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What is Probabilistic Planning?

Solve planning tasks with probabilistic transitions
Models a Markov Decision Problem given by
M = ⟨V, s0, A, T,R⟩

A set of binary variables V inducing States S = 2V

An initial state s0 ∈ S
A set of applicable actions A
A transition model T : S ×A× S → [0; 1]
A Reward R(s, a)

Monte Carlo Tree Search algorithms solve MDPs
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Monte Carlo Tree Search Algorithms

Algorithmic framework to solve MDPs
Used especially in computer Go

Go Board1 Lee Sedol2

1Source: https://commons.wikimedia.org/wiki/File:Go_board.jpg
2Source: https://qz.com/639952/googles-ai-won-the-game-go-by-defying-

millennia-of-basic-human-instinct/
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Four phases - Two components

Selection Expansion Simulation

e

Simulation

Backpropagation
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Monte Carlo Tree node

MCTS tree for a MDP M

Important information in a tree node
A state s ∈ S
A counter N (i) for the number of visits
A counter N (i)(s, a)∀a ∈ A for the number of times a was selected
in s
A reward estimate Q(i)(s, a) for action a in state s
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Online Knowledge

AlphaGo used Neural Networks for the two policis →
Domain-specific knowledge
We want domain independent enhancements
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Overview

Tree-Policy Enhancements
All Moves as First

α-AMAF
Cutoff-AMAF

Rapid Action Value Estimation

Default-Policy Enhancements
Move-Average Sampling Technique

Conclusion
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What is a Tree Policy?

Iterate through the known part of the tree and select an action
given a node
Use a Q value for a state-action pair to estimate an actions
reward
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UCT

MCTS implementation first proposed in 2006

m m′m′

m′m′′

Reward: 10

s1

s2 s3

s4s5

Online Knowledge Enhancements for Monte Carlo Tree Search in Probabilistic Planning 9 / 33



UCT

Reward approximation, parent node vl, child node vj

UCT (vl, vj) = Q(i)(sl, aj) + 2Cp

√
2 lnN (i)(sl)

N (i+1)(sj)
(1)

From parent vl select child node v∗ that maximises

v∗ = max
vj

{UCT (nl, nj)} (2)
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All Moves as First - Idea

UCT score needs several trials to become reliable
Idea: Generalize informations extracted from trials
Implementation: Use additional (node-independant) score
that updates unselected actions as well

m m′m′

m′m′′

Reward: 10

s1

s2 s3

s4s5

State Action Reward
s1 m …
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All Moves as First - α-AMAF

Idea: Combine UCT and AMAF score

SCR = αAMAF + (1− α)UCT (3)

Choose action with highest SCR
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All Moves as First - α-AMAF - Results
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All Moves as First - α-AMAF - Problems

With more trials UCT becomes more reliable
AMAF score has higher variance

We want to discontinue using AMAF score after
some time
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All Moves as First - α-AMAF - Problems

With more trials UCT becomes more reliable
AMAF score has higher variance

We want to discontinue using AMAF score after
some time
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All Moves as First - Cutoff-AMAF

Introduce cutoff parameter K

SCR =

{
αAMAF + (1− α)UCT , for i ≤ k

UCT ,else
(4)

Use AMAF score only in the first k trials
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All Moves as First - Cutoff-AMAF - Results
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All Moves as First - Cutoff-AMAF - Problems

How to choose the parameter K?
When is the UCT score reliable enough?
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Rapid Actio Value Estimation - Idea

First introduced in 2007 for computer go
Use soft cutoff

α = max

{
0,

V − v(n)

V

}
(5)

Use UCT for often visited nodes and AMAF score for
less-visited
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Rapid Action Value Estimation - Results
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All Moves as First - Conclusion
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Rapid Action Value Estimation - Problems

PROST uses problem description with conditional effects
Also no preconditions given
PROST description is more general

Player
Goal field
Movepath

In PROST:

Action: move_up
In e.g. computer chess

Action: move_a2_to_a3
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Predicate Rapid Action Value Estimation

A state has predicates that give some context
Idea Use predicates to find similar states and use their score

QPRAV E(s, a) =
1

N

∑
p∈P

QRAV E(p, a) (6)

and weight with

α =

{
0,

V − v(n)

V

}
(7)

Online Knowledge Enhancements for Monte Carlo Tree Search in Probabilistic Planning 22 / 33



All Moves as First - Conclusion - Revisited
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Overview
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Conclusion
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What is a Default Policy?

e

Simulation

Simulate the outcome of a trial
Basic default policy: random walk
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X-Average Sampling Technique

Use tree knowledge to bias default policy towards moves that
are more goal-oriented
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Move-Average Sampling Technique - Idea -
Sample Game

Player
Goal field
Movepath

Introduce Q(a)

Use moves that are
good on average
Choose action
according to:

P (a) =
e

Q(a)
τ∑

b∈A
e

Q(b)
τ

(8)
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Move-Average Sampling Technique - Idea -
Example

Actions: r,r,u,u,u
Q(r) = 1;N(r) = 2
Q(u) = 6;N(u) = 3

Actions: r,r,u,l,l
Q(r) = 2;N(r) = 4
Q(u) = 7;N(u) = 4
Q(l) = 3;N(l) = 2
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Move-Average Sampling Technique - Idea -
Example (2)

Actions: l,u,u,r,r
Q(r) = 7;N(r) = 6
Q(u) = 8;N(u) = 6
Q(l) = 2;N(l) = 3

Actions: r,r,r,u,u
Q(r) = 7;N(r) = 9
Q(u) = 9;N(u) = 8
Q(l) = 2;N(l) = 3
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Move-Average Sampling Technique - Results
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Conclusion

Tree-policy enhancements
α-AMAF and RAVE performe worse than standard UCT
PRAVE performs slightly better but still worse than standard UCT

Default-policy enhancements
MAST outperforms RandomWalk
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Questions?

m.neidinger@unibas.ch
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