
Time Unrolling Heuristics

Philipp Oldenburg

March 27, 2018

1 / 36

High-level idea

I Guided state space search

I Use cheapest network flow for estimating cheapest plan cost

I Estimation works better if we introduce time steps

2 / 36

What is a network flow

I Already introduced in 1956
I Network flow theory by Jr. L. R. Ford

I Maps transitions to positive real numbers

I One unit gets moved from initial state to the goal states

I Non-goal flow only allowed in cycles

I Can be formalized as an LP

3 / 36

Flow example

1

0

I Flow with cost of 1 · cost(→)

4 / 36

Flow example (2)

1

2

I Flow with cost of 1 · cost(→) + 2 · cost(→)

5 / 36

Flow example (3)

1

0.5

I Flow with cost of 1 · cost(→) + 0.5 · cost(→)

6 / 36

Relationship flows and plans

I For every flow a plan

I Other direction not guaranteed

7 / 36

Flow example - revisited

1

0

I Flow has corresponding plan: 〈→〉

8 / 36

Flow example (3)

0 0

1

I Depicts flow with cost of cost(→) that uses an isolated cycle
and has no corresponding plan

I Cycles might be bad for flow-plan relationship

I Here not of importance

9 / 36

How flows are used

I Admissibly estimating plan costs
I An LP-based heuristic for optimal planning CP 2007

I Combine information of multiple abstract transition systems
I Synchronize flows for each operator
I e.g. hSEQ using atomic projections

10 / 36

Synchronized flow

T α1 T α2

11 / 36

Synchronized flow example

T α1 T α20 0

1

1 0

0

I Depicts cheapest synchronized flow with cost of cost(→) that
uses an isolated cycle and has no corresponding plan

I This time cheapest synchronized flow

I Cycles might lead to low heuristic values → get rid of them

12 / 36

Time unrolling

13 / 36

Time unrolling example (2 time steps)

T α1

T α2

Time = 0

Time unrolling−−−−−−−−→

Time = 1 Time = 2

Time unrolling−−−−−−−−→

14 / 36

Time unrolling example (with cheapest synchronized flows)

T α1

T α2

0 0

1

1 0

0

Time = 0

Time unrolling−−−−−−−−→

Time = 1 Time = 2

Time unrolling−−−−−−−−→

1 0

0

0 1

0

0
1

0

0

0

1

15 / 36

Time unrolling disadvantages

I #time steps · |S| new states for every abstract transition
system → bigger LP/IP

I Plans of abstractions might no longer be preserved
I Only plans with length at most #time steps are preserved

This can make the heuristic inadmissible
→ New type of time unrolling

16 / 36

Time unrolling with repetition

T α1

T α2

Time = 0

Time unrolling−−−−−−−−→
with repetition

Time = 1 Time = 2

Time unrolling−−−−−−−−→
with repetition

17 / 36

Time unrolling with repetition (cheapest synchronized
flows)

T α1

T α2

0 0

1

1 0

0

Time = 0

Time unrolling−−−−−−−−→
with repetition

Time = 1 Time = 2

Time unrolling−−−−−−−−→
with repetition

0 0

0

0 0

0

1
0

0

0

0

0

0 0

1

0 0

0

18 / 36

Time synchronization

Time = 0

Time unrolled T α1

with rep.

Time = 1 Time = 2

Time unrolled T α2

with rep.

19 / 36

Time synchronization (with cheap. time synchronized flow)

Time = 0

Time unrolled T α1

with rep.

Time = 1 Time = 2

Time unrolled T α2

with rep.

1 0

0

0

1

0

0 1

0

0

0

1

0 0

0

0 0

0

20 / 36

Time synchronization properties

I Introduces new synchronization constraints
I Before: Constraints for every operator
I After: Constraints for every operator for every time step

I Can prevent cycle exploitation as seen

21 / 36

Time unrolling
heuristics

22 / 36

hATUR
n

I Abstractions: atomic projections

I Uses time unrolling with repetition and n time steps

I Is defined as the cost of cheapest time synchronized flow

I n can be chosen depending on size of atomic projections

I IP version: hATURn,N

23 / 36

hMATU

I Abstractions: atomic projections

I Uses time unrolling (without repetition) and lowest number of
time steps possible

I Is defined as the cost of cheapest time synchronized flow

I Adjusts the number of time steps dynamically

I IP version: hMATU
N

24 / 36

Properties of hATUR
n and hMATU

Dominance relationships

I Given any integers n,m with n ≤ m
I hSEQ ≤ hATURn ≤ hATURm ≤ hMATU

I IP versions dominate their counterparts
I hMATU

N = h∗

Admissibility

I hATURn admissible

I hMATU only admissible with unit costs

I Analogously for IP versions

25 / 36

Experiments

26 / 36

Experiment settings

I sciCORE

I Limits: 30 minutes and 2 GB

I Optimal tracks of IPC (1998-2014)

I hSEQ and hLM-cut as comparison

27 / 36

Experimental results - hATUR
n (sI)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1

1

hATUR2 (sI)÷ h∗(sI)

h
S
E
Q

(s
I)
÷
h
∗ (
s I

)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1

1

hATUR6 (sI)÷ h∗(sI)

28 / 36

Experimental results - hATUR
n,N (sI)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1

1

hATUR2,N (sI)÷ h∗(sI)

h
A
T
U
R

2
(s

I)
÷
h
∗ (
s I

)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1

1

hATUR6,N (sI)÷ h∗(sI)
h
A
T
U
R

6
(s

I)
÷
h
∗ (
s I

)

29 / 36

Experimental results - Coverage of hATUR
n,N and hATUR

n

0 2 4 6

200

400

600

800

Time steps

C
ov

er
ag

e
hATURx

hATURx ,N
hLM-cut

hSEQ

30 / 36

Experimental results - hMATU(sI)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1

1

hMATU(sI)÷ h∗(sI)

h
S
E
Q

(s
I)
÷
h
∗ (
s I

)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1

1

hMATU(sI)÷ h∗(sI)
h
L
M
-c
u
t (
s I

)
÷
h
∗ (
s I

)

31 / 36

Experimental results - hMATU
N (sI)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1

1

hMATU
N (sI)÷ h∗(sI)

h
M
A
T
U

(s
I)
÷
h
∗ (
s I

)

32 / 36

Experimental results - Coverage of hMATU and hMATU
N

Coverage Coverage ÷ Coverage of hMATU

hLM-cut 832 4.8

hSEQ 757 4.4

hMATU 174 1

hMATU
N 127 0.7

33 / 36

Future work
and conclusion

34 / 36

Future work

I Use other abstractions
I e.g. projections to multiple variables

I Combine with other heuristics within operator counting
framework

I LP-based Heuristics for Cost-optimal Planning ICAPS 2014

I Remove cycles with less overhead

35 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step

36 / 36

