

Online Knowledge Enhancements for Monte Carlo Tree Search in Probabilistic Planning Bachelor presentation

Marcel Neidinger <m.neidinger@unibas.ch>

Department of Mathematics and Computer Science,

University of Basel

13. February 2017

- > Solve planning tasks with probabilistic transitions
- > Models a **Markov Decision Problem** given by $M = \langle V, s_0, A, T, R \rangle$
 - > A set of binary variables V inducing States $S=2^V$
 - > An initial state $s_0 \in S$
 - > A set of applicable actions A
 - > A transition model $T: S \times A \times S \rightarrow [0; 1]$
 - > A Reward R(s, a)

> Monte Carlo Tree Search algorithms solve MDPs

Monte Carlo Tree Search Algorithms

- > Algorithmic framework to solve MDPs
- > Used especially in computer Go

Go Board¹

Lee Sedol²

¹Source: https://commons.wikimedia.org/wiki/File:Go_board.jpg ²Source: https://qz.com/639952/googles-ai-won-the-game-go-by-defyingmillennia-of-basic-human-instinct/

Online Knowledge Enhancements for Monte Carlo Tree Search in Probabilistic Planning

Four phases - Two components

> MCTS tree for a MDP M

> Important information in a tree node

- > A state $s \in S$
- > A counter $N^{(i)}$ for the number of visits
- > A counter $N^{(i)}(s,a) \, \forall a \in A$ for the number of times a was selected in s
- > A reward estimate $Q^{(i)}(s, a)$ for action a in state s

- > AlphaGo used Neural Networks for the two policis → Domain-specific knowledge
- > We want domain independent enhancements

Tree-Policy Enhancements All Moves as First

α-AMAF Cutoff-AMAF Rapid Action Value Estimation

Default-Policy Enhancements Move-Average Sampling Technique

Conclusion

What is a Tree Policy?

- Iterate through the known part of the tree and select an action given a node
- > Use a *Q* value for a state-action pair to estimate an actions reward

> MCTS implementation first proposed in 2006

> Reward approximation, parent node v_l , child node v_j

$$UCT(v_l, v_j) = Q^{(i)}(s_l, a_j) + 2C_p \sqrt{\frac{2\ln N^{(i)}(s_l)}{N^{(i+1)}(s_j)}}$$
(1)

> From parent v_l select child node v^* that maximises

$$v^* = \max_{v_j} \{UCT(n_l, n_j)\}$$
(2)

All Moves as First - Idea

- > UCT score needs several trials to become reliable
- > Idea: Generalize informations extracted from trials
- Implementation: Use additional (node-independant) score that updates unselected actions as well

All Moves as First - $\alpha\text{-AMAF}$

Idea: Combine UCT and AMAF score

$$SCR = \alpha AMAF + (1 - \alpha)UCT$$
(3)

Choose action with highest SCR

All Moves as First - α -AMAF - Results

Online Knowledge Enhancements for Monte Carlo Tree Search in Probabilistic Planning

All Moves as First - $\alpha\textsc{-}\mathsf{AMAF}$ - Problems

- > With more trials UCT becomes more reliable
- > AMAF score has higher variance

We want to discontinue using AMAF score after some time

All Moves as First - $\alpha\textsc{-}\mathsf{AMAF}$ - Problems

- > With more trials UCT becomes more reliable
- > AMAF score has higher variance

We want to discontinue using AMAF score after some time

> Introduce cutoff parameter K

$$SCR = \begin{cases} \alpha AMAF + (1 - \alpha)UCT &, \text{ for } i \leq k \\ UCT &, \text{ else} \end{cases}$$

> Use AMAF score only in the first k trials

(4)

All Moves as First - Cutoff-AMAF - Results

Online Knowledge Enhancements for Monte Carlo Tree Search in Probabilistic Planning

All Moves as First - Cutoff-AMAF - Problems

- > How to choose the parameter K?
- > When is the UCT score reliable enough?

- > First introduced in 2007 for computer go
- > Use soft cutoff

$$\alpha = max \left\{ 0, \frac{V - v(n)}{V} \right\}$$
(5)

> Use UCT for often visited nodes and AMAF score for less-visited

Rapid Action Value Estimation - Results

Online Knowledge Enhancements for Monte Carlo Tree Search in Probabilistic Planning

All Moves as First - Conclusion

Rapid Action Value Estimation - Problems

- > PROST uses problem description with conditional effects
- > Also no preconditions given
- > PROST description is more general

- Player
 Goal field
 In PROST:
 - > Action: *move_up*
 - In e.g. computer chess
 - > Action: *move_a2_to_a3*

- > A state has **predicates** that give some context
- > Idea Use predicates to find similar states and use their score

$$Q_{PRAVE}(s,a) = \frac{1}{N} \sum_{p \in P} Q_{RAVE}(p,a)$$
(6)

> and weight with

$$\alpha = \left\{ 0, \frac{V - v(n)}{V} \right\}$$
(7)

All Moves as First - Conclusion - Revisited

Tree-Policy Enhancements All Moves as First α-AMAF Cutoff-AMAF Rapid Action Value Estimation

Default-Policy Enhancements Move-Average Sampling Technique

Conclusion

What is a Default Policy?

- > Simulate the outcome of a trial
- Basic default policy: random walk

X-Average Sampling Technique

> Use tree knowledge to bias default policy towards moves that are more goal-oriented

Move-Average Sampling Technique - Idea -Sample Game

● Player ◯ Goal field → Movepath

- > Introduce Q(a)
- > Use moves that are good on average
- Choose action according to:

$$P(a) = \frac{e^{\frac{Q(a)}{\tau}}}{\sum\limits_{b \in A} e^{\frac{Q(b)}{\tau}}} \quad \textbf{(8)}$$

Move-Average Sampling Technique - Idea - Example

Move-Average Sampling Technique - Idea - Example (2)

Move-Average Sampling Technique - Results

Tree-Policy Enhancements All Moves as First α-AMAF Cutoff-AMAF Rapid Action Value Estimation

Default-Policy Enhancements Move-Average Sampling Technique

Conclusion

> Tree-policy enhancements

- $\sim \alpha$ -AMAF and RAVE performe worse than standard UCT
- PRAVE performs slightly better but still worse than standard UCT
- Default-policy enhancements
 - > MAST outperforms RandomWalk

Questions?

m.neidinger@unibas.ch