
Non-Orthogonal Factored Transition Systems

for Merge-and-Shrink

Luka Obser

October 10, 2023



Abstract

Planning tasks can be used to describe many real world problems of interest. Solving those tasks
optimally is thus an avenue of great interest. One established and successful approach for optimal
planning is the merge-and-shrink framework, which decomposes the task into a factored transition
system. The factors initially represent the behaviour of one state variable and are repeatedly combined
and abstracted. The solutions of these abstract states is then used as a heuristic to guide search in
the original planning task. Existing merge-and-shrink transformations keep the factored transition
system orthogonal, meaning that the variables of the planning task are represented in no more than
one factor at any point. In this thesis we introduce the clone transformation, which duplicates a factor
of the factored transition system, making it non-orthogonal. We test two classes of clone strategies,
which we introduce and implement in the Fast Downward planning system and conclude that, while
theoretically promising, our clone strategies are practically inefficient as their performance was worse
than state-of-the-art methods for merge-and-shrink.



Acknowledgements

I want to thank everyone who has made it possible for me to write this thesis. First, I want to thank
Dr. Gabriele Röger for the opportunity of writing this thesis. I also want to thank my two supervisors
Dr. Silvan Sievers and Remo Christen for their endless patience and support during the last seven
months. Lastly, I want to thank my friends, family, and especially my partner Rebecca for their
constant support, patience, and words of encouragments throughout my studies.



Contents

1 Introduction 2

2 Background 4
2.1 Classical Planning as Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Merge-and-Shrink Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Merge-and-Shrink Framework Transformations . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Clone Transformation 15
3.1 Proofs of Properties of the Clone Transformation . . . . . . . . . . . . . . . . . . . . . . 16

4 Clone Strategies 18
4.1 Implementing the Cloning Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Ad Hoc Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Precomputed Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Conclusion 29

A Results of Ad Hoc Cloning 32
A.1 Orthogonal Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Baseline Comparison, Budget Size 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.3 Budget Size 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.4 Budget Size 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.5 Budget Size 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



Chapter 1

Introduction

Planning has been one of the central areas of artificial intelligence research since the birth of the field.
The idea of tasking a machine with finding the specific actions which may lead to a desired result has
been mentioned as early as the first time the term “artificial intelligence” was proposed by McCarthy
et al. [1] in the summer of 1955.

In short, planning is the task of finding a plan, a sequential set of actions, which will lead us from
one world state to another. An intuitive example is route planning, where we start at point A, for
example our home and wish to drive to a specific destination, such as the sea. The actions of our
plan then specify how to act at each intersection we encounter. In this example, our goal state is
characterized by having reached a beach.

The main problem we encounter when trying to solve planning tasks is one we are already familiar
with from when we ourselves try to make plans. Most problems are simply too complex for an
exhaustive search to be feasible, as there are usually too many different states to keep track of, even
after only a handful of decisions. Considering every direction at every intersection from here to the sea
will inevitably lead to us spending the summer planning a vacation instead of taking it. Depending
on how landlocked we are, we might not even make it to the beach by next year simply because we
are tracing side streets and alleys on our map in some big city which is only a few kilometers closer to
the ocean than we are now.

This need for guidance in complex problems leads us to heuristics. Heuristics are essentially rules
of thumb, methods which aim to be easy to compute and which may tell us whether we are making
progress towards our goal or not. A heuristic for our task of planning a route to the beach could be
to take a ruler and to measure the beeline from a point to the ocean. We will then consider the roads
which will bring us to points closer to the ocean first. While this may not always work, as it could lead
us down a dead end, we will be able to get to the beach quicker than when blindly tracing all streets.

Good heuristics are hard to come by, but once obtained, they can greatly increase the efficiency
of informed search algorithms such as A* [2], which yields optimal solutions, provided the heuristic
fulfills a few simple conditions.

The last two decades saw a huge increase in interest for heuristic search and this trend does not seem
to fade. The method we will investigate and expand upon in our work are merge-and-shrink heuristics.
Originally a method developed for model checking by Dräger et al. [3], the method was quickly adapted
for optimal planning in 2007 by Helmert et al. [4]. More recently, Sievers and Helmert [5] combined
previous work on merge-and-shrink into a modular framework which interprets the method in a more
general context.

In our thesis we expand upon this framework by introducing a clone transformation. This allows
the algorithm to consider non-orthogonal factored transition systems. This makes it possible to express
more nuanced relations between variables, which in turns opens up the possibility of more accurate
heuristics. Clone transformations in the context of merge-and-shrink heuristics have only been men-
tioned as a side note [6], or as a possible venue of future work [7]. Related notions exist for factored
transition systems in general [8].

We will begin by providing the necessary background before formally defining the clone transfor-
mation in the terminology of Sievers and Helmert’s framework [5]. We then consider two classes of
strategies which decide when and what to clone. While, in theory, we may obtain better results due
to the increased flexibility of non-orthogonal factored transition systems, our experiments have shown

2



that it is difficult to automate the choice of which factor to clone when. As such, the performance
of our strategies was inferior to state-of-the-art methods we used as comparison. Although the per-
formance of our cloning strategies was unable to keep up with the state of the art, we see promise in
cloning more selectively. This is especially promising in combination with cost partitioning, which is
already an established improvement for merge-and-shrink heuristics as shown by Sievers et al. [9].

3



Chapter 2

Background

This chapter provides definitions of concepts and methods referenced throughout the thesis. Since this
thesis aims to be self-contained, many of the more basic definitions might already be familiar to some
readers. For those, we suggest to treat this chapter as a glossary to look up notations or to freshen up
on details if questions arise during the reading of the subsequent chapters.

Unless otherwise specified, the definitions on these pages are taken directly from the journal paper
on the merge-and-shrink framework [5], or from the introductory lectures on artificial intelligence [10]
and planning and optimization [11] taught at the University of Basel.

Before jumping into definitions of planning tasks, let us recount some basics regarding functions as
well as partitions of sets.

Definition 1 (Inverse of a Function; based on [5]). Let f : X → Y be a function. For y ∈ Y , the
inverse of f is defined as the set f−1(y) = {x ∈ X | f(x) = y}. We extend this definition to subsets
Y ′ ⊆ Y by defining f−1(Y ′) = {x ∈ X | f(x) ∈ Y ′}.

Definition 2 (Composition of Functions; based on [5]). Let f : X → Y and g : Y → Z be two
functions. The composition of f and g, is the function h : X → Z, where h = g ◦ f , such that
h(x) = g(f(x)).

Definition 3 (Partition). Let X be a non-empty set. The partition of X is a set P = {A1, . . . , An},
where A1, . . . , An are non-empty subsets of X, such that for all elements x ∈ X, x is contained in
exactly one element of P .

2.1 Classical Planning as Heuristic Search

We start with the definition of planning task. For this, we need to get a few technicalities out of the
way so let us first define variable spaces and assignments.

Definition 4 (Variable Space; based on [5]). A variable space is a tuple V = ⟨v1, . . . , vn⟩ of n variables,
each with a finite domain of arbitrary values (dom(v)).

Throughout our definitions we will oftentimes treat variable spaces as sets where convenient. To
allow this we assume that each variable has a separate identity, that is, V does not contain duplicates.
We may thus write, for example, v ∈ V to express that V contains the variable v. The reason for
defining variable spaces as tuples is in order to retain a total order on the variables contained which
helps in expressing algorithms over variable spaces in an unambiguous way.

Definition 5 (Assignment, Partial Assignment, Consistent Assignment; based on [5]). Let V =
⟨v1, . . . , vn⟩ be a variable space. A partial assignment for V is a function α defined on V ⊆ V,
that maps each element v ∈ V to some element in its domain dom(v). We write α[v] for this element
of dom(v). We write vars(α) to denote the set of variables on which α is defined. A partial assign-
ment with vars(α) = V is called an assignment. Two partial assignments α and α′ are consistent if
α[v] = α′[v] for all v ∈ vars(α) ∩ vars(α′). We write A(V) for the set of all assignments for V.

4



With these definitions out of the way we can now formally define a planning task.

Definition 6 (Planning Task; based on [5]). A planning task is a tuple Π = ⟨V,O, sI , sG⟩. V denotes a
variable space whose variables are called state variables. (Partial) assignments of V are called (partial)
states. O is a finite set of operators, where each operator o ∈ O has associated partial states for the
precondition (pre(o)), and for the effect (eff (o)). Each operator also has a non-negative cost (cost(o)).
The state sI is called the initial state and sG is a partial state called the goal.

One common method of interpreting planning tasks are transition systems. Transition systems
offer an intuitive graph based representation of planning tasks.

Definition 7 (Transition System; based on [5]). A transition system is a tuple Θ = ⟨S,L, c, T, SI , SG⟩.
S is a finite set of states and L is a finite set of transition labels. c : L → R+

0 is a label cost function
which maps each transition label to a non negative cost. T ⊆ S × L× S is a set of labeled transitions
between states. SI ⊆ S is the set of initial states (which usually consists of only one state), and SG ⊆ S
is the set of goal states.

A planning task Π = ⟨V,O, sI , sG⟩ induces a transition system Θ = ⟨S,L, c, T, SI , SG⟩ which can
be seen as a directed graph where the vertices are the states S = A(V) and the arcs are the transitions
⟨s, l, s′⟩ = t ∈ T , where s and s′ denote predecessor and successor and l ∈ L corresponds to an operator
o ∈ O. The label cost function c keeps track of the costs of the operators (cost(o)) associated with
their labels, that is, it assigns weights to the arcs. The concepts of initial and goal states are equivalent
in semantics but different in syntax since planning tasks keep track of states via (partial) assignments
rather than sets.

Definition 8 (Paths, Costs, Plans; based on [5]). Let Θ = ⟨S,L, c, T, SI , SG⟩ be a transition system.

We write s
l−→ s′ to denote a transition ⟨s, l, s′⟩ ∈ T from s to s′ with label l. We may write s

l−→ s′ ∈ Θ

rather than s
l−→ s′ ∈ T and s ∈ Θ for s ∈ S whenever Θ is not specified further.

A path from s ∈ S to s′ ∈ S is a sequence π = ⟨t1, . . . , tn⟩ of transitions such that there exist states

s = s0, . . . , sn = s′ with ti = (si−1
li−→ si) ∈ T for all 1 ≤ i ≤ n. As a special case, the empty path

⟨⟩ is a path from s to s for all s ∈ S. The cost of a path c(π) is the accumulated cost of the labels of
the transitions, i.e., c(π) =

∑n
i=1 c(li). We allow empty paths π = ⟨⟩ iff s = s′. The cost of the empty

path is always 0.
A path from some state s to some goal state s′ ∈ SG is also called an s-plan. An s-plan for some

initial state s ∈ SI is also called a plan. If a plan (or s-plan) has minimal cost among all plans (or
s-plan), it is called optimal.

We will also consider the causal graph of a planning task, as defined by Knoblock [12], later on.
The causal graph represents dependencies and influences variables have on one another.

Definition 9 (Causal Graph of a Planning Task; based on [12]). Let Π = ⟨V,O, sI , sG⟩ be a planning
task. We call CG(Π) the causal graph of Π. The causal graph is a directed graph with vertices V = V
and arcs A. There is an arc between variables u and v iff u ̸= v and there exists an operator o ∈ O
such that v ∈ vars(eff (o)), and either u ∈ vars(pre(o)) or u ∈ vars(eff (o)).

In natural language, a causal graph has two types of edges. The first being “pre → eff ” edges,
which are from variable u to variable v if there is an operator that has u in its precondition and v in
its effect. This means that there is an operator that affects v which is dependent on variable u. The
other types of edges are called “eff → eff ” edges, which exist if there is an operator that affects both
u and v.

As mentioned in the introduction, one central problem in solving transition systems induced by
planning tasks is that these transition systems, while highly intuitive, are usually very large in size.
If we consider a “small” planning task with 10 variables, each of which have a domain of size 10, we
are already left with 10’000’000’000 different possible states. Granted, many of these may never be
reached from the initial state, but it is nonetheless a considerable challenge to find a path through this
system, let alone an optimal one. As such, a successful search algorithm would be to greedily choose to
go to the successor state of our current (or initial) state which is closest to the goal. But to know the
exact distance to the goal we would need to know the path to the goal which is what is so hard, that

5



is, infeasible to compute to begin with. So, rather than computing exact distances we use heuristics.
Heuristics aim to approximate the actual distance to the goal, just like our example of considering the
beeline to approximate distances on a map.

Definition 10 (Heuristic; based on [5]). Let Θ be a transition system with states S and label cost
function c. A heuristic for Θ is a function hΘ : S → R+

0 ∪∞. A heuristic hΘ is called

• perfect if hΘ(s) = h∗
Θ(s) for all states s of Θ, where h∗

Θ(s) is the cost of an optimal s-plan or ∞
if no s-plan exists.

• goal-aware if hΘ(s) = 0 for all goal states s of Θ.

• safe if hΘ(s) =∞ for all states s of Θ for which no s-plan exists.

• consistent if hΘ(s) ≤ c(l) + hΘ(t) for all transitions s
l−→ t ∈ Θ

• admissible if hΘ(s) ≤ h∗
Θ(s) for all states s of Θ.

We may denote heuristics by h instead of hΘ if the transition system is clear from context and we call
the values produced by a heuristic for state s ∈ S “heuristic estimate” or “heuristic value” for s.

The merge-and-shrink heuristic, which is the central topic of this thesis, is part of a class of heuristics
called abstraction heuristics. Abstraction heuristics are based on the idea of solving a simplified version
of the transition system, called the abstract transition system, and to use the cost of the solutions of
the abstract system as a heuristic value for the original, also called concrete, transition system.

An additional advancement in heuristic search came from being able to combine multiple heuristics
in an additive way using cost partitioning [13] [14].

Definition 11 (Cost Partitioning; based on [11]). Let Π = ⟨V,O, sI , sG⟩ be a planning task.
A cost partitioning for Π is a tuple ⟨cost1, . . . , costn⟩, where

• costi : O → R+
0 for 1 ≤ i ≤ n and

•
∑n

i=1 costi(o) ≤ cost(o) for all o ∈ O.

The cost partitioning induces a tuple ⟨Π1, . . . ,Πn⟩ of planning tasks, where each Πi is identical to Π
except that the cost of each operator o is costi(o).

Cost partitioning creates several slightly modified versions of a planning task. The solution costs
of these may then be added up to obtain an admissible heuristic which may be better than using
only the solution cost of one of the modified tasks. In the case of abstractions, we may thus use cost
partitioning to combine heuristics obtained from multiple abstractions of the same original planning
task in an admissible way.

For our experiments later on we will use saturated cost partitioning [15], which computes a cost
partitioning quickly by iterating through each abstraction. For each abstraction, the cost function is
then adapted such that all operators are assigned the minimum costs necessary to preserve the heuristic
values of all states. The costs assigned to those operators are then subtracted from the original costs
of the operators before the next abstraction is being assigned as much of the remaining costs as is
necessary to best preserve its heuristic values. Thus, the abstraction chosen first will yield its exact
heuristic values while those chosen later while likely not.

2.2 The Merge-and-Shrink Framework

The main idea of the merge-and-shrink framework lies in transformations of transition systems. Trans-
formations define mappings of states and labels which allow us to transform one transition system into
another, which is ideally simpler to solve or more compact while having plans of the same cost.

Definition 12 (Transformation; based on [5]). Let Θ be a transition system with states S and labels
L. Let Θ′ be a transition system with states S′ and labels L′. τ = ⟨Θ′, σ, λ⟩ is called a transformation of
Θ into Θ′, where Θ′ is called the transformed transition system, σ : S → S′ is called the state mapping
and λ : L → L′ is called the label mapping. Θ is called the original transition system of τ . σ and λ
may be partial functions.

6



Transformations induce heuristics.

Definition 13 (Heuristic Induced by a Transformation; based on [5]). Let τ = ⟨Θ′, σ, λ⟩ be a trans-
formation of a transition system Θ into transition system Θ′. The heuristic for Θ induced by τ is
called hτ

Θ or hτ for short. It is defined as hτ
Θ(s) = h∗

Θ′(σ(s)) for all s ∈ dom(σ), and hτ
Θ(s) = ∞ for

all other states s ∈ Θ.

We will now introduce properties a transformation may have.

Definition 14 (Properties of Transformations; based on [5]). Let τ = ⟨Θ′, σ, λ⟩ be a transformation
of a transition system Θ = ⟨S,L, c, T, SI , SG⟩ into transition system Θ′ = ⟨S′, L′, c′, T ′, S′

I , S
′
G⟩. The

following list defines properties that τ may have, along with a short-hand name for each property. For
example, we say that τ satisfies CONSS if τ is state-conservative.

• CONSS τ is state-conservative if dom(σ) = S, that is, σ is a total function.

• CONSL τ is label-conservative if dom(λ) = L, that is, λ is a total function.

• CONSC τ is cost-conservative if ∀l ∈ L : l ∈ dom(λ)→ c′(λ(l)) ≤ c(l).

• CONST τ is transition-conservative if ∀s l−→ t ∈ T : s ∈ dom(σ) ∧ t ∈ dom(σ) ∧ l ∈ dom(λ) →
σ(s)

λ(l)−−→ σ(t) ∈ T ′.

• CONSI τ is initial-state-conservative if ∀s ∈ SI : s ∈ dom(σ)→ σ(s) ∈ S′
I .

• CONSG τ is goal-state-conservative if ∀s ∈ SG : s ∈ dom(σ)→ σ(s) ∈ S′
G.

• INDS τ is state-induced if σ is sujective, that is, if ∀s′ ∈ S′∃s ∈ S : s ∈ σ−1(s′).

• INDL τ is label-induced if λ is surjective, that is, if ∀l′ ∈ L′∃l ∈ L : l ∈ λ−1(l′).

• INDC τ is cost-induced if ∀l′ ∈ L′∃l ∈ L : l ∈ λ−1(l′) ∧ c(l) = c′(l′).

• INDT τ is transition-induced if ∀s′ l′−→ t′ ∈ T ′∃s l−→ t ∈ T : s ∈ σ−1(s′)∧ t ∈ σ−1(t′)∧ l ∈ λ−1(l′).

• INDI τ is initial-state-induced if ∀s′ ∈ S′
I∃s ∈ SI : s ∈ σ−1(s′).

• INDG τ is goal-state-induced if ∀s′ ∈ S′
G∃s ∈ SG : s ∈ σ−1(s′).

• REFC τ is cost-refinable if ∀l′ ∈ L′∀l ∈ λ−1(l′) : c(l) = c′(l′).

• REFT τ is transition-refinable if ∀s′ l′−→ t′ ∈ T ′∀s ∈ σ−1(s′)∃s l−→ t ∈ T : t ∈ σ−1(t′)∧l ∈ λ−1(l′).

• REFG τ is goal-state-refinable if ∀s′ ∈ S′
G∀s ∈ σ−1(s′) : s ∈ SG.

Based on these basic properties, we define the following derived properties. In general, A = B + C
means that τ has property A if it has properties B and C. We group together related properties like
CONSX +CONSY by writing them as CONSX+Y.

• conservative: CONS = CONSS+L+C+T+I+G

• induced: IND = INDS+L+C+T+I+G

• refinable: REF = REFC+T+G

Conservative transfromations (CONS) are also called abstractions. Abstractions that are also induced
(CONS+ IND) are called induced abstractions. Abstractions that are refinable (CONS+REF) are
called exact transformations. An exact induced transformation combines all three properties (CONS+
IND+REF).

7



Informally speaking conservativeness describes that the transformation does not change the be-
haviour of the transition system. This means that all states of the original system (CONSS), as well
as all transitions and their labels (CONST+L) are mapped to states, transitions, and labels in the
transformed system. Thus all states, transitions, and labels are still accounted for. Additionally it
is required that the initial and goal states of the original system are still initial and goal states in
the transformed system (CONSI+G). The final condition is that the costs of the actions have not
increased, they may, however, decrease without the transformation losing this property (CONSC).

The next property is inducedeness, which simply requires that no new states (INDS), transitions
(INDT), or labels (INDL) are introduced, as well as that no states become initial or goal states, which
were not ones in the original system (INDI+G). For a transformation to be cost-induced (INDC), it
must hold that for all transformed labels, one of the labels they were transformed from has the same
cost as the new one.

The final property is refinability. Refinability requires that all transitions in the transformed system
are able to be uniquely translated back into their original transitions (REFT). This means that for
all transitions from a state s to a state t in the transformed system, there are transitions with the
corresponding untransformed label between all states of the original system which are mapped to s and
t. Additionally, it is required that the cost of all labels is unchanged by the transformation (REFC)
and that no state which was not a goal state before becomes one in the transformed system (REFG).

Transformations are composable, which means that we may chain different transformations.

Definition 15 (Composition of Transformations; based on [5]). Let τ = ⟨Θ′, σ, λ⟩ be a transformation
of a transition system Θ into a transition system Θ′. Let τ ′ = ⟨Θ′′, σ′, λ′⟩ be a transformation of Θ′

into a transition system Θ′′. The composition of τ ′ and τ is the transformation of Θ into Θ′′ defined
as τ ′ ◦ τ = ⟨Θ′′, σ′ ◦ σ, λ′ ◦ λ⟩.

Properties of these composite transformations are easily deduced from the properties of the indi-
vidual transformations they are composed of. Suppose we have transformations τ , which transforms a
transition system Θ into a transition system Θ′, and τ ′, which transforms Θ′ into a transition system
Θ′′. If τ and τ ′ both have any property from Definition 14, then the composition τ ′′ = τ ′ ◦ τ also has
that property.

One important theorem that stems from this framework is that if a transformation τ of a transition
system Θ is refinable (REF), then the heuristic hτ for Θ induced by τ is lower-bounded by h∗ (h∗(s) ≤
hτ (s) for all states s), making it admissible. If τ is additionally conservative (CONS), then the
heuristic induced by τ is perfect since if τ satisfies CONS, all solutions of the untransformed system
are still solutions of the transformed system, meaning that an optimal solution in the transformed
system is as most as expensive as the optimal solution of the untransformed system (hτ (s) ≤ h∗(s) for
all states s).

Rather than transforming the concrete transition system of the planning task, the merge-and-shrink
algorithm works with a factored transition system.

Definition 16 (Factored Transition System; based on [5]). A factored transition system is a tuple
F = ⟨Θ1, . . . ,Θn⟩ of transition systems where each transition system has the same set of labels and
the same label cost function.

Planning tasks induce factored transition system. Factors of this induced factored transition system
are called atomic factors, each of which representing the behaviour of exactly one state variable.

Definition 17 (Atomic Factor, Induced Factored Transition System; based on [5]). Let Π = ⟨V,O, sI , sG⟩
be a planning task. The atomic factor for variable v ∈ V is the transition system Θv = ⟨dom(v),O, c, T v, Sv

I , S
v
G⟩,

where c maps each label l ∈ O to the cost cost(l) of the operator. T v = {d l−→ d′ | (v ̸∈ vars(pre(l)) ∨
pre(l)[v] = d) ∧ ((v ̸∈ vars(eff (l)) ∧ d′ = d) ∨ eff (l)[v] = d′)}, Sv

I = {sI [v]}, and Sv
G = {sG[v]} if

v ∈ vars(SG) and Sv
G = dom(v) otherwise.

The induced factored transition system of a planning task Π with the state variables V = ⟨v1, . . . , vn⟩
is the factored transition system F (Π) = ⟨Θv1 , . . . ,Θvn⟩.

The states of atomic factors correspond to the values the associated state variable may take. A
transition ⟨d, l, d′⟩ between those values exists if two conditions hold. First, the operator corresponding
to the label l must either have no precondition on v or it requires the value to be d. Second, the operator

8



either does not affect v or it sets v to d′ in its effect. If an operator does not change the variable,
there are self-looping transitions for each state with that corresponding label. Finally, initial and goal
states of the transition system are the values that the variable takes in the initial and goal states of
the planning task.

A factored transition system may yet be understood as one single transition system by computing
the synchronized product of the factored transition system.

Definition 18 (Synchronized Product of a Factored Transition System; based on [5]). Let F =
⟨Θ1, . . . ,Θn⟩ be a factored transition system with Θi = ⟨Si, L, c, T i, Si

I , S
i
G⟩ for all 1 ≤ i ≤ n. The syn-

chronized product (or simply product) of F is the transition system defined as ⊗F = ⟨S⊗, L, c, T⊗, S⊗
I s, S⊗

G⟩,
where S⊗s =

∏n
i=1 S

i, T⊗ = {⟨s1, . . . , sn⟩ l−→ ⟨t1, . . . , tn⟩ | si l−→ ti ∈ T i for all 1 ≤ i ≤ n},
S⊗
I =

∏n
i=1 S

i
I , and S⊗

G =
∏n

i=1 S
i
G. With

∏n
i=1 A

i indicating the Cartesian product of the sets Ai,
that is

∏n
i=1 A

=A1 × · · · ×An.

If we compute the product of a factored transition system induced by a planning task we obtain
the transition system induced by the planning task. This is very important as this means that the
behaviour of the transition system is preserved in its factored form.

In addition to factored representations of transformation systems, we also need factored represen-
tations of state mappings in order to keep track of which states of the concrete factored transition
system correspond too which states of the abstract factored transition system. This is achieved by
factored mappings, which represent arbitrary functions on variable spaces in a tree-like data structure.

Definition 19 (Factored Mapping; based on [5]). Factored mappings over a variable space V are
inductively defined as follows. A factored mapping σ has an associated non-empty value set vals(σ)
and an associated table σtab. σ is either atomic or a merge.

• If σ is atomic, then it has an associated variable v ∈ V. Its table is a partial function σtab : dom(v)→
vals(σ).

• If σ is a merge, then it has a left component factored mapping σL and a right component factored
mapping σR. Its table is a partial function σtab : vals(σL)× vals(σR)→ vals(σ).

Factored mappings may either be atomic, that is, their table stores a partial function over one
variable, or they may be merges. Merge factored mappings, much like nodes in a binary tree, have
a left and a right component factored mapping. The table of a merge factored mapping then stores
a partial function over the product of its component factored mappings’ variables. The functions
represented by factored mappings are computed as follows.

Definition 20 (Represented Function; based on [5]). Let σ be a factored mapping over a variable
space V. σ represents the partial function JσK : A(V)→ vals(σ) which is inductively defined as follows:

• If σ is atomic with associated variable v, then JσK(α) = σtab(α[v]).

• If σ is a merge, then JσK(α) = σtab(JσLK(α), JσRK(α)). If either JσLK(α) or JσRK(α)) are unde-
fined, then JσK(α) is undefined as well.

Finally, if we wish to represent factored transformations we need factored mappings that map from
one variable space to another, rather than mapping a factored input to a non-factored output.

Definition 21 (Factored-to-Factored Mapping; based on [5]). Let V = ⟨v1, . . . , vn⟩ and V ′ = ⟨v′1, . . . , v′m⟩
be variable spaces. Let σ1, . . . , σm be factored mappings where each σj is defined over V and maps to
dom(v′j). Σ = ⟨σ1, . . . , σm⟩ is called a factored-to-factored mapping from V to V ′. It represents the par-
tial function JΣK : A(V) → A(V ′) defined as JΣK(α) = ⟨σ1(α), . . . , σm(α)⟩. If any σi(α) is undefined,
then JΣK(α) is undefined as well.

Factored to factored mappings are, just like the transformations of transition systems, composable.
We can now fully define factored transformations, which we may call transformations when it is clear
from context that they are transforming a factored transition system.

9



Definition 22 (Factored Transformation; based on [5]). A factored transformation of a factored tran-
sition system F with label set L into a factored transition system F ′ with label set L′ is a tuple
τF = ⟨F ′,Σ, λ⟩ where F ′ is the transformed factored transition system, Σ is a factored-to-factored
mapping from F to F ′ called the state mapping, and λ : L → L′ is a partial function called the label
mapping. The transformation induced by τF is a transformation of ⊗F into ⊗F ′ which is defined as
τ = ⟨⊗F ′, JΣK, λ⟩.

Let us now take a look at two important factored mappings. First, the factored-to-nonfactored
projection mapping, which takes a variable space and returns an atomic factored mapping of one of
the variables. Second, the factored-to-factored identity mapping, which takes a variable space and
applies the projection mapping to each of them. These two factored mappings are of interest if we do
not want to transform factors of the factored transition system.

Definition 23 (Projection Factored-to-Nonfactored Mapping and Identity Factored-to-Factored Map-
ping; based on [5]). Let V = ⟨v1, . . . , vn⟩ be a variable space, and let 1 ≤ i ≤ n. The projection of V to
v1 is an atomic factored mapping πV

i that is defined over V, has vi as its associated variable, has the
value set dom(vi), and a table function mapping di to di for all di ∈ dom(vi). The identity mapping
for V is the factored-to-factored mapping idV = ⟨πV

i , . . . , π
V
n ⟩. We omit V from the notation and write

πi and id where V is clear from context.

Using what we have defined so far we may now define the factored transformation framework
in Algorithm 1. The factored transformation framework takes a factored transition system, as well
as functions SelectTransformation and Terminate. Once finished, the framework returns the
factored transformation which transform the input factored transition system into another factored
transition system. This output is built iteratively until the Terminate function decides that the
computation is finished. Originally the identity transformation, the output is updated in each iteration
by composing it with a factored transformation chosen by the SelectTransformation function. The
SelectTransformation function uses the intermediary factored transformation to make its decision.

Algorithm 1 Factored Transformation Framework; based on [5]

Input: Factored transition system F , function SelectTransformation that selects the next basic
transformation to apply, function Terminate that decides when to terminate.

Output: Factored transformation ⟨F ′,Σ, λ⟩ of F into F ′.
1: function FactoredTransformationFramework(F , SelectTransformation, Termi-

nate)
2: ▷ Set the current transformation τF = ⟨F ′,Σ, λ⟩ to the identity transformation of F .
3: F ′ ← F
4: Σ← idF

5: λ← idF , where L is the set of labels of F
6: while not Terminate(⟨F ′,Σ, λ⟩) do
7: ⟨F ′′,Σ′, λ′⟩ ← SelectTransformation(⟨F ′,Σ, λ⟩)
8: ▷ Update the current transformation τF = ⟨F ′,Σ, λ⟩ to be the composition of τF with the

selected transformation ⟨F ′′,Σ′, λ′⟩.
9: F ′ ← F ′′

10: Σ← Σ′ ◦ Σ
11: λ← λ′ ◦ λ
12: end while
13: return ⟨F ′,Σ, λ⟩
14: end function

We can consider the merge-and-shrink framework as an instance of the factored transformation
framework that has the goal of producing a heuristic. Since it would be infeasible to compute an
“global” heuristic which would use the product of the factored transition system, we must first define
a more easily computed heuristic induced by a factored transition system.

Definition 24 (Factor Heuristics and Local Heuristics; based on [5]). Let F = ⟨Θ1, . . . ,Θn⟩ be a
factored transition system. The factor heuristic for Θi ∈ F is defined as hi(s) = h∗

Θi
(s[Θi]) for all

s ∈ A(F ). The max-factor heuristic of F is defined as hmf
F = max1≤i≤nhi.

10



Let τF = ⟨F ′,Σ, λ⟩ be a factored transformation of a factored transition system F . The local

heuristic for F induced by τF is defined as hloc,τF
F (s) = hmf

F ′ (JΣK(s)) for all s ∈ A(F ). If s ̸∈ dom(JΣK),
we define hmf

F ′ (JΣK(s)) =∞.

These heuristics are much easier to compute compared to the one induced by the synchronized
product of the factored transition system. In the context of the local and max factor heuristic we keep
track of one additional property of transformations, which, just like the previous ones, is composable.

Definition 25 (Locally Conservative Factored Transformation; based on [5]). Let τF be a factored
transformation of a factored transition system F . The following list defines properties that τF may
have, along with a short-hand name for each property.

• LOC≤ τF is locally nonincreasing if hloc,τF
F (s) ≤ hmf

F (s) for all s ∈ A(F ).

• LOC≥ τF is locally nondecreasing if hloc,τF
F (s) ≥ hmf

F (s) for all s ∈ A(F ).

• LOC= τF is locally equal if hloc,τF
F (s) = hmf

F (s) for all s ∈ A(F ).

In words, a locally equal transformation does not change the heuristic values obtained from the
max factor heuristic, meaning that the transformation did not change the quality of the local heuristic.
If the transformation were to result in an admissible heuristic, it being locally nondecreasing would
mean that the quality of our heuristic would improve through its application.

Equipped with these heuristics we may now properly define the merge-and-shrink framework in
Algorithm 2.

Algorithm 2 Merge-and-Shrink Heuristic; based on [5]

Input: Planning task Π, function SelectTransformation which selects the next basic transforma-
tion to apply, function Terminate which determines when to stop applying transformations.

Output: Merge-and-shrink heuristic hM&S
Π for Π.

1: function MergeAndShrink(Π, SelectTransformation, Terminate)
2: ▷ Compute the induced factored transition system of Π.
3: F ← F (Π)
4: ▷ Call the factored transformation framework.
5: ⟨F ′,Σ, λ⟩ ← FactoredTransformationFramework(F,SelectTransformation,Terminate)
6: ▷ Compute the merge-and-shrink heuristic, where τF = ⟨F ′,Σ, λ⟩.
7: hM&S

Π ← hloc,τF
F

8: return hM&S
Π

9: end function

The merge-and-shrink framework takes a planning task Π and the functions Terminate and Se-
lectTransformation we are familiar with from the factored transformation framework. It computes
the induced factored transition system F of Π and then uses the factored transformation framework
to obtain a factored transformation τF . It then returns the merge-and-shrink heuristic for Π which is
simply the local heuristic for F induced by τF .

2.3 Merge-and-Shrink Framework Transformations

At its core, the merge-and-shrink framework constructs a heuristic from a planning task by computing
the factored transition system induced by it. It does so by using specific transformations. The first is
the merge transformation, which takes two factors of a factored transition system and replaces them
with their product. A visual example of merging two transition systems can be seen in Figure 2.1.

Definition 26 (Merge Transformation; based on [5]). Let F = ⟨Θ1, . . . ,Θn⟩ be a factored transition
system. The merge transformation for j ̸= k with 1 ≤ j, k ≤ n is the factored transformation τF =
⟨F ′,Σ, λ⟩ of F into the factored transition system F ′ where:

• F ′ = ⟨Θi1 , . . . ,Θin−2 ,Θ⊗⟩ with i1, . . . , in − 2 = indices({1, . . . , n} \ {j, k}) and Θ⊗ = Θj ⊗Θk.

11



• Σ = ⟨πi1 , . . . , πin−2 , σ⊗⟩ with i1, . . . , in−2 = indices({1, . . . , n} \ {j, k}), where σ⊗ is a merge
factored mapping with left component πj, right component πk and σtab

⊗ (sj , sk) = ⟨sj , sk⟩ for all
states sj ∈ Θj and sk ∈ Θk.

• λ = id is the identity label mapping.

Merge transformations are exact induced, that is, they satisfy CONS+ IND+REF. Merge trans-
formations are also locally nondecreasing, that is, they satisfy LOC≥.

A

B

C X

Y

AX

BY

CX CY

BX

Figure 2.1: Example of a merging transformation. The two upper systems
are atomic factors. Edges of the same color correspond to the same action.
Initial states are denoted by an incoming arrow, goal states are denoted by

a double circle. The third system at the bottom shows the result of
merging both atomic factors.

In order to not obtain the full transition system induced by the planning task another transfor-
mation may be applied: shrinking. Shrinking, as the name suggests, reduces the size of a transition
system. The shrink transformation affects one factor of the factored transition system and it reduces
the amount of states in it by mapping multiple states of the original factor to the same state in the
transformed factor.

Definition 27 (Local Abstraction; based on [5]). Let Θ = ⟨S,L, c, T, SI , SG⟩ be a transition system.
The local abstraction α of Θ is a total state mapping defined on S. The transition system induced by
the abstraction α and the transition system Θ is defined as Θα = ⟨α(S), L, c, {⟨α(s), l, α(t)⟩ | ⟨s, l, t⟩ ∈
T}, α(SI), α(SG)⟩.

Definition 28 (Shrink Transformation; based on [5]). Let F = ⟨Θ1, . . . ,Θn⟩ be a factored transition
system. Let α be a local abstraction for Θk for some 1 ≤ k ≤ n. The shrink transformation for α and
Θk is the factored transformation τF = ⟨F ′,Σ, λ⟩ of F , where:

• F ′ = ⟨Θ′
1, . . . ,Θ

′
n⟩ with Θ′

i = Θi for all i ̸= k and Θ′
k = Θα

k .

• Σ = ⟨σ1, . . . , σn⟩ where σi = πi for all i ̸= k and σk is an atomic factored mapping with variable
Θk and σtab

k (sk) = α(sk) for all sk ∈ Θk.

• λ = id is the identity label mapping.

Shrink transformations are induced abstractions, that is, they satisfy CONS+ IND. They are
also cost-refinable, that is, they satisfy REFC and they are locally nonincreasing, that is, they satisfy
LOC≤.

12



AX

BY

CX CY

BX

AX

BY

C∗

BX

Figure 2.2: Example of a shrinking transformation. We begin with the
merged system from Figure 2.1, and shrink it by combining the states CX

and CY into C*.

Figure 2.2 graphically visualizes how the shrink transformation works by combining two states
of a transition system into one. These two transformations are what give the framework its name.
However, state-of-the-art merge-and-shrink uses two additional transformations. The first being label
reduction. Label reduction, visualized in Figure 2.3, does for labels what shrinking does for states.
Given a set of labels, it takes all transitions that have any of the labels in the set and relabels them
with the same new label, which oftentimes simply combines parallel transitions into one. One crucial
difference to shrinking is that label reduction is globally applied, meaning it affects all factors of the
factored transition system.

A

B

C A

B

C

Figure 2.3: Example of a label reduction transformation. On the left a
system before label reduction and on the right after combining the red and

blue labels.

Definition 29 (Transition System Induced by Label Mapping; based on [5]). Let Θ = ⟨S,L, c, T, SI , SG⟩
be a transition system, λ a (total) label mapping defined on L, and c′ a cost function defined on λ(L).
The transition system induced by Θ, λ, and c′ is defined as Θλ,c′ = ⟨S, λ(L), c′, {⟨s, λ(l), t⟩} | ⟨s, l, t⟩ ∈
T, SI , SG⟩.

Definition 30 (Label Reduction; based on [5]). Let F = ⟨Θ1, . . . ,Θn⟩ be a factored transition system
with label set L and label cost function c. Let λ be a total label mapping defined on L. The label reduction
transformation (label reduction for short) for λ is the factored transformation τF = ⟨F ′,Σ, λ⟩ of F into
a factored transition system F ′ with label set λ(L), where:

• F ′ = ⟨Θλ,c′

1 , . . . ,Θλ,c′

n , where c′(l′) = minl∈λ−1(l′)c(l) for all l′ ∈ λ(L).

• Σ = ⟨π1, . . . , πn⟩ is the identity mapping.

13



τF is called atomic if λ combines only two labels, that is, if there exist l1, l2 ∈ L with l1 ̸= l2 such that
λ(l1) = λ(l2) = l12 (where λ12 ̸∈ L is a fresh label) and λ(l) = l for all l ∈ L \ {l1, l2}. It is called
general otherwise

All label reductions are abstractions, that is, they satisfy CONS. They also satisfy INDS+L+C+I+G,
REFG, and are locally nonincreasing, that is, they satisfy LOC≤.

An atomic label reduction combining labels l1, l2 ∈ L is exact, that is, it satisfies CONS+ IND+REF,
iff c(l1) = c(l2) and:

• all transitions in all factors in F , labeled with l1 have corresponding transitions labeled with l2,
or

• all transitions in all factors in F , labeled with l2 have corresponding transitions labeled with l1,
or

• l1 and l2 label the same transitions in all but one factor, or

• there exists a factor Θ ∈ F in which both l1 and l2 label no transition.

Whether a label reduction is exact can be checked in polynomial time, making it feasible to compute
and perform them. The other additional transformation formalized by the framework is pruning, which
removes states of factors. This is beneficial if there are states that are irrelevant to the task of finding
solutions from the initial state, such as ones that can not be reached from the initial state or those
from which no goal state can be reached.

Definition 31 (Pruned Transition System, Prune Transformation; based on [5]). Let Θ = ⟨S,L, c, T, SI , SG⟩
be a transition system. Given a subset K ⊆ S of the states of Θ, the transition system Θ prunde to K
is defined as ΘK = ⟨K,L, c, {⟨s, l, s′⟩ | ⟨s, l, s′⟩ ∈ T and s, s′ ∈ K,SI ∩K,SG ∩K⟩. We call K the set
of kept states and S \K the set of pruned states.

Let F = ⟨Θ1, . . . ,Θn⟩ be a factored transition system, let Sk be the set of states of Θk for some
1 ≤ k ≤ n, and let K ⊆ Sk. The prune transformation for K and Θk is the factored transformation
τF = ⟨F ′,Σ, λ⟩ of F where:

• F ′ = ⟨Θ′
1, . . . ,Θ

′
n⟩ with Θ′

i = Θi for all i ̸= k and Θ′
k = ΘK

k .

• Σ = ⟨σ1, . . . , σn⟩, where σ1 = πi for all i ̸= k, and σk is an atomic factored mapping with variable
Θk, σ

tab
k (sk) = sk for all sk ∈ K, and σtab

k (sk) is undefined for all sk ̸∈ K.

• λ = id is the identity label mapping.

The choice of which transformation to perform is made by so called strategies. The first such
strategy is to determine when to terminate the algorithm, that is, the function Terminate of the
factored transformation framework in Algorithm 1. We also need to determine which transformation
is selected by the function SelectTransformation, as well as how the transformation is instantiated.
We thus need a general strategy, which decides which transformation, if any, is performed next. We
also need transformation strategies which, depending on the transformation chosen by the general
strategy, instantiate their respective transformations.

The merge strategy’s task is to decide which two factors are to be combined. For this, it may either
precompute an order in which the factors are combined or it can decide based on the current state of the
factored transition system. The shrink strategy decides which states of which factor (usually the ones
selected to be merged) are to be mapped to the same states. Bisimulation based shrinking, introduced
by Nissim et al. [16], makes sure that the resulting transformation is exact by combining only bisimilar
states. The states s and s′ are bisimilar if they are both goal states or both not goal states, and
if all transitions from s and s′ with the same label lead to states t and t′ which are also bisimilar.
Label-reduction strategies are tasked with determining which labels to combine and pruning strategies
decide which states of which factors may be pruned. As described above, exact label reductions can
be efficiently computed and intuitive choices for states to be pruned include states that may not be
reached from the initial state and states from which no goal state can be reached.

14



Chapter 3

The Clone Transformation

Using only the transformations above, each state variable is accounted for at most once in the factored
transition system. We call such a factored transition system, where all leaves of all factored mappings
represent distinct variables, orthogonal. We now define the clone transformation, which, as the name
suggests, clones a factor of the factored transition system. The transformed system is then no longer
orthogonal, since variables may be represented in more than one factor. This can be interesting if
we do not wish to compute a fully merged system where only one factor remains. A non-orthogonal
system with multiple factors can then be more expressive than an orthogonal one if we combine the
factors using methods such as cost partitioning. Say we have variables u, v, and w, and we know that
factors uv and uw would be informative. We might not want to consider the entire merged system
of uvw as it may be too big, and merging u with either v or w in the current framework leads to us
missing out on considering the other combination. If we clone u before merging, we may construct a
composition of transformations which leads to us being able to obtain both uv and uw in our factored
system.

Definition 32 (Clone Transformation). Let F = ⟨Θ1, . . . ,Θn⟩ be a factored transition system. The
clone transformation which clones factor Θk with 1 ≤ k ≤ n is the factored transformation τF =
⟨F ′,Σ, λ⟩, where:

• F ′ = ⟨Θ′
1, . . . ,Θ

′
n,Θ

′
n+1⟩, where Θ′

i = Θi for all i ̸= n+ 1, and Θ′
n+1 = Θk.

• Σ = ⟨σ1, . . . , σn, σn+1⟩, where σi = πi for all i ̸= n+ 1, and σn+1 = πk.

• λ = id is the identity label mapping.

The clone transformation is always conservative. It is also always label- and cost-induced, as well
as cost- and goal-state-refinable. However, it is not always (goal-)state-induced and by extension
not always transition-induced and not transition-refinable. We lose the properties INDS+G+T and
REFT, when cloning a non-deterministic factor. Even if we assume that the original transition system
is deterministic, as is usually the case, its factored representation may include non-deterministic factors.
In fact, such factors are common as an action may affect a variable differently, depending on another
variable. Even if we do not allow for conditional effects, we still commonly produce non-deterministic
transition systems by shrinking. The clone transformation is always locally equal. Proofs for these
properties are found in Section 3.1 below.

Without cloning, the framework can only ever consider orthogonal factored transition systems. This
restriction is very reasonable as non-orthogonal systems come with a few caveats. Suppose we have the
atomic factor of a variable v and an exact copy of it v′. The product of the factored transition system
would now contain states where v and v′ are assigned the same value. These states make perfect sense.
However, there would also be states where v and v′ take different values, which is simply not possible
in the original planning task. Fortunately, these spurious states should not be reachable, as the values
for v and v′ are identical in the initial state and since actions taken from any state where v and v′

agree on the same value would affect v and v′ in the same manner. As such, the new states introduced
by cloning could be easily pruned. But as mentioned before, shrinking may lead to non-deterministic
transition systems in which case it would be possible to reach states where v and v′ take different

15



values. However, this is of little concern since all new states introduced by cloning and made reachable
by other transformations are little more than states where the exact assignment for v is disregarded.
An example for this would be new goal states which may be introduced since cloning does not satisfy
INDG. But since cloning satisfies REFG, the only new goal states we have are states where v and v′

disagree on their value but both values taken by v and v′ are the values v can take in the goal state
of the planning task.

3.1 Proofs of Properties of the Clone Transformation

Let F = ⟨Θ1, . . . ,Θn⟩ and F ′ = ⟨Θ′
1, . . . ,Θ

′
n,Θ

′
n+1⟩ be factored transition systems. Let τF = ⟨F ′,Σ, λ⟩

be the clone transformation of F into F ′ and let Θk be the factor cloned by τF .
Let τ = ⟨⊗F ′, JΣK, λ⟩ be the transformation of ⊗F into ⊗F ′ induced by τF .

Conservativeness

• CONSS: JΣK is a total function.

• CONSL, CONSC: These properties are satisfied since λ = id, which means that the transfor-
mation τF leaves the labels and their costs unchanged.

• CONST: Consider any transition s
ℓ−→ t ∈ ⊗F . Due to the definition of the product ⊗F it holds

that s[Θi]
ℓ−→ t[Θi] ∈ Θi for 1 ≤ i ≤ n. Since for all i ̸= n+ 1, Θ′

i = Θi and since Θ′
n+1 = Θk, it

holds that JσiK(s)
ℓ−→ JσiK(t) ∈ Θ′

i for all 1 ≤ i ≤ n+ 1. By the definition of the product ⊗F ′ it

thus holds that JΣK(s) ℓ−→ JΣK(t) ∈ ⊗F ′, which shows that τF is transition-conservative.

• CONSI, CONSG: Consider any initial or goal state s ∈ ⊗F . Due to the definition of the
product ⊗F , s[Θi] has to be an initial or goal state respectively for all 1 ≤ i ≤ n. Since for all
i ̸= n+1, Θ′

i = Θi and since Θ′
n+1 = Θk, it holds that JσiK(s) is an initial or goal state in Θ′

i for
all 1 ≤ i ≤ n + 1. Thus, by the definition of the product ⊗F ′, it holds that JΣK(s) is an initial
or goal state respectively and that τF is indeed initial-state- and goal-state-conservative.

Inducedness

• INDL, INDC: These properties are satisfied since λ = id, which means that the transformation
τF leaves the labels and their costs unchanged.

• Not INDS, INDI, INDG: Let us consider the toy example depicted in Figure 3.1. In it, the
product of a non-deterministic transition system with itself is taken. We can see that the states
ut and tu have no preimage in the original transition system, cloning is thus not state-induced
and by extension not initial-state- and goal-state-induced.

• Not INDT: Since the cloning transformation is not state-induced, it also is not transition in-
duced, since the states making up a transition may not have a preimage, such as the states tu
and ut in Figure 3.1.

Refinability

• REFC: These properties are satisfied since λ = id, which means that the transformation τF
leaves the labels and their costs unchanged.

• NotREFT: Consider any transition s′
ℓ−→ t′ ∈ ⊗F ′. A transformation is transition-refinable if for

all s ∈ JΣK−1(s′) there is a transition s
ℓ−→ t ∈ ⊗F with t ∈ JΣK−1(t′) and l ∈ λ−1(l′). Since, for

the clone transformation, λ is the identity function, the last part is always given. However, since
the clone transformation introduces spurious states and, more importantly, spurious transitions
between non-spurious states and spurious states, it is not generally transition-refinable. Consider

the transition ss
ℓ−→ tu in the right transition system in Figure 3.1. The preimage of the state

ss is the state s and the preimage of tu is empty. We thus have no state corresponding to tu,

16



and likewise no corresponding transition to ss
ℓ−→ tu, in the left transition system. τF is thus not

transition-refinable.

• REFG: We prove this property by considering non-spurious and spurious states in the trans-
formed system. Non-spurious states, such as ss and tt in Figure 3.1, have exactly one element
in their preimage. This state in the original system is a goal state if the state in the transformed
system is one as well since the transformation satisfies CONSG. Spurious states, such as tu in
Figure 3.1, have no preimage, i.e. JΣK−1(tu) = ∅. Since the preimage is empty, it holds trivially
that elements of the preimage are also goal states in ⊗F . τF is thus goal-state-refinable.

Local Properties of Induced Heuristics

• LOC=: Since τF does not modify any existing factors, i.e. Θ′
i = Θi for 1 ≤ i ≤ n and Θ′

n+1 = Θk,

the max-factor heuristics of both F and F ′ are identical. Meaning that hmf
F (s) = hmf

F ′ (JΣK(s))
holds for all s ∈ A(F ), which makes τF locally equal.

• LOC≤, LOC≥: Given since τF is locally equal.

s

t

u

ss

tt

tu

ut

uu

st

su

ts

us

Figure 3.1: Example of a non (goal-)state- and non transtition-induced
clone transformation. On the left system Θ and on the right the product of
Θ with itself. Note that states st, su, ts, and us are part of the product

transition system but are not connected to any other states.

17



Chapter 4

Clone Strategies

We will now take a look at two classes of cloning strategies we have devised. Similar to the transfor-
mation strategies described at the end of Section 2.3, cloning strategies specify how the clone transfor-
mation is instantiated, that is, which factor is to be cloned. Before we dive into our strategies we will
cover a few technical details regarding the implementation of the merge-and-shrink framework and the
clone transformation. We then describe the ad hoc cloning strategy, which will only use information
available at each iteration of the main loop of the merge-and-shrink algorithm. It will perform clones
ad hoc, meaning that it will only clone if that clone is to be used in a merge shortly after. Afterwards
we will consider a precomputed cloning strategy, which will determine which factors to clone before
the main loop of the merge-and-shrink algorithm begins to transform the factored transition system.

4.1 Implementing the Cloning Transformation

Throughout the work on this thesis our concrete implementations of the clone transformation under-
went a few iterations. Inside the Fast Downward system, factored transition systems are represented
by multiple lists which keep track of the factors, their corresponding factored mappings, and distances
of interest within the transition system.

Algorithm 3 Fast Downward Merge-and-Shrink Main Loop

Input: Factored transition system F , functions MergeStrategy, ShrinkStrategy, LabelRe-
ductionStrategy, and PruningStrategy.

1: while F has more than one factor do
2: ▷ The merge strategy determines the two factors that are to be merged.
3: ⟨MergeFactor1, MergeFactor2⟩ ← MergeStrategy.nextMerge()
4: LabelReductionStrategy.reduceLabels(F )
5: ShrinkStrategy.shrink(MergeFactor1)
6: ShrinkStrategy.shrink(MergeFactor2)
7: LabelReductionStrategy.reduceLabels(F )
8: ▷ The two merged factors are removed from F and their product is added.
9: F ← (F \ {MergeFactor1, MergeFactor2}) ∪ {MergeFactor1⊗MergeFactor2}

10: PruningStrategy.prune(F )
11: end while

The main loop of the merge-and-shrink implementation, which is described in pseudo code in
Algorithm 3, begins with the factored transition system obtained by taking all atomic transition
systems of the concrete transition system of the task. It then runs a loop which continues until either
time or memory limits are reached or until only one factor remains in the factored transition system.
Inside this loop, multiple transformations may be performed after the merge strategy computes which
factors are to be merged in this iteration. This is achieved either by a precomputed merge strategy,
which specifies in which order all merges occur or by using a set of scoring functions. Given a factored
transition system F , the scoring functions assign a score to each pair of factors ⟨Θi,Θj⟩ ∈ F ×F, i ̸= j.
The first scoring function returns the pairs of factors it deems best to merge, which oftentimes are more

18



than one as is the case with the goal_relevance() scoring functions, which assigns the best score to
pairs where at least one factor contains a non-goal state. The next scoring functions then filters the
pairs chosen by the previous ones until there is only one pair left which is the pair that will be merged
next. To make sure that there is always only one pair left after the scoring functions are finished,
it is necessary to include a tiebreaking function such as one that selects one pair at random. Before
merging, other transformations may occur such as shrinking of the factors which are to be merged and
label reduction before or after said shrinking. Then the factors are merged by computing their product
and removing them from the aforementioned lists which keep track of the factored transition system.
The new factor consisting of transition system, factored mapping, and distances is then appended too
the vectors representing the factored transition system. After merging, the product may be pruned
before the iteration is complete.

Our first idea was to simply copy the transition system, mapping, and distances, and to create
a new entry at the end of the lists, corresponding to the new clone. While this idea is very simple,
its implementation was not. Existing classes abused the fact that new products of merges would be
appended in set positions. Clones, of which we may have up to two in each iteration of the main loop,
are then sitting at these positions, which is not communicated to aforementioned classes. This resulted
in bugs which occurred in almost every iteration of our implementations.

A different idea that came to mind was the preserving clone. Recall that the Fast Downward
planner tracks the factored transition system via lists, whose elements are being removed whenever
they are being used in a merge. A way to implicitly clone would be to simply skip the step where we
remove the used factors. While computationally more efficient, this unfortunately leads to occasional
inconsistencies, as the factors may be affected by a shrink transformation before being merged, which,
while not technically invalidating the framework as a whole, is not quite how a clone transformation
should fit into the main loop. However, this implementation has its uses in configurations where
shrinking or pruning before merging are not dependent on the other factor of the merge, that is, if we
would always transform the clone and its original exactly the same, regardless of the factors we may
merge either with.

Algorithm 4 Fast Downward Non-Orthogonal Merge-and-Shrink Main Loop

Input: Factored transition system F , functions MergeStrategy, ShrinkStrategy, LabelRe-
ductionStrategy, and PruningStrategy.

1: while F has more than one factor do
2: ▷ The merge strategy determines the two factors that are to be merged, as well as whether

they are to be cloned. Additionally, the merge strategy may decide to exit the main loop before
all factors are merged into one.

3: ⟨Factor1, Factor2, cloneFirst, cloneSecond, abort⟩ ←MergeStrategy.nextMerge()
4: if abort then
5: break
6: end if
7: ▷ If either factor is to be cloned, we add a copy of them to F before.
8: if cloneFirst then
9: F ← F ∪ {CopyOfFactor1}

10: end if
11: if cloneSecond then
12: F ← F ∪ {CopyOfFactor2}
13: end if
14: LabelReductionStrategy.reduceLabels(F )
15: ShrinkStrategy.shrink(Factor1)
16: ShrinkStrategy.shrink(Factor2)
17: LabelReductionStrategy.reduceLabels(F )
18: ▷ The two merged factors are removed from F and their product is added.
19: F ← (F \ {Factor1, Factor2}) ∪ (Factor1⊗ Factor2)
20: PruningStrategy.prune(F )
21: end while

19



Ultimately we decided to go with the first idea. As seen in Algorithm 4, cloning is the first
transformation performed in each iteration. As for cloning strategies, which determine when and what
to clone, we decided to incorporate cloning into the process of selecting which factors to merge, which
means that the merge strategy in Algorithm 4 now additionally needs to specify whether each of the
factors ought to be cloned. We have also given the merge strategy the option to decide that it does
not want to merge anymore. This way, we can ensure that the factors we clone are the ones used in
that iteration. Otherwise we would be left with multiple semantically identical factors which would
only add overhead to the other transformations, since they would be treated as separate “interesting”
factors, although they are not. Binding the cloning tightly to the merge strategy also made it easier to
ensure that the cloning transformation is used in a (semi)informed way. We thus do not have cloning
strategies which exist individually but we have rather merge strategies which incorporate a cloning
strategy. To differentiate between existing merge strategies and our new merge strategies, we will refer
to ours as cloning strategies.

One extremely crucial aspect of cloning is the huge strain it can have on both time and memory
constraints. While the cloning itself can be implemented highly efficiently, the time it takes to run the
merge-and-shrink algorithms grows with the increase in transition systems. In a factored transition
system with n factors, cloning a factor with x states may be quick, but the synchronized product of
the factored transition system now has x times as many states as before. If our goal is to let the main
loop run until there is only one transition system left, we also need an additional iteration of it for each
time we clone. Additionally, we now have n additional potential merge we could execute, meaning
that the scoring functions’ work load increases with each clone, especially if we were to clone before
the main loop begins. It is thus important that we limit the amount of clones and that we either clone
as late as possible or ensure otherwise that the scoring functions do not consider semantically identical
factors multiple times.

4.2 Ad Hoc Cloning

We devised two classes of cloning strategies which are inspired by existing, successful merge strategies.
The first, “ad hoc” method, extends a stateless merge strategy which uses only the information available
through the current state of the factored transition system. The basic idea being that we clone on
demand whenever the merge strategy deems multiple merges equally interesting. This way, the merge
strategy can (occasionally) have its cake and eat it too as the factor used to merge will be a clone rather
than the original one, allowing it to perform all merges it would want to perform without needing to
tiebreak.

To achieve this, our ad hoc cloning strategy extends the existing stateless merge strategy of the
Fast Downward planner. This merge strategy uses one or more scoring functions in order to choose
the merge with the best score for the next iteration of the main loop. This selection process is then
repeated in the next iteration using the updated factored transition system. This means that in every
iteration of the main loop, scores need to be computed anew for each pair of factors. As mentioned
earlier, a very common occurrence for the stateless merge strategy is that multiple different merges
are determined to be equal in quality. This means that we need to tiebreak between many different
prospective merges, which may be done by a scoring function which randomly picks one potential
merge to assign the best value to.

Our strategy differs from this since we allow the merge strategy to perform multiple merges “si-
multaneously”. not literally of course, but in a simulated manner. For this the merge strategy keeps
a list of future merges as determined by the scoring functions. Rather than requiring that the scoring
functions return exactly one pair out of all possible merges, we now allow them to return multiple.
We then ensure that this list does not contain too many duplicates by counting how often each factor
occurs. If a factor occurs in multiple possible merges, we would need to clone it to perform all of them.
To regulate how often the algorithm clones we limit the amount of clones with a budget. Each time a
clone transformation is performed, one token is taken out of the budget. If the list of merges contains
too many duplicate factors, we tiebreak by choosing a random merge and recompute the list of best
merges in the next iteration of the main loop. But if the budget allows us to perform all the merges
in the list, all of them are being performed in random order, one per iteration of the main loop.

Technically, this new strategy is not exactly stateless, as it keeps track of the list across multiple
iterations of the main loop. However, we are simulating a simultaneous execution of the merges over

20



multiple iterations of the main loop. We only ever shrink clones, unless the factor is not used in any
other of the planned merge later on. We also do not recompute the scores so the product of a merge
is not considered until the other merges have been performed. It is important to note that the label
reduction, which may be performed in each iteration, does affect subsequent merges and the order of
the merges thus defines the results of the label reduction. We thus decided to randomize the order in
which the merges are performed.

First ideas for our ad hoc cloning strategy allowed re-computing the best merges after each merge
in the list is performed, that is, it was truly stateless. However, this may lead to loops, wherein the
merge strategy selects the same merge over and over since merges involving the new factor may not
always be more interesting, that is, be preferred by the scoring functions. To alleviate this issue, we
have created a new scoring function that favors merges which would lead to factors whose sets of
atomic components are not already present in the current factored representation. This is achieved by
searching through the factored mappings of the factored transition system and is, fortunately, efficient
due to the structure of those mappings. If a factor’s factored mapping contains the same set of atomic
components as the union of the sets of atomic components of the factors that are candidates for a
merge, we give this candidate a bad score.

Using this new scoring function generally improved coverage, meaning that the algorithm was able
to solve more instances of the benchmark than without. This is despite the fact that loop should not
occur when performing merges “simultaneously”.

4.2.1 Experiment Setup

For all our experiments we used the a benchmark suite consisting of IPC benchmark instances for the
optimal track of the competition1.

For our orthogonal baseline we employ non-greedy bisimulation based shrinking and we always call
the shrink strategy before merging. We perform exact label reduction before shrinking and we allow
transition systems of sizes up to 50’000 states. We use a stateless merge strategy which chooses the
next merge using either the goal relevance and DFP scoring function or the MIASM scoring function
with the same shrinking parameters as before. In both cases we tiebreak among multiple equally good
potential merges at random. The DFP scoring function was adapted from Dräger et al. [3] by Sievers
et al. [17] for the use as a non-linear merge strategy. It prefers merges of factors which will synchronize
on labels close to goal states, that is, both factors have transitions with the same label close to goal
states. The MIASM scoring function was developed by Fan et al. [18] and it prefers those merges that
result in factors that may be heavily pruned.

In addition to different scoring functions we also consider different methods for saturated cost
partitioning. We consider a base case without cost partitioning, in which we use the max factor
heuristic if more than one factor remain in the factored transition system once the main loop concludes
computation, which may be the case if time or memory limits are met. We also consider both offline
and online saturated cost partitioning. In the case of the online cost partitioning we compute two cost
partitions, one before starting the main loop, thus a cost partitioning of the atomic factors, and one
after the main loop finishes. To determine the heuristic value of a state we then take the maximum of
the heuristic values of these two cost partitions. The offline cost partitioning computes a single cost
partition over the atomic factors and the factors remaining after the main loop has finished.

To test our ad hoc cloning strategy we kept shrinking, upper limits for sizes of transition systems,
label reduction, and cost partitioning identical to the baseline. We used our non-orthogonal “stateless”
merge strategy with the same scoring functions as for the baseline, with the addition of additionally
testing whether the scoring function which disfavors merges which create transition systems that are, in
terms of atomic components, already present (avoid_existing() for short). We used cloning budgets
of 15, 50, and 100 tokens. We also let the non-orthogonal strategy run with a budget of 0 tokens
to get a direct comparison to the baseline which we used to determine the overhead incurred by our
implementation.

1Found at: https://github.com/aibasel/downward-benchmarks

21



4.2.2 Results

The main takeaway of our ad hoc cloning strategy was that, put bluntly, it failed with current state-of-
the-art constellations of merge selectors. We compiled the results discussed here in Appendix A. The
main metric of success we considered is the coverage which indicates how many planning task instances
were solved by each combination of parameters. We also included the amount of instances which hit
time or memory limits during the construction of the abstraction and during heuristic search. To give
an idea of how long abstraction construction and search took respectively, we included the average
for both. Additionally we included the score metric which assigns a normalized score depending on
how few expansions, evaluations, and generations of states were performed during search. This also
includes scores to compare how much memory and time were used. A higher score means that there
were fewer evaluations, expansions, and generated states or that less memory or time was required
to solve the planning task. In order to determine the quality of the solutions found we rely on the
amounts of expansions needed during search to find the solution. There, smaller values are desirable
as this implies that the search is following a more direct path to the solution.

Using the avoid_existing scoring function improved coverage but the results were still poorer
than the baseline. One confusing occurrence was that the new scoring function reduced coverage for
the MIASM runs using a budget of 50 clones compared to not using the avoid_existing scoring
function. Since the coverage was better for runs with budgets of 15 and 100 clones, we believe this
is an outlier and not a consequence of using the scoring function. The new scoring function impaired
the construction time of the heuristic by less than a tenth of a second on average for the base case.
It reduced the mean time taken to construct the heuristic for DFP constellations but increased it for
MIASM constellations. Based on this we consider the avoid_existing scoring function to be efficient
and in our figures and tables, except for the orthogonal baseline, only runs in which it was used.

As seen in Figure 4.1, the orthogonal baseline outperformed runs with 15, 50, and 100 available
clones. For 15 tokens alone, we have lost between 7 and 10% coverage, with higher budgets for cloning
resulting in consistently worse coverage. For reference, overhead from our implementation reduced
coverage by up to roughly 3% for DFP configurations and by up to roughly 7% for configurations
using MIASM with offline saturated cost partitioning.

This loss in coverage is explained by increased resource requirements in both time and space when
cloning without improvement of heuristic quality. This lack of improvement of the heuristic can be
seen by the expansion score which, along with all other scores, steadily declines as we increase the
budget for cloning. Generally speaking, all available tokens were used with a few exceptions, which
explains the increase in instances reaching the memory limit. Situations in which not all tokens may
have been used arise when either a), there is no need to clone, or b) the amount of clones to be
performed simultaneously surpasses the available budget. We have observed b) many times and earlier
experiments showed that even with 200 or 500 tokens, the algorithm will fully deplete the given budget.
This obviously creates a huge increase in necessary space and ultimately leads to the run ending due
to lack of memory. There were some domains on which configurations with MIASM did not make use
of all tokens for all three budgets. This may indicate that there was no further need to clone but is
not a guarantee of this. This was the case for some instances of the floortile, miconic, mystery,
nomystery, psr-small, and the visitall domains. In all cases there was no noticeable advantage
in coverage or quality (as measured by expansions needed to reach the solution during search) when
using cloning.

Despite its poor performance, we think that our ad hoc method can be improved to add value to the
merge-and-shrink framework. We believe that most of the issues leading to the decrease in coverage
when cloning may be alleviated with scoring functions that are a better fit for the non-orthogonal
merge-and-shrink algorithm. With the configurations used by us the algorithm will always completely
deplete the available budget of clones which indicates that cloning is not used in an informed way.
Cloning this much leads to issues such as loops where the same merges are executed again and again
until the budget is depleted. These clones and merges add nothing to the quality of the heuristic and
thus essentially only waste time and memory. We observe that even in the baseline, the more restrictive
MIASM scoring function leads to higher coverage. This, combined with the clear improvement achieved
by the avoid_existing scoring function suggests that, moving forward, it would perhaps be best to
consider ad hoc cloning only in connection with new and more restrictive scoring functions or with
more informed merge strategies altogether.

22



0

100

200

300

400

500

600

700

800

900

1000

Orthogonal Budget 0 Budget 15 Budget 50 Budget 100

In
st

an
ce

s

DFP without Cost Partitioning

0

100

200

300

400

500

600

700

800

900

1000

Orthogonal Budget 0 Budget 15 Budget 50 Budget 100

In
st

an
ce

s

MIASM without Cost Partitioning

0

100

200

300

400

500

600

700

800

900

1000

Orthogonal Budget 0 Budget 15 Budget 50 Budget 100

In
st

an
ce

s

DFP with Offline Cost Partitioning

0

100

200

300

400

500

600

700

800

900

1000

Orthogonal Budget 0 Budget 15 Budget 50 Budget 100

In
st

an
ce

s

MIASM with Offline Cost Partitioning

0

100

200

300

400

500

600

700

800

900

1000

Orthogonal Budget 0 Budget 15 Budget 50 Budget 100

In
st

an
ce

s

DFP with Online Cost Partitioning

0

100

200

300

400

500

600

700

800

900

1000

Orthogonal Budget 0 Budget 15 Budget 50 Budget 100

In
st

an
ce

s

MIASM with Online Cost Partitioning

Coverage Construction out of Time Construction out of Memory Search out of Time Search out of Memory Score Expansions

Figure 4.1: Coverage and aborts due to memory or time for different scoring functions and cost
partitioning constellations, as well as the expansion score measuring how few expansions were needed
during search to find a solution.

23



4.3 Precomputed Cloning

The second class of cloning strategies we came up with is a precomputed one, meaning that the decision
of which factors to clone is made before the merge-and-shrink algorithm begins its work on the factored
transition system. For this we take inspiration from the strongly connected component (SCC) merge
strategy which partitions the set of atomic factors such that the partition corresponds to the strongly
connected components of the causal graph of the task [19]. The algorithm then combines these subsets
of atomic factors into one factor each before combining these factors according to a stateless merge
strategy.

Generalizing the idea of the SCC strategy, we have devised a merge strategy which creates a subset
for each state variable of the planning task. These subsets, which we call clusters, consist of the variable
and the variables in its neighborhood in the causal graph. Unlike the SCC strategy, the clusters created
may overlap, as each variable is present in its own cluster, as well as the clusters of its neighbors. Both
depth of the neighborhood and choice of edges used to construct it may be specified. Additionally,
we allow limiting the amount of cloning transformations to be performed by using a budget, similar
to the ad hoc strategy. If there is too much overlap among the clusters, that is, we would need to
clone more atomic factors to provide each cluster with their own atomic factor than allowed by the
budget, we iteratively combine two clusters until the budget’s restriction is met. The clusters, initially
consisting of (cloned) atomic factors, transform their factors into one single transition system each
using a stateless merge strategy. If at any point an atomic factor is to be merged which is also required
to compute another cluster, a clone of it is used instead. Once only one factor remains in all clusters
we use cost partitioning to obtain our final heuristic.

4.3.1 Experiment Setup

The baseline reference used for this experiment is the SCC merge strategy using the goal relevance
and DFP scoring functions with random tie breaking to construct the factors representing the strongly
connected components of the causal graph. As before, we use non-greedy bisimulation based shrinking
and always shrink before merging to maintain a limit of 50’000 states per factor. We also kept using
exact label reduction before shrinking. As for cost partitioning methods, we again considered offline
and online saturated cost partitioning in the exact same way as we did for the ad hoc strategy. Since
our precomputed cloning strategy always terminates the main loop before only one factor remains,
we have additionally adapted the SCC strategy, which we use as a baseline reference, to also use cost
partitioning once the factors of the strongly connected components are constructed.

Our precomputed cloning strategy uses identical scoring functions, shrinking parameters, label
reduction methods, and cost partitionings as the reference. As for cluster creation, we considered
neighborhoods of depths 1, 2, and 4, as well as a reference of depth 0 which yields an orthogonal run
resulting in a cost partitioning of the factored transition system consisting only of the atomic factors.

We considered using predecessors, successors, or both when creating the clusters from the causal
graph, as well as combining the largest clusters, the smallest clusters, or random clusters when it is
necessary to reduce the overall need for cloning. To clone, we allocated budgets of 15, 50, and 100
tokens.

Compared to the ad hoc experiments, we did not consider the MIASM scoring function as the
amount of configurations already was already too large.

4.3.2 Results

Table 4.1 shows that, in terms of coverage, the depth 0 baseline slightly outperforms the SCC baseline.
However, if we look at the expansions to measure the quality of the obtained heuristics, we can see
that the SCC strategy is considerably better than the depth 0 baseline.

Unsurprisingly, the choice of cost partitioning has little effect on the baseline of depth 0 since
the cost partitionings should be identical as the algorithm does not transform the factored transition
system at all. If we look at the SCC baseline, we see a trend that is also noticeable in the results of
the ad hoc cloning. Online cost partitioning performs better than offline cost partitioning. This is
also true for the precomputed cloning strategy, where online cost partitioning outperforms offline cost
partitioning regardless of depth, method of cluster creation, and clone budget. Since online cloning

24



SCC, Offline CP SCC, Online CP Precomputed Cloning, Precomputed Cloning,
Depth 0, Offline CP Depth 0, Online CP

Coverage 776 827 831 830
Construction out of Time 167 169 0 0
Construction out of Memory 10 8 13 7
Search out of Time 1 4 0 0
Search out of Memory 855 801 965 972
Construction time mean 4.06 3.95 0.05 0.03
Search time mean 0.49 0.33 0.766 0.73
Score Expansions 340.89 416.04 348.32 349.66
Score Memory 389.82 426.75 438.60 446.88
Score Search Time 660.78 713.11 698.47 700.10
Score Total Time 586.97 632.95 696.15 698.87

Table 4.1: Coverage and scores of the baselines of the precomputed cloning strategy.

universally outperformed offline cloning in our experiments, we will only consider configurations with
online cost partitioning from here on.

Let us now take a look at the budget allocated for cloning. We might suspect that, similar to the
ad hoc cloning, increasing the budget will reduce coverage due to computational constraints but this

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 811 819 831

Expansion score 390,15 398,33 408,09

Tokens

Predecessors, Depth 1

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 784 786 798

Expansion score 387,51 396,38 404,28

Tokens

Successors, Depth 1

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 785 797 797

Expansion score 390,21 397,39 404,86

Tokens

All Edges, Depth 1

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 808 817 818

Expansion score 395,52 398,81 404,32

Tokens

Predecessors, Depth 2

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 782 788 788

Expansion score 387,73 388,17 388,18

Tokens

Successors, Depth 2

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 775 776 776

Expansion score 388,95 389,51 389,76

Tokens

All Edges, Depth 2

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 732 738 735

Expansion score 366,57 366,83 367,79

Tokens

Predecessors, Depth 4

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 708 713 713

Expansion score 360,49 360,77 360,94

Tokens

Successors, Depth 4

0

100

200

300

400

500

600

700

800

900

15 50 100

Coverage 646 646 646

Expansion score 348,74 349,3 349,17

Tokens

All Edges, Depth 4

Figure 4.2: Coverage in instances and expansion scores for varying tokens, depths, and choice of edges
during cluster construction. Combines random clusters to reduce the amount of clones necessary to
realize the clusters.

25



0

100

200

300

400

500

600

700

800

900

1 2 4

In
st
an
ce
s

Depth

Predecessors

0

100

200

300

400

500

600

700

800

900

1 2 4

In
st
an
ce
s

Depth

Successors

0

100

200

300

400

500

600

700

800

900

1 2 4

In
st

an
ce

s

Depth

Both Predecessors and Successors

Coverage Construction out of Time Construction out of Memory Search out of Time Search out of Memory  Expansions Score

Figure 4.3: Coverage, aborts, and expansion scores for varying depths and choice of edges during
cluster construction. Allows up to 100 clones and combines clusters at random if more than 100 clones
are necessary.

is generally not the case. Figure 4.2 shows how coverage and expansion score behave if we increase the
amount of clones that we permit. The general trend that we observe is that an increase in tokens leads
to a slight increase in coverage. This is not universally true as coverage declines slightly if we increase
the depth of the neighborhoods considered which is likely due to the increased depth as discussed
later on. Although the coverage is generally worse than our 0 depth baseline, the expansion scores are
generally better by a considerable margin. From this we conclude that, rather than limiting tokens,
we should limit the depth.

Figure 4.3 shows how depth impacts coverage and expansion score. We can clearly see that at
depth 4, we substantially lose coverage, with the main reason being that the construction time hits
the limit. The difference in coverage and expansion score between depth 1 and 2 is not as drastic but
we notice that neighborhoods of depth 1 outperform those of depth 2 consistently. One big surprise
is that the construction time is significantly lower for depth 2. This is likely due to the fact that the
larger depth facilitates the need to combine more clusters, reducing the amount of clusters and thus
clones, which subsequently means that we perform fewer merges.

Next, we take a look at the different methods for combining clusters to reduce the total overlap,
that is, the amount of clones we would need to realize all clusters. As can be seen in Table 4.4, there
is little difference between combining at random, combining the two largest clusters, and combine the
two smallest clusters until the overlap has been reduced. Obviously, combining the largest clusters
means that more time is needed to construct the abstraction, as calculating merges for bigger clusters
takes longer due to the exponentially increasing amount of potential merges within a cluster, as well
as, on average, larger factors. This is why the construction time for the baseline examples of depth
0 from Table 4.1 was almost instant, bar the overhead from “clustering”. Despite there only being

26



Combining Clusters Randomly Predecessor Successor All Edges
Coverage 831 798 797
Construction out of Memory 16 90 31
Construction out of Time 253 246 248
Search out of Memory 692 717 719
Search out of Time 15 16 12
Expansion Score 408.09 404.28 404.86
Search Time Score 709.74 686.22 686.53
Total Time Score 586.74 564.38 560.31

Combining Smallest Clusters Predecessor Successor All Edges
Coverage 831 793 800
Construction out of Memory 13 28 31
Construction out of Time 245 235 234
Search out of Memory 703 737 727
Search out of Time 15 14 15
Expansion Score 405.96 400.79 401.66
Search Time Score 707.83 680.54 682.85
Total Time Score 586.62 564.2 560.49

Combining Largest Clusters Predecessor Successor All Edges
Coverage 827 799 803
Construction out of Memory 28 27 28
Construction out of Time 295 282 277
Search out of Memory 646 685 687
Search out of Time 11 14 13
Expansion Score 407.97 407.28 407.72
Search Time Score 708.71 689.8 689.95
Total Time Score 586.87 566.05 563.61

Figure 4.4: Coverage, aborts, and scores for different methods of creating and combining clusters.

a slight difference in quality and coverage, we believe that it would be best to combine the largest
clusters when it is necessary to combine. This way, we are likely to achieve the largest reduction in
the required amount of clones. This also hints at the next possible improvement which may be made
to this strategy, which would be to combine the clusters with the largest overlap, or largest overlap
relative to their size. While this is somewhat cumbersome to implement efficiently, it is a promising
avenue for further improvement of the precomputed cloning strategy.

Lastly, we take a look at which edges we may use to construct the clusters. As we can see in
Table 4.4 (and already saw in Figures 4.2 and 4.3), using both predecessor and successor nodes to
construct the neighborhoods puts a strain on the memory taken to construct the factored transition
system. Surprisingly, using only successors puts almost the exact same strain on the memory as using
both predecessors and successors. Overall, all methods yield roughly equal heuristics quality wise, as
measured by expansion scores. We would still recommend using only predecessors, as this generally
puts the least strain on memory, while preserving heuristic quality.

One final experiment we have performed was to evaluate how computing a cost partitioning at
each iteration of the main loop would affect the performance of the precomputed cloning strategy. For
this we compared an optimized configuration of the SCC strategy with a few of the most promising
constellations for our precomputed cloning strategy. Changes to the SCC strategy compared to the
baseline used in Table 4.1 consist of computing a cost partitioning at each iteration of the main loop
and limiting the main loop by a time limit of 15 minutes. For our precomputed cloning strategy we
always combine the largest clusters and give a budget of 100 clones. We vary how clusters are created
by considering either predecessors, successors, or both. We also considered neighborhoods of depths 1,
2, and 4. We also compute a cost partitioning at every iteration of the main loop and limit the time
of the main loop to 15 minutes.

In Table 4.2 we can see that the optimized SCC call heavily outperforms the best of the 9 con-
stellations tested against it. As expected, the precomputed cloning strategy performed best when

27



considering predecessors of up to depth 2 when creating the clusters. All other constellations were
worse, with decreases in coverage ranging from roughly 4% for constellations of depths 1 and 2 up to
roughly 20% for constellations of depth 4.

The decrease in coverage and quality of heuristics compared to the constellations from previous
experiments is not at all surprising. The main advantage of computing cost partitionings at each
iteration of the main loop lies in the availability of many different factors which may be considered
during search. While it makes a lot of sense to use cost partitioning to combine the clusters obtained
from our precomputed cloning strategy, our design philosophy intended for the clusters to be combined
after they have been fully built from their atomic factors. As such it seems reasonable that we lose
performance when computing cost partitionings throughout construction.

Compared to ad hoc cloning, the precomputed cloning strategy is significantly more promising.
We have seen that it is, at least in terms of coverage, able to keep up with a very simple instantiation
of the SCC merge strategy. While the overall quality of the heuristics obtained by the precomputed
cloning strategy is poorer than even the unoptimized SCC strategy’s we see promise in the flexibility
of our approach.

As with the ad hoc cloning strategy, we are certain that there is much room for improvement for
the precomputed cloning strategy. We believe that there is significant overhead in our implementation
during the computation of the clusters and their combining which likely has a negative impact on
our results. We are certain that there are many promising methods of creating clusters from the
causal graph which do not only consider the neighborhood of a node, but also focus the overlap on
the dominating set or on cliques of the causal graph. This way we would more likely end up cloning
factors whose presence in multiple factors is beneficial.

SCC Precomputed Cloning
Coverage 901 815
Construction out of Time 27 102
Construction out of Memory 17 208
Search out of Time 508 265
Search out of Memory 356 418
Construction time mean 1.00 1.39
Search time mean 0.15 0.29
Score Expansions 505.08 391.02
Score Memory 451.95 350.61
Score Search Time 740.12 662.45
Score Total Time 637.19 564.74

Table 4.2: Coverage and scores of an optimized SCC call creating a cost partitioning at each iteration of
the main loop, as well as the best performing constellation of parameters for the precomputed cloning
which also creates a cost partitioning at each iteration of the main loop.

28



Chapter 5

Conclusion

In this thesis we have defined a new transformation for the merge-and-shrink framework which clones a
factor of the factored transition system, making the latter non-orthogonal. The non-orthogonal merge-
and-shrink algorithm may create more expressive intermediary factored transition systems, which in
conjunction with cost partitioning may yield heuristics of better quality.

We considered two classes of merge-and-shrink algorithms, one which decided ad hoc whether a
factor is to be cloned, and one where clones were prepared before the merge-and-shrink algorithm began
to transform the factored transition system. Both strategies performed worse than their respective
state-of-the-art baselines. The ad hoc strategy shows little promise as the interplay between the
different transformation strategies would need to be redesigned from ground up to exploit the possibility
of creating non-orthogonal factored transition systems.

Considering the class of merge-and-shrink algorithms which precompute when to clone, we are much
more optimistic. Although it also failed to compete with its optimized state-of-the-art counterpart,
we still believe that there is room for improvement without having to redesign the entire existing
implementation. The main difference between the implementation of the precomputed cloning and the
ad hoc cloning is that our precomputed cloning may be seen in a more modular light. Each of the
clusters we create is orthogonal, meaning we may exploit well performing methods for transforming
that cluster into one factor. The methods for creating clusters are also implemented on top of the
existing code, meaning that it would be easy to implement a new method for clustering and even
combining clusters to reduce the amount of cloning required.

For future work on this topic we see two lanes, the first, more arduous and less promising path
would design a merge strategy which keeps track of and exploits the fact it may merge the same factor
multiple times with others. An entry point for this would be development of a new scoring function.

The second, and in our opinion more promising, lane is to develop new methods for the creation
of clusters. While the causal graph offers a lot of interesting ideas for creating clusters, it would
certainly be of interest to consider taking inspiration from pattern selection for pattern databases,
as this feels like a natural interpretation of the task of creating multiple overlapping factors in the
factored transition system, each of which ideally yields an informative heuristic.

29



Bibliography

[1] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A Proposal for the Dartmouth
Summer Research Project on Artificial Intelligence,” 1955.

[2] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of Mini-
mum Cost Paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–
107, 1968.

[3] K. Dräger, B. Finkbeiner, and A. Podelski, “Directed model checking with distance-preserving
abstractions,” Proceedings of the 13th International SPIN, pp. 19–34, 2006.

[4] M. Helmert, P. Haslum, and J. Hoffmann, “Flexible Abstraction Heuristics for Optimal Sequen-
tial Planning,” in Proceedings of the 17th International Conference on Automated Planning and
Scheduling, 2007, pp. 176–183.

[5] S. Sievers and M. Helmert, “Merge-and-Shrink: A Compositional Theory of Transformations of
Factored Transition Systems,” Journal of Artificial Intelligence Research, vol. 71, pp. 781–883,
2021.

[6] M. Helmert, P. Haslum, J. Hoffmann, and R. Nissim, “Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces,” Journal of the ACM, vol. 61, no. 3,
2014.

[7] S. Sievers, “Merge-and-Shrink Abstractions for Classical Planning: Theory, Strategies, and Im-
plementation,” Ph.D. dissertation, University of Basel, 2017.

[8] B. Bonet and M. Van Den Briel, “Flow-Based Heuristics for Optimal Planning: Landmarks
and Merges,” in Proceedings of the 24th International Conference on Automated Planning and
Scheduling, 2014, pp. 47–55.

[9] S. Sievers, F. Pommerening, T. Keller, and M. Helmert, “Cost-partitioned merge-and-shrink
heuristics for optimal classical planning,” in Proceedings of the 29th International Joint Confer-
ence on Artificial Intelligence, 2020, pp. 4152–4160.

[10] M. Helmert and T. Keller, Lecture Foundations of Artificial Intelligence, https://dmi.unibas.
ch/de/studium/computer-science-informatik/lehrangebot-fs20/lecture-foundations-

of-artificial-intelligence/, Accessed: 2023–10–06, 2020.

[11] M. Helmert and G. Röger, Lecture Planning and Optimization, https://dmi.unibas.ch/
de/studium/computer-science-informatik/lehrangebot-hs21/lecture-planning-and-

optimization/, Accessed: 2023–10–06, 2021.

[12] C. Knoblock, “Automatically generating abstractions for planning,”Artificial Intelligence, vol. 68,
pp. 243–302, 1994.

[13] M. Katz and C. Domshlak, “Optimal Additive Composition of Abstraction-based Admissible
Heuristics,” in Proceedings of the 18th International Joint Conference on Artificial Intelligence,
2008, pp. 174–181.

[14] F. Yang, J. Culberson, R. Holte, U. Zahavi, and A. Felner, “A General Theory of Additive State
Space Abstractions,” Journal of Artificial Intelligence Research, vol. 32, pp. 631–662, 2008.

[15] J. Seipp, T. Keller, and M. Helmert, “Saturated cost partitioning for optimal classical planning,”
Journal of Artificial Intelligence Research, vol. 67, pp. 129–167, 2020.

30

https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-fs20/lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-fs20/lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-fs20/lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-hs21/lecture-planning-and-optimization/
https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-hs21/lecture-planning-and-optimization/
https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-hs21/lecture-planning-and-optimization/


[16] R. Nissim, J. Hoffmann, and M. Helmert, “Computing perfect heuristics in polynomial time: On
bisimulation and merge-and-shrink abstraction in optimal planning,” in Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, 2011, pp. 1983–1990.

[17] S. Sievers, M. Wehrle, and M. Helmert, “Generalized label reduction for merge-and-shrink heuris-
tics,” in Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, pp. 2358–2366.

[18] G. Fan, M. Müller, and R. Holte, “Non-linear merging strategies for merge-and-shrink based on
variable interactions,” in Proceedings of the 7th Annual Symposium on Combinatorial Search,
2014, pp. 53–61.

[19] S. Sievers, M. Wehrle, and M. Helmert, “An analysis of merge strategies for merge-and-shrink
heuristics,” in Proceedings of the 26th International Conference on Automated Planning and
Scheduling, 2016, pp. 294–298.

31



Appendix A

Results of Ad Hoc Cloning

A.1 Orthogonal Baseline

DFP DFP, Offline CP DFP, Online CP MIASM MIASM, Offline CP MIASM, Online CP
Coverage 787 795 827 825 803 860
Construction out of Time 172 169 171 211 208 211
Construction out of Memory 33 35 33 12 15 12
Search out of Time 4 4 5 12 11 9
Search out of Memory 812 805 772 746 769 714
Construction time mean 5.94 6.09 6.02 12.49 12.64 12.57
Search time mean 0.31 0.45 0.25 0.21 0.33 0.18
Score Evaluations 378.73 330.34 397.27 426.88 354.72 444.13
Score Expansions 419.95 369.46 443.00 472.82 399.19 494.14
Score Generated 345.81 287.19 363.59 395.62 313.59 412.42
Score Memory 397.03 388.26 414.09 424.09 406.86 440.09
Score Search Time 679.60 673.38 715.27 720.41 690.25 753.05
Score Total Time 597.15 584.85 620.94 590.49 563.41 605.78

Figure A.1: Results of the orthogonal baseline using a stateless merge strategy with DFP or MIASM
merge selectors, with and without Cost Partitioning (CP). Times are in seconds.

A.2 Baseline Comparison, Budget Size 0

DFP DFP, Offline CP DFP, Online CP MIASM MIASM, Offline CP MIASM, Online CP
Coverage 788 775 827 811 748 844
Construction out of Time 172 170 172 296 291 295
Construction out of Memory 30 32 30 14 17 14
Search out of Time 5 3 4 12 10 13
Search out of Memory 814 829 776 673 740 640
Construction time mean 4.11 4.18 4.17 14.87 14.97 14.95
Search time mean 0.24 0.40 0.19 0.15 0.40 0.12
Score Evaluations 371.46 306.52 390.11 421.38 297.69 437.49
Score Expansions 411.99 340.88 435.22 463.97 331.15 484.28
Score Generated 337.42 260.14 355.48 388.53 251.84 404.39
Score Memory 397.78 381.83 414.80 421.56 380.07 436.40
Score Search Time 679.47 659.49 715.15 709.41 637.27 740.05
Score Total Time 598.80 574.13 622.06 571.64 517.09 584.48

Figure A.2: Results of the non-orthogonal baseline with a cloning budget of 0 clones. We use a stateless
merge strategy with DFP or MIASM merge selectors, with and without Cost Partitioning (CP). The
scoring function avoiding already existing merges is always included. Times are in seconds.

32



A.3 Budget Size 15

DFP DFP, Offline CP DFP, Online CP MIASM MIASM, Offline CP MIASM, Online CP
Coverage 736 752 778 779 738 810
Construction out of Time 172 170 172 312 313 315
Construction out of Memory 72 74 74 28 31 28
Search out of Time 124 3 112 39 12 35
Search out of Memory 704 809 672 648 712 618
Construction time mean 6.66 6.74 6.75 25.15 25.29 25.23
Search time mean 0.39 0.34 0.29 0.25 0.34 0.19
Score Evaluations 339.21 303.15 358.72 382.24 293.04 396.60
Score Expansions 376.47 336.50 400.93 421.66 325.60 440.47
Score Generated 302.49 257.62 321.38 345.62 247.44 359.86
Score Memory 322.64 319.63 333.73 372.54 342.77 383.29
Score Search Time 614.89 643.37 652.04 669.63 628.82 699.61
Score Total Time 527.60 539.05 551.30 497.25 464.56 507.26

Figure A.3: Results of the non-orthogonal baseline with a cloning budget of 15 clones. We use a
stateless merge strategy with DFP or MIASM merge selectors, with and without Cost Partitioning
(CP). The scoring function avoiding already existing merges is always included. Times are in seconds.

A.4 Budget Size 50

DFP DFP, Offline CP DFP, Online CP MIASM MIASM, Offline CP MIASM, Online CP
Coverage 705 714 747 706 666 723
Construction out of Time 173 171 173 447 445 450
Construction out of Memory 213 216 214 105 108 106
Search out of Time 228 2 205 176 34 166
Search out of Memory 489 705 469 372 553 361
Construction time mean 9.37 9.42 9.47 55.74 55.97 56.11
Search time mean 0.35 0.25 0.28 0.27 0.25 0.23
Score Evaluations 332.17 294.68 350.56 364.67 273.17 378.22
Score Expansions 367.99 325.57 391.45 403.36 303.66 419.59
Score Generated 298.05 251.57 315.65 331.68 230.03 345.29
Score Memory 287.35 283.87 297.87 317.85 291.29 322.83
Score Search Time 575.66 611.18 611.61 589.75 567.06 610.14
Score Total Time 472.99 489.41 496.94 377.62 362.79 382.83

Figure A.4: Results of the non-orthogonal baseline with a cloning budget of 50 clones. We use a
stateless merge strategy with DFP or MIASM merge selectors, with and without Cost Partitioning
(CP). The scoring function avoiding already existing merges is always included. Times are in seconds.

A.5 Budget Size 100

DFP DFP, Offline CP DFP, Online CP MIASM MIASM, Offline CP MIASM, Online CP
Coverage 674 675 711 556 538 575
Construction out of Time 180 178 180 771 769 771
Construction out of Memory 284 287 287 215 217 217
Search out of Time 365 1 332 134 38 125
Search out of Memory 305 667 298 130 244 118
Construction time mean 13.53 13.59 13.60 96.72 96.58 97.56
Search time mean 0.31 0.20 0.26 0.34 0.20 0.28
Score Evaluations 332.16 285.72 348.78 301.14 231.76 315.52
Score Expansions 366.48 315.75 387.78 329.90 254.00 346.25
Score Generated 299.98 243.59 315.85 273.35 195.60 287.55
Score Memory 260.52 259.49 269.00 238.08 224.30 240.96
Score Search Time 533.19 584.82 566.11 461.74 458.54 481.44
Score Total Time 412.05 437.09 432.82 239.83 237.56 244.45

Figure A.5: Results of the non-orthogonal baseline with a cloning budget of 100 clones. We use a
stateless merge strategy with DFP or MIASM merge selectors, with and without Cost Partitioning
(CP). The scoring function avoiding already existing merges is always included. Times are in seconds.

33


