
Using the strict condition mentioned above, the two variables are not safely abstractable,
since some externally required values are not free reachable from IR2. However, if the
variables were abstracted, every plan for the resulting abstract problem could be refined
to a concrete plan, as long as the refining algorithm ensures that the state IR2 is not
reached, since from that state, no other state is free reachable in which y is applicable.
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debarkp1,c1

debarkp1,c2

(a) ATS of the variable encoding the loca-
tion of passenger 1. The refuel ..., fly...,
boardp2,∗ and debarkp2,∗ transitions are not
depicted and applicable in every state.

c0start

c2c1

flyc0−→c1,f∗

flyc1−→c2,f∗

flyc2−→c0,f∗

debarkp∗,c0 , boardp∗,c0 , refuel...,c0

. . .. . .

(b) ATS of the variable encoding the
plane’s location. A flya−→b,f∗ edge
in the graph represents one transition
from a to b for every possible level of
fuel.

c0

plane

c1c2start

boardp2,c0

boardp2,c1

boardp2,c2

debarkp2,c0

debarkp2,c1

debarkp2,c2

(c) ATS of the variable encoding the location of
passenger 2. The refuel..., fly..., boardp1,∗ and
debarkp1,∗ transitions are not depicted and ap-
plicable in every state.

f0 f1start f2 f3 f4

refuelf0−→f1,c∗ refuelf1−→f2,c∗ refuelf2−→f3,c∗ refuelf3−→f4,c∗

flyc∗−→c∗,f1 flyc∗−→c∗,f2 flyc∗−→c∗,f3 flyc∗−→c∗,f4

(d) ATS of the variable encoding the level of fuel. A flyc∗−→c∗,fa edge in the graph
represents one transition for every two cities, refuelfa−→fb,c∗ equivalently. The
The board... and debark... transitions are not depicted and applicable in every
state.

Figure 7.2.: Zenotravel instance in which a merged LTS allows the safe abstraction of
two variables
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(b) ATS of v1 and v2 merged together.

Figure 7.3.: Example instance with three variables, in which merging and abstracting v1
and v2 requires a different refining algorithm.

Removing v1 and v2, the abstract plan is 〈x, y〉. When refining, the preconditions of x
on v2 need to be satisfied first. A naive refining algorithm might apply f2 directly, since
then the preconditions are satisfied. Since IR2 must not be visited, either the state TR2

or R1R2 can be considered.
To ensure that every abstract plan can be refined, a definition of Safe Abstraction on

merged LTS needs to contain an at least one-semantic. For every externally required
value of one variable, at least one state sr in the merged LTS assigning that value must be
free reachable from at least one state for every other externally required value and from
the initial state. If externally caused values exist, sr must also be free reachable from at
least one state sc for each externally caused value. Further, denoting the operator which
causes that externally caused value with o, we need to ensure that one state so must
be free reachable, in which a transition so

o−→ sc exists. Otherwise, if the operator o is
applied in the abstract plan, it might not be possible for the refining algorithm to end
up in sc after o is applied but in some other state caused by the operator, from which
the externally required states are not free reachable.
In summary, a cluster of states must exist in the merged LTS which allows every operator
to be applied and every goal condition to be satisfied. The refining algorithm must then
ensure that while inserting operators into the abstract plan, it never runs into a dead
end (like the state IR2 in Figure 7.3.b).
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8. Conclusion

To conclude, we first briefly review the subjects covered in this work and then recapit-
ulate the results of the thesis in more detail.

In this work, we have discussed three different existing static pruning techniques, Safe
Abstraction, Redundant Operator Reduction, and Dominance Pruning. We analysed
how each of them prunes the search space, and proposed modifications and extensions
to them in order to further increase their pruning power. We investigated the possible
synergy effects in each combination of two pruning methods, and observed that most of
the synergies also occur in instances of IPC benchmarks. We described the implemen-
tation of the three techniques into an existing propositional planner and evaluated the
methods on IPC benchmarks. We measured the performance of different configurations
for each technique, and the magnitude of the synergy effects between the methods.

As two conditions for Safe Abstraction have been proposed, we have compared their
performances with each other. Both lead to a considerable increase of coverage, Haslum’s
condition allows to abstract more variables in many domains and to solve some addi-
tional domains without search. When used in the context of unsolvable instances, Safe
Abstraction reduces the number of states which need to be expanded, consequently
speeding up the search process. To further extend this technique, we discussed an idea
in the last chapter based on calculating Safe Abstractions on merged atomic transition
systems. This approach has not been implemented yet, but is an interesting point for
future research.

The technique of Redundant Operator Reduction has so far only been used on a small
set of domains. In this work, we have evaluated it on a bigger set. Although ROR is
capable of removing many operators from the planning tasks, its pruning is not consis-
tently beneficial for the search. In many instances, having fewer redundant operators
available leads to an increase in the number of states which have to be expanded and
in the search time. A dynamic version of ROR, which avoids to prune transitions based
on knowledge used in Tunnel Macros, might be able to reduce these negative effects.

We observed that ROR can be combined together with Safe Abstraction without ei-
ther of the techniques having negative effects on the pruning power of the other. While
positive synergies do exist, they are too weak to increase the coverage.

As a third pruning method, we have studied the static version of Dominance Pruning.
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We proposed an implementation that allows to prune transitions which subsume each
other in order to increase the number of operators that can be removed. The technique
is able to remove many operators, consequently fewer states need to be expanded, but
the preprocessing overhead does not pay off in terms of overall planning time, even when
using the incremental computation and an early-abort criterion. If Dominance Pruning
is allowed to ignore label costs, only very few operators can be pruned additionally.

Despite being an optimality-preserving method, we were able to identify positive syn-
ergy effects on Dominance Pruning when the two satisficing techniques are used before
it. In practice, the methods would not be combined because the optimality-preserving
property is lost, and the overhead of DP is too high as a satisficing preprocessing method.
If a faster, suboptimal variant of DP was found, it could be used for satisficing search
in combination with Safe Abstraction.
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