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High-level idea

I Guided state space search

I Use cheapest network flow for estimating cheapest plan cost

I Estimation works better if we introduce time steps
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What is a network flow

I Already introduced in 1956
I Network flow theory by Jr. L. R. Ford

I Maps transitions to positive real numbers

I One unit gets moved from initial state to the goal states

I Non-goal flow only allowed in cycles

I Can be formalized as an LP
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Flow example

1

0

I Flow with cost of 1 · cost(→)
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Flow example (2)

1

2

I Flow with cost of 1 · cost(→) + 2 · cost(→)
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Flow example (3)

1

0.5

I Flow with cost of 1 · cost(→) + 0.5 · cost(→)
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Relationship flows and plans

I For every flow a plan

I Other direction not guaranteed
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Flow example - revisited

1

0

I Flow has corresponding plan: 〈→〉
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Flow example (3)

0 0

1

I Depicts flow with cost of cost(→) that uses an isolated cycle
and has no corresponding plan

I Cycles might be bad for flow-plan relationship

I Here not of importance
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How flows are used

I Admissibly estimating plan costs
I An LP-based heuristic for optimal planning CP 2007

I Combine information of multiple abstract transition systems
I Synchronize flows for each operator
I e.g. hSEQ using atomic projections
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Synchronized flow

T α1 T α2
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Synchronized flow example

T α1 T α20 0

1

1 0

0

I Depicts cheapest synchronized flow with cost of cost(→) that
uses an isolated cycle and has no corresponding plan

I This time cheapest synchronized flow

I Cycles might lead to low heuristic values → get rid of them
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Time unrolling
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Time unrolling example (2 time steps)

T α1

T α2

Time = 0

Time unrolling−−−−−−−−→

Time = 1 Time = 2

Time unrolling−−−−−−−−→
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Time unrolling example (with cheapest synchronized flows)

T α1

T α2

0 0

1

1 0

0

Time = 0

Time unrolling−−−−−−−−→

Time = 1 Time = 2

Time unrolling−−−−−−−−→

1 0

0

0 1

0

0
1

0

0

0

1
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Time unrolling disadvantages

I #time steps · |S| new states for every abstract transition
system → bigger LP/IP

I Plans of abstractions might no longer be preserved
I Only plans with length at most #time steps are preserved

This can make the heuristic inadmissible
→ New type of time unrolling
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Time unrolling with repetition

T α1

T α2

Time = 0

Time unrolling−−−−−−−−→
with repetition

Time = 1 Time = 2

Time unrolling−−−−−−−−→
with repetition
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Time unrolling with repetition (cheapest synchronized
flows)

T α1

T α2

0 0

1

1 0

0

Time = 0

Time unrolling−−−−−−−−→
with repetition

Time = 1 Time = 2

Time unrolling−−−−−−−−→
with repetition

0 0

0
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0
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Time synchronization

Time = 0

Time unrolled T α1

with rep.

Time = 1 Time = 2

Time unrolled T α2

with rep.
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Time synchronization (with cheap. time synchronized flow)

Time = 0

Time unrolled T α1

with rep.

Time = 1 Time = 2

Time unrolled T α2

with rep.

1 0

0

0

1

0

0 1

0

0

0

1

0 0

0

0 0

0
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Time synchronization properties

I Introduces new synchronization constraints
I Before: Constraints for every operator
I After: Constraints for every operator for every time step

I Can prevent cycle exploitation as seen
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Time unrolling
heuristics
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hATUR
n

I Abstractions: atomic projections

I Uses time unrolling with repetition and n time steps

I Is defined as the cost of cheapest time synchronized flow

I n can be chosen depending on size of atomic projections

I IP version: hATURn,N
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hMATU

I Abstractions: atomic projections

I Uses time unrolling (without repetition) and lowest number of
time steps possible

I Is defined as the cost of cheapest time synchronized flow

I Adjusts the number of time steps dynamically

I IP version: hMATU
N
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Properties of hATUR
n and hMATU

Dominance relationships

I Given any integers n,m with n ≤ m
I hSEQ ≤ hATURn ≤ hATURm ≤ hMATU

I IP versions dominate their counterparts
I hMATU

N = h∗

Admissibility

I hATURn admissible

I hMATU only admissible with unit costs

I Analogously for IP versions
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Experiments
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Experiment settings

I sciCORE

I Limits: 30 minutes and 2 GB

I Optimal tracks of IPC (1998-2014)

I hSEQ and hLM-cut as comparison
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Experimental results - hATUR
n (sI )
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Experimental results - hATUR
n,N (sI )
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Experimental results - Coverage of hATUR
n,N and hATUR

n
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Experimental results - hMATU(sI )
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Experimental results - hMATU
N (sI )
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Experimental results - Coverage of hMATU and hMATU
N

Coverage Coverage ÷ Coverage of hMATU

hLM-cut 832 4.8

hSEQ 757 4.4

hMATU 174 1

hMATU
N 127 0.7
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Future work
and conclusion
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Future work

I Use other abstractions
I e.g. projections to multiple variables

I Combine with other heuristics within operator counting
framework

I LP-based Heuristics for Cost-optimal Planning ICAPS 2014

I Remove cycles with less overhead
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Conclusion

I Estimate cheapest plan cost with cheapest flow

Flows Plans

I Introduce time steps

I Repetition in last time layer

I Synchronization per time step
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