Time Unrolling Heuristics

Philipp Oldenburg

March 27, 2018

High-level idea

Guided state space search

- Use cheapest network flow for estimating cheapest plan cost
- Estimation works better if we introduce time steps

What is a network flow

- Already introduced in 1956
 - Network flow theory by Jr. L. R. Ford
- Maps transitions to positive real numbers
- One unit gets moved from initial state to the goal states
- Non-goal flow only allowed in cycles
- Can be formalized as an LP

Flow example

Flow with cost of $1 \cdot cost(\rightarrow)$

Flow example (2)

Flow with cost of $1 \cdot cost(\rightarrow) + 2 \cdot cost(\rightarrow)$

Flow example (3)

Flow with cost of $1 \cdot cost(\rightarrow) + 0.5 \cdot cost(\rightarrow)$

Relationship flows and plans

- For every flow a plan
- Other direction not guaranteed

Flow example - revisited

• Flow has corresponding plan: $\langle \rightarrow \rangle$

Flow example (3)

- ▶ Depicts flow with cost of cost(→) that uses an isolated cycle and has no corresponding plan
- Cycles might be bad for flow-plan relationship
- Here not of importance

How flows are used

- Admissibly estimating plan costs
 - An LP-based heuristic for optimal planning CP 2007
- Combine information of multiple abstract transition systems
 - Synchronize flows for each operator
 - ▶ e.g. *h^{SEQ}* using atomic projections

Synchronized flow

Synchronized flow example

- ▶ Depicts cheapest synchronized flow with cost of cost(→) that uses an isolated cycle and has no corresponding plan
- This time cheapest synchronized flow
- Cycles might lead to low heuristic values \rightarrow get rid of them

Time unrolling

Time unrolling example (2 time steps)

Time unrolling example (with cheapest synchronized flows)

Time unrolling disadvantages

- #time steps · |S| new states for every abstract transition
 system → bigger LP/IP
- Plans of abstractions might no longer be preserved
 - Only plans with length at most # time steps are preserved This can make the heuristic inadmissible \rightarrow New type of time unrolling

Time unrolling with repetition

Time unrolling with repetition (cheapest synchronized flows)

Time synchronization

Time synchronization (with cheap. time synchronized flow)

Time synchronization properties

- Introduces new synchronization constraints
 - Before: Constraints for every operator
 - After: Constraints for every operator for every time step
- Can prevent cycle exploitation as seen

Time unrolling heuristics

- Abstractions: atomic projections
- Uses time unrolling with repetition and n time steps
- Is defined as the cost of cheapest time synchronized flow
- n can be chosen depending on size of atomic projections
- ▶ IP version: $h_{n,\mathbb{N}}^{ATUR}$

h^{MATU}

- Abstractions: atomic projections
- Uses time unrolling (without repetition) and lowest number of time steps possible
- Is defined as the cost of cheapest time synchronized flow
- Adjusts the number of time steps dynamically
- ▶ IP version: $h_{\mathbb{N}}^{MATU}$

Properties of h_n^{ATUR} and h^{MATU}

Dominance relationships

• Given any integers n, m with $n \leq m$

•
$$h^{SEQ} \leq h_n^{ATUR} \leq h_m^{ATUR} \leq h^{MATUR}$$

IP versions dominate their counterparts

•
$$h_{\mathbb{N}}^{MATU} = h^*$$

Admissibility

- h_n^{ATUR} admissible
- ► *h^{MATU}* only admissible with unit costs
- Analogously for IP versions

Experiments

Experiment settings

- sciCORE
- Limits: 30 minutes and 2 GB
- Optimal tracks of IPC (1998-2014)
- h^{SEQ} and h^{LM-cut} as comparison

Experimental results - $h_n^{ATUR}(s_l)$

Experimental results - $h_{n,\mathbb{N}}^{ATUR}(s_l)$

Experimental results - Coverage of $h_{n,\mathbb{N}}^{ATUR}$ and h_n^{ATUR}

Experimental results - $h^{MATU}(s_l)$

Experimental results - $h_{\mathbb{N}}^{MATU}(s_I)$

Experimental results - Coverage of h^{MATU} and $h_{\mathbb{N}}^{MATU}$

	Coverage	Coverage \div Coverage of h^{MATU}
h ^{LM-cut}	832	4.8
h ^{SEQ}	757	4.4
h ^{MATU}	174	1
$h_{\mathbb{N}}^{MATU}$	127	0.7

Future work and conclusion

Future work

- Use other abstractions
 - e.g. projections to multiple variables
- Combine with other heuristics within operator counting framework
 - ► LP-based Heuristics for Cost-optimal Planning ICAPS 2014
- Remove cycles with less overhead

Estimate cheapest plan cost with cheapest flow

Introduce time steps

Estimate cheapest plan cost with cheapest flow

Introduce time steps

- Introduce time steps
- Repetition in last time layer

- Introduce time steps
- Repetition in last time layer

- Introduce time steps
- Repetition in last time layer
- Synchronization per time step

- Introduce time steps
- Repetition in last time layer
- Synchronization per time step