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Abstract

This thesis aims to present a novel approach for improving the performance of classical plan-

ning algorithms by integrating cost partitioning with merge-and-shrink techniques. Cost par-

titioning is a well-known technique for admissibly adding multiple heuristic values. Merge-

and-shrink, on the other hand, is a technique to generate will-informed abstractions. The

”merge” part of the technique is based on creating an abstract representation of the original

problem by replacing two transition systems with their synchronised product. In contrast,

the ”shrink” part refers to reducing the size of the factor. By combining these two ap-

proaches, we aim to leverage the strengths of both methods to achieve better scalability and

efficiency in solving classical planning problems. Considering a range of benchmark domains

and the Fast Downward planning system, the experimental results show that the proposed

method achieves the goal of fusing merge and shrink with cost partitioning towards better

outcomes in classical planning.
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1
Introduction

Under the umbrella of the vast realm of artificial intelligence, a planning problem can be

expressed as one in which we have an initial starting state, which we wish to transform into

a desired goal state by applying a sequence of actions.

’Planning is the art and practice of thinking before acting.’

- Patrick Haslum

On a more technical side, in the field of artificial intelligence, planning can be informally

defined as the activity of coming up with a sequence of actions aiming to accomplish the

target. Throughout the course of this study, classical planning will be used, which involves

an environment that is fully observable, deterministic, static and discrete.

1.1 Objectives and Thesis Outline
The main objective of this thesis is to successfully combine merge-and-shrink heuristics

with cost partitioning. This thesis paper aims to gain better knowledge regarding merge-

and-shrink heuristics and cost partitioning techniques. While merge-and-shrink is used to

replace two systems with their product [8], cost partitioning implies combining heuristics [2].

We eventually care about their influence on each other. This interaction of the two concepts

has been previously studied by Sievers et al. [11], but so far, there is no combination of them

per se. By the end, we should be a few steps closer to effectively making the right choice

vis-a-vis merging, based on cost partitioned heuristics, to boost the performance and results.

This is done by putting the decision whether to continue merging in the hands of a quality

value, calculated based on the weight merging brings compared to simply cost partitioning.

This process takes place at every iteration through the set of transition systems until there

is no pair whose merge quality value exceeds the minimal allowed quality. At each iteration,

the pair with the largest quality is eventually merged, and the process continues until no pair

brings more information. Therefore, this thesis document introduces the key concepts that

form the background research for the thesis, discussions regarding the matter of combining

the two notions both theoretically and experimentally, as well as the baseline algorithm with

additional improvements.
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1.2 Aims and Motivation
As the previous section suggests, the primary motivation for this thesis lies in the basis

of the previously studied concepts by Sievers et al. [11]. The paper is the first that aims

to combine merge-and-shrink and cost partitioning. The authors propose a new method

that extends the idea of cost partitioning to the concept of merge-and-shrink abstractions,

investigating the results under both optimal and saturated cost partitioning. This is done

using standard planning benchmarks, used in this thesis as well. The issue lies in the pur-

pose of both the relevant literature and this thesis. Abstractions sometimes have helpful

information for some parts of a planning task and totally ignore the remaining. Therefore,

the operators’ costs are distributed among the atomic projections, assuring that the sum of

their heuristics remains admissible. For this, they are introducing label cost partitioning,

transferring the notion of operator cost partitioning to merge-and-shrink abstractions. The

approach suggests computing the cost partitioning heuristics over the transition systems,

taking a single snapshot of each iteration of the merge-and-shrink algorithm. After, all the

values at each iteration are experimentally evaluated. A drawback of this approach is that

the two concepts are used one next to the other rather than actually influencing each other

in the form of a combination. This thesis comes in here, attempting a different idea of

integrating merge-and-shrink and cost partitioning. A more in-depth look at the paper as

its comparison with this thesis will occur experimentally in Chapter 4.

The next chapter will present the background research, introducing and defining the key

concepts needed for this thesis.
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Background Research

The following chapter is aiming to give an insightful overview of the research that has been

done for this project, including information on the domains of interest.

2.1 Key Concepts
Before diving deeper into the specifics of this paper’s topic, there are a few concepts and

ideas that revolve around the final goal. The subsequently discussed notions are going to be

frequently used throughout the thesis.

Transition System
At the very base, we have the term of transition system, which is defined as:

Definition 1 (Transition System). A transition system is a 6-tuple T = ⟨S,L, c, T, s0, S∗⟩:

• S is a finite set of states,

• L is a finite set of (transition) labels,

• c : L→ R is a label cost function,

• T ⊆ S × L× S is the transition relation,

• s0 ∈ S is the initial state,

• S∗ ⊆ S is the set of goal states.

We say that T has the transition ⟨s, l, s′⟩ if ⟨s, l, s′⟩ ∈ T . We also write this as s
l−→ s′, or

s→ s′ when not interested in l.

We can further define a plan π as a sequence of labels that can be followed to get from

the initial state to a goal state. Moreover, the cost of a plan is the total value of the

cost function c over the sequence of labels that took place from the initial state to the goal,

namely the plan. Additionally, an optimal plan is a plan that has minimum cost among

all possible plans achieving a goal state.
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Planning Task
One of the most important concepts for this thesis is the planning task. In the previous

chapter, this idea was briefly introduced as a problem in which we have some initial starting

state, which we wish to transform into a desired goal state by applying a sequence of actions.

Definition 2 (Planning Task). A planning task is a 4-tuple Π = ⟨V, I,O, γ⟩, where:

• V is a finite set of state variables associated with a domain dom(v) for all v ∈ V ,

• I is a total assignment over V called the initial state,

• O is a finite set of operators over V with o = ⟨pre(o),eff(o), cost(o)⟩ for all o ∈ O,

where pre(o) and eff(o) are partial assignments over V , and cost(o) ∈ R+
0 is the cost,

• γ is a partial assignment over V called the goal.

V must either consist only of propositional or only of finite-domain state variables. In our

case, a finite-domain representation will be considered.

Transition System Induced by Planning Task
What we are going actually to work with are transition systems induced by planning tasks,

as the transitions are defined by the application of specific operators to certain states, over

a finite set of state variables.

Definition 3 (Transition System Induced by Planning Task). A planning task Π = ⟨V, I,O, γ⟩
induces the transition system T (Π) = ⟨S,L, c, T, s0, S∗⟩, where:

• S is the set of all states over V ,

• L is the set of operators O,

• c(o) = cost(o) for all operators o ∈ O,

• T = {⟨s, o, s′⟩ | s ∈ S, pre(o) ⊆ s, s’ = s〚o〛},

• s0 = I,

• S∗ = {s ∈ S | γ ⊆ s}.

We write s〚o〛to denote the successor state that results from applying operator o in state s,

with s(v) being the value of v in state s:

sJoK =

d, if v → d ∈ eff(o)

s(v), otherwise
(2.1)

Heuristics
In simple terms, heuristics refers to an instinctive approach to solving problems and making

decisions that can produce results on their own or be used in more complex optimisation

algorithms with the aim of improving efficiency.
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Definition 4 (Heuristic). Let s be a state in a transition system. A heuristic h : S → R is

a function h(s) that maps a state to a real-valued number.

The perfect heuristic defined as h∗ maps each state s in the state space to the cost of an

optimal plan. We say that a heuristic h is admissible if h(s) ≤ h∗(s) for all states s.

Due to our interest in the cost, we will use the notation h : S × cost → R, h(s, cost) for

heuristic values. This denotes the value of the heuristic in a state s in a classical planning

task with cost function cost.

Optimal Planning
As we are considering optimal classical planning tasks, the optimum of the plan is a require-

ment. Thus, we are solving the problem such that the plan offers a minimal cost.

Definition 5 (Optimal Planning). .

GIVEN a planning task Π

OUTPUT an optimal plan for Π, or unsolvable if no plan exists

Very popular for optimal planning is the A* search algorithm, being one of the best

techniques for finding an optimal plan. It is a search algorithm that finds the shortest

path between the initial and the goal state. The A* search algorithm acts at each step

by considering a heuristic value, with all the heuristics sharing and maintaining a common

property of being admissible [4]. As this thesis considers optimal planning, we will work

fully with admissible heuristics. Moreover, both main concepts needed for this thesis, the

merge and shrink method and cost partitioning, guarantee admissibility.

2.2 Merge and Shrink
Abstractions are one of the principal ways of deriving heuristics for planning tasks and

transition systems. This notion can be defined as:

Definition 6 (Abstraction). Let T = ⟨S,L, c, T, s0, S∗⟩ be a transition system. An ab-

straction of T is a function α : S → Sα defined on the states of T , where Sα is an arbi-

trary set. α induces the abstract transition system T α = ⟨Sα, L, c, Tα, sα0 , S
α
∗ ⟩, where

T α = {⟨α(s), l, α(s′)⟩ | for all ⟨s, l, s′⟩ ∈ T }, sα0 = α(s0) and Sα
∗ = {α(s) | s ∈ S∗}.

Definition 7 (Projection). Let Π be a finite-domain representation planning task with vari-

ables V and states S. Let P ⊆ V , and let SP be the set of states over P . The projection

πP : S → SP is defined as πP (s) := s |P , where s |P (v) := s(v) for all v ∈ P .

We call P the pattern of the projection πP and denote the projection heuristic with hP .

Atomic projections are a particular class of projections to a single state variable. They

play a crucial role in merge-and-shrink abstractions, being the basis of the initial step. The

process begins with computing the atomic projections of the transition systems.
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An example can simply illustrate the aforementioned definitions and concepts. Let us con-

sider the following planning task Π with:

• V = {a, b}, with dom(a) = {0, 1, 2} and dom(b) = {0, 1}

• I = {a→ 0, b→ 0}

• O = {o1, o2, o3} with:

– o1 = ⟨{a→ 0, b→ 0}, {a→ 1, b→ 1}⟩

– o2 = ⟨{b→ 1}, {b→ 0}⟩

– o3 = ⟨{a→ 0}, {a→ 2}⟩

– o4 = ⟨{a→ 1, b→ 0}, {a→ 2, b→ 1}⟩

• γ = {a→ 2, b→ 1}

The atomic projections of a and b (π{a}, respectively π{b}) can be seen in Figures 2.1 and

2.2, marking the beginning step of the merge-and-shrink algorithm.

Figure 2.1: Atomic Projection of Variable a

Figure 2.2: Atomic Projection of Variable b

Moving on, the synchronised product involves computing a product transition system of two

abstractions. The result has the property of capturing all information from both systems.

Definition 8 (Synchronised Product of Transition Systems). For i ∈ {1, 2}, let Ti =

⟨Si, L, c, T i, si0, S
i
∗⟩ be transition systems with the same labels and cost functions. The

synchronised product of T1 and T2, in symbols T1 ⊗ T2, is the transition system T⊗ =

⟨S⊗, L, c, T⊗, s⊗0 , S
⊗
∗ ⟩, with:

• S⊗ = S1 × S2,

• T⊗ = {⟨⟨s1, s2⟩, o, ⟨t1, t2⟩⟩ | s1 → t1 ∈ T1 and s2 → t2 ∈ T2},

• s⊗0 = ⟨s10, s20⟩,

• S⊗
∗ = S1

∗ × S2
∗ .
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In the next part, we take each step of the merge-and-shrink algorithm:

Merge: Now, we calculate the synchronised product - the two projections are now merged

into an abstraction. This case below is simply just an example of merging. We start with

two transition systems and end up with a new system that is a product of them. We can

introduce the process of merging as an action that ”replaces two factors of the given factored

transition system by their product system, leaving all other factors unchanged” [8]. When

applying a sequence of linear merging transformations, each of the atomic factors contributes

to exactly one factor in the resulting factored transition system.

Figure 2.3: Merging Example

Prune: Subsequently, this is the process of removing unnecessary or redundant transitions

to make the system more efficient. The goal of pruning is to reduce the number of transitions

in the system while preserving its functionality [7]. More details regarding pruning are going

to be discussed later in this thesis. The resulting product contains as states all pairs of the

states from the atomic elements. In this presented case, we encounter unreachable (example

state 01) and irrelevant (example state 20, which is a dead-end) states, which will be further

handled and discussed by the end of the thesis, alongside the technical implementation.

Below, the example illustrates the pruning of these irrelevant and unreachable states for

the system in Figure 2.3. It removes two states, 01 and 20, and respectively the transitions

related, under the reason that state 01 is unreachable and 20 is irrelevant as the goal state

is not reachable from it.
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Figure 2.4: Pruning Example

Shrink: Next, we look further at the shrinking of the merged product above, illustrated

in the following example. For this, we look at the merge example from Figure 2.3 and create

abstract states by combining state 00 with state 20 and state 01 with state 21, as seen in

states 0020 and 0121. Subsequently, shrinking refers to reducing the size of a single factor

by abstraction [7]. So, we are replacing the factor with an abstraction of it. Making good

shrinking decisions algorithmically is the job of the shrinking strategy.

Figure 2.5: Shrinking Example

Label Reduction: Finally, the key idea involves recognising which transition labels can

be combined into a single label while still retaining all relevant information. This approach

offers various advantages, including the potential to greatly reduce the size of the transition

system representation by consolidating parallel transitions with different labels into a single

transition. This concept will not be a part of the implementation of this thesis, but its

influence will be further discussed later as a future addition.

We can now understand the aim of merge-and-shrink, which is mainly to compute an ab-

straction for a large transition system, for instance, the one induced by a planning task.

To do so, building the abstract transition system is needed. It is useful to note that the

admissibility property of the heuristics is kept after doing any of the actions of merging,

shrinking, pruning and label reducing.
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2.3 Cost Partitioning
The idea of cost partitioning has its basis in admissibly combining admissible heuristics [2].

Classical planning problems often need the use of multiple heuristics to capture distinct

areas of a problem. This is where cost partitioning comes in handy by splitting the cost

between the heuristics with the aim of higher estimates.

Definition 9 (Cost Partitioning [11]). Let Π be a planning task with operator costs cost and

let H = ⟨h1, . . . , hn⟩ be admissible heuristics for Π. The cost functions c = ⟨cost1, . . . , costn⟩
form a cost partition if for all o ∈ O,

∑n
i=1 costi(o) ≤ cost(o).

The cost-partitioned heuristic is equal to
∑n

i=1 hi(s, costi) and it is admissible.

According to the paper by Sievers et al. [11], we can define optimal cost partitioning as:

Definition 10 (Optimal Cost Partitioning). An optimal cost partitioning for a planning task

Π with cost function cost, a state s, and admissible heuristics H = ⟨h1, . . . , hn⟩ is a cost

partition C∗ = ⟨cost∗1, . . . , cost∗n⟩ where
∑n

i=1 hi(s, cost
∗
i ) ≥ hi(s, costi), for all costi ∈ C,

where C = ⟨cost1, . . . , costn⟩.

Simply put, the optimal cost partitioning distributes the costs in an optimal way [2]. We

get the largest possible heuristic value for the given state among all cost partitioning by

computing the optimal cost partitioning for a state. Optimal partitioning dominates other

types of cost partitioning.

However good the optimal cost partitioning is and even if sometimes it is possible to calculate

it in polynomial time, it can get very expensive to calculate in practice. Thus, this thesis

uses saturated cost partitioning as default, offering the best trade-off between computation

time and heuristic guidance.

Definition 11 (Saturated Cost Function [6]). A cost function scf is saturated for a heuristic

h, an original cost function cost and a set S of states in the planning task, if

• scf(o) ≤ cost(o) for all operators o,

• h(s, scf) = h(s, cost), for all states s ∈ S

Saturated cost partitioning is a greedy algorithm that can compute a sub-optimal cost

partitioning quickly. In the case of saturated cost partitioning, the idea of order is at the

centre. Hence, the quality of the resulting partitioning depends on the selected order. This

study will consider all orders and choose the one that offers the best value in the end.

Definition 12 (Saturated Cost Partitioning). A saturated cost partitioning of a planning

task Π is a cost partitioning that uses saturated cost functions over an ordered sequence of

heuristics.

There is no news that cost partitioning is highly relevant to this study. We can better

understand this concept by looking at an example that shows how cost partitioning can be

used. Assume we have a planning task Π over dom(a) and dom(b) defined as seen below:
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• V = {a, b}

• I = {a→ 0, b→ 0}

• O = {o1, o2} with:

– o1 = ⟨{b→ 0}, {b→ 1}⟩

– o2 = ⟨{a→ 0, b→ 1}, {a→ 1, b→ 0}⟩

– o3 = ⟨{a→ 1, b→ 1}, {a→ 2, b→ 0}⟩

• γ = {a→ 2, b→ 1}

We calculate an optimal cost partitioning, ⟨cost∗a, cost∗b⟩ given the projections of a and b,

πa, respectively πb, with heuristics H = ⟨h{a}, h{b}⟩, for each of the projections:

• cost∗a = {o1 → 0, o2 → 2, o3 → 2}

• cost∗b = {o1 → 1, o2 → −1, o3 → −1}

For this study, we use saturated cost partitioning, meaning that we are considering both

orders (a, b) and (b, a) before choosing the best one over H = ⟨h{a}, h{b}⟩.

We start with the order (a, b). Firstly, we take h{a} and calculate the cost partitioning:

Figure 2.6: Cost Partitioning for a with order (a, b)

Next, we have h{b}:

Figure 2.7: Cost Partitioning for b with order (a, b)

Therefore, for order (a, b), we have:

• costa = {o1 → 0, o2 → 1, o3 → 1}

• costb = {o1 → 1, o2 → 0, o3 → 0}
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Subsequently, we consider order (b, a) and start computing the cost partitioning for h{b}:

Figure 2.8: Cost Partitioning for b with order (b, a)

Now, we take h{a}:

Figure 2.9: Cost Partitioning for a with order (b, a)

So, for order (b, a), we have:

• costa = {o1 → 0, o2 → 2, o3 → 2}

• costb = {o1 → 1, o2 → −1, o3 → −1}

In this example, the saturated cost partitioning for order (b, a) is the same as the optimal

one. The initial unit cost of the operators has been split among the projections. We can

understand that by simply looking at operator o1: for πa it was assigned with 0, while for

πb with 1. Summing up 0 + 1 = 1 gives us the initial cost, making it a correct partitioning.

Secondly, the same applies for o2 and o3, with πa having it as 2 and πb assigning it to -1.

Again, 2+ (−1) = 1 in both cases, so the process was done currently. The final value of the

heuristic is given by the cost-partitioned shortest path from the initial state to the goal. It

is important to note that, when using negative cost partitioning, we should ensure that no

self-loop is assigned to a value lower than 0, as it would result in the shortest path to the

goal being −∞ [3].

The following chapter will put emphasis on the implementation and development of the algo-

rithmic side of the thesis, with more attention to how merge-and-shrink and cost partitioning

influence each other.



3
Implementation and Development

This chapter aims to give details concerning the development steps of the project and the

implementation of the baseline algorithm, including improvements added for a deeper look

at the combination between cost partitioning and the merge-and-shrink technique. The

following sections will study the heuristic values and the sizes, emphasising when we want

to decide to merge the atomic projections and when choosing cost partitioning is a better fit.

It is known that merging gives us an equal or more informative result than cost partitioning.

Still, sometimes the associated size increase is too big; therefore, cost partitioning becomes

the best decision out of the two possibilities.

3.1 Comparing Merge-and-Shrink with Cost Partitioning
This section looks closely at cost partitioning and merge-and-shrink, comparing the two

concepts based on explicit examples. For a more facile discussion, we take only the first

step of the process and consider only two transition systems. At this stage, we will compare

only the merging results with cost partitioning, not further considering shrinking, pruning

or label reduction.

A Closer Look at Merging
We start by analysing the example in Figure 2.3 from the previous chapter, computing the

cost partitioning for the atomic projections. For the sake of this example, an optimal cost

partitioning is considered. As the following example suggests, sometimes cost partitioning

cannot gather all the information. There can be cases where the cost partitioned elements

are not informative enough, while the merged product is. However, it uses significantly more

memory. Hence, even if merging the transition systems to get more information seems like

the answer, it is not always the best choice, and it definitely does not guarantee the best

choice all the time when size is also considered. The above reasoning lies at the basis of this

thesis. The aim is to find a way of deciding between merging and not, ensuring achieving

the best result is the ultimate goal. Therefore, as seen below, we take the projections from

Figures 2.1 and 2.2 and cost partition.
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Figure 3.1: Cost Partitioning Example in Figure 2.3

Followingly, we move on to analysing the heuristic values in the initial state, with cost

partitioning ⟨costa, costb⟩. Having these details, we can compute the heuristic values for

each atomic projection and the resulting merged transition system. In this case we have

hπa + hπb ̸= hπ{a,b} , however, it is known that hπa ⊗ hπb = hπ{a,b} :

• hπa(s0, costa) = 1

• hπb(s0, costb) = 0.5

• hπ{a,b}(s0) = hπa(s0)⊗ hπb(s0) = 3

We are switching our interest now to the total size:

• πa is using total memory of 3

• πb is using total memory of 2

• πa ⊗ πb is using total memory of 6

We are dealing with hπa + hπb = 1 + 0.5 = 1.5 and hπ{a,b} = hπa ⊗ hπb = 3, where we

can clearly see that 1.5 < 3. This implies the fact that the cost partitioning is not able to

give us a result as good as the merging; hence computing the synchronised product would

indeed offer more information. However, a closer look at memory usage tells us that, even

if quality-wise merging seems like the better option, resource-wise, it gets costly. Keeping

the non-merged projections brings a total memory of 3 + 2 = 5, as we sum up the number

of states in each. For the merging, we need to offer space for their product 3× 2 = 6, which

is larger in value than the sum.
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A Closer Look at Cost Partitioning
Now, we focus on the atomic projections from the examples in Figures 2.9 and 2.8 and

calculate their synchronised product. Analysing the example below, we notice that there

can be cases where cost partitioning can offer as much information as the synchronised

product. Now, we are dealing with the same heuristic value, but a smaller final memory

usage for the cost partitioning compared to the merging. Therefore, considering both size

and quality, the best decision would be to cost partition, showing an opposing point of

view to the example from above. The example below illustrates the merging of the atomic

projections from the examples in Figures 2.9 and 2.8, from the previous chapter:

Figure 3.2: Merging of Examples in Figures 2.9 and 2.8

Taking a closer look, we can derive the heuristic values for the initial state, of both the atomic

projections and the resulting synchronised product. Contrary to the previous example, in

this case we notice that hπa + hπb = hπ{a,b} = hπa ⊗ hπb .

• hπa(s0, costa) = 4

• hπb(s0, costb) = 1

• hπ{a,b}(s0) = hπa(s0) + hπb(s0) = 5

Now, we look at the memory usage:

• πa is using total memory of 3

• πb is using total memory of 2

• πa ⊗ πb is using total memory of 6
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The heuristic for the merged system has the same value as the sum of the cost-partitioned

projections for one of the orders. This is telling us that the partitioning is getting every-

thing from the synchronised product, being no information loss. So, merging will not offer

us additional data as hπa +hπb = 4+1 = 5 = hπ{a,b} . Therefore, as the cost partitioning can

guarantee that all the information is kept in the individual atomic projections, doing such

an expensive action as merging is not worth it in this case. Here, we have a 3× 2 example,

so the memory space of 6 for the synchronised product is larger than the summation of the

memory taken by each atomic projection: 2 + 2 = 4. In real life, we encounter much bigger

situations, where doing the merging might take up significantly more memory, therefore, if

calculating the product does not bring anything new to the table, the better choice might

be not to calculate it at all. More, let us take one of the previously mentioned examples and

assign a cost partitioning. Followingly, let us compute the new heuristic values and briefly

compare variations of properties, such as quality and used resources.

In the rather small case from Figure 3.1, it might be worth merging even if this process

implies greater resource usage. But, when dealing with very large examples, the memory

needs might add up to colossal values that take ages to store, or even more that the machine

can take. Therefore, even if the merging sometimes offers a better quality of results, it also

comes with a severe memory increase. For instance, let us take an atomic projection with

200 states, and another with 300 - taking the cost-partitioned individual terms will require

a total memory of 500, while the merged product will have a total of 60000. This trade-

off between the perfect quality assured by the merge-and-shrink technique and the massive

memory space it brings along with it is one of the goals that this thesis aims to study and

discuss. Alongside, we will use cost partitioning as the main tool to help with this decision,

predominantly in a quantitative manner that tells us whether merging is worth it or not,

considering both the heuristic values and the memory space. The idea behind the merging

algorithm while handling the heuristics is introduced by the pseudocode in the next section.

3.2 Combining Merge-and-Shrink with Cost Partitioning
The concepts and ideas mentioned above can be applied practically. For this, we came up

with a baseline algorithm that attempts to make the best out of the combination between

cost partitioning and the merge-and-shrink technique. The main idea of the algorithm is

simply deciding whether to merge or to cost partition at any point - the aim is to merge if

cost partitioning is not informative enough, and to cost partition is merging does not bring

quality improvement. Let us take a look at the examples from Section 3.1. For Figure 3.2

and similar cases, it is very clear that we will cost partition - same value, less memory. But

when it comes to cases like in Figure 3.1, merging brings to the table a better heuristic, more

information, but also more memory. For this thesis, this case implies choosing to merge,

as synchronised products that exceed a hard limit will be excluded from the calculation, as

this section will later present.
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3.2.1 The Baseline Algorithm
Therefore, on a more technical side, the approach of combining merge and shrink with cost

partitioning considered for this thesis study relies on the following pseudocodes:

Algorithm 1: Pseudocode for Comparison Function

def compare and update(Ti, Tj , priority queue) as:
compute Ti ⊗ Tj ;

compute hTi

CP + h
Tj

CP ;

quality ← compare(Ti ⊗ Tj , h
Ti

CP + h
Tj

CP );
priority queue.add(quality, ⟨i, j⟩);

Algorithm 2: Pseudocode for Baseline Algorithm

Input: A set of transition systems T , a threshold
Output: T updated based on decision to merge or cost partition
priority queue← Empty;
while active entries in T ≥ 2 do

if first iteration then
foreach pair ⟨Ti, Tj⟩ ∈ T do

compare and update(Ti, Tj, priority queue);
end

end
else

Tprev ← merge from last iteration;
foreach Ti ∈ T do

compare and update(Tprev, Ti, priority queue);
end

end
max quality ← priority queue.top().first;
best pair ← priority queue.top().second;
if max quality > threshold then

return T .add(merge(best par));
end
else

break;
end

end
return T ;

The algorithm offers a greedy approach that aims to find an answer to the question that lies

at the basis of this thesis: a decision on whether to merge or cost partition. It presents itself

as a merge algorithm, taking transition systems as input and giving as output the updated

version based on the number of merges executed. The algorithm itself starts by taking in

a set of transition systems. It is worth mentioning that, for time and space matters, the

merges for the pre-process are computed only once in the priority queue set up during the

first iteration. After that, only the merges with the new transition system resulting from the

previous iteration are executed, as the essential information is kept in a priority queue. The

main loop checks if two or more active transition systems exist to ensure a possible merge.
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During the set up, we are looping among all the existing and active transition systems to

compute the quality measurement based on the merge and cost partitioning. The choice

of whether to continue merging is guided by the quality value, calculated based on the

value of merging compared to just using cost partitioning. This process takes place at every

iteration through the set of transition systems until there is no pair whose merge quality

value exceeds the minimal allowed quality. At each iteration, the pair with the largest quality

is eventually merged, and the process continues until no pair brings more information. Each

pair, alongside its quality, are stored in the data structure for later use. In the case of

other iterations, the same is performed. Still, instead of looping through the whole factored

transition system again, we are only computing and further storing the values for the newly

added merged transition system in the last iteration, so in the end, everything is up to

date, and we have all the information needed. When all the pairs have been traversed, the

best pair is chosen based on the maximum quality value. If the quality exceeds the fixed

threshold, the corresponding transition systems are merged, and the process begins again.

In the opposite case, we are not merging, ending the loop with a cost partitioning. For two

abstractions α and β with heuristics hα and hβ , we can define the quality as:

quality = hα ⊗ hβ − hα+β

In order to ensure a good quality of the results, several aspects have been considered in

addition to the baseline. As previously mentioned, merging two transition systems can give

us a very large result sometimes, timeouts or infinite loops might occur, or the merged pair

might not bring as much as another possible pair would. For this reason, the following have

been added to the baseline algorithm:

Space and Time Limits

While running experiments with the baseline algorithm, we ran out of time or space on

several occasions. Also, in other cases, we were dealing with a prolonged run or too much

memory usage. To fix this, space and time limitations have been introduced in addition.

• A countdown timer is now keeping everything under control, being set at the beginning

of the main loop. If the maximum time allocated for the run passes, the loop will be

ended with the decision not to merge anymore.

• An option to check if the synchronised product fits into memory was also implemented

as an additional check for the estimated size of the merging. If the estimated size of

merging a pair is greater than this allocated limit, the pair will not be considered.

Randomisation of Choice/Tie Breaking

There have been many times when more pairs had the most significant gain from the quality

value, but the baseline algorithm would always choose the first in the queue. Sometimes,

choosing another pair would result in a different course of the following steps in the al-

gorithm. For this reason, randomisation was created when selecting the best pair. This

tie-breaking only considers the pairs with the maximal quality value.



Implementation and Development 18

3.2.2 Improvements to the Baseline
With the goal of boosting the results of the baseline algorithm even more and aiming for

a better performance and memory usage, improvements were considered. Within the lim-

ited time of this thesis, and considering the actual steps of the original merge-and-shrink

technique, the following features were implemented:

3.2.2.1 Pruning Unreachable and Irrelevant States

Dealing with merged products can be very consuming regarding the memory and merging

count. This is why opting to prune unreachable and irrelevant states could lead to a way

better deal with out-of-memory errors. Moreover, as a merging size limit is present, this

implementation could help consider merges that bring us much value but exceed the limit

when such states are counted. Let us consider an example with an abstraction α of size

| α |= 4 and an abstraction β with size | β |= 4. The sum of the sizes for the atomic

projections is 8. Assume the size of the merged system is | α × β |= 16, but the pruned

synchronised product has a size of | (α × β)pruned |= 6. Further, assume that the heuristic

for merging is the same as for cost partitioning. In this case, without pruning, the pair

would not be merged as the heuristic value brings nothing more to the table, but the size

increases. When considering pruning, we have the same heuristic value but a smaller size

for the merged product. Thus we would choose to merge the pair. Pruning is effectuated

on the atomic projections when the priority queue is being set up, but also on each of the

chosen synchronised products. The new dynamic of the program can be understood from the

diagram in Figure 3.3, below. In the algorithm, pruning is used over the atomic projections

at the start of the algorithm, as well as after merging the chosen pair.

3.2.2.2 Shrinking

On a high-importance scale, with the aim of a more complex and complete solution, shrinking

was also integrated into this project. So far, we have been talking about merge-and-shrink

but actually only used the merging side of this technique. Considering an example, let us take

an abstraction α of size | α |= 6 and an abstraction β with size | β |= 3. Moreover, consider

the size of the atomic projections together as being 8. The merged size of the abstractions

is | α × β |= 18, but let us assume that the size after shrinking is | (α × β)shrink |= 7.

Additionally, assuming that the heuristics are equal in both cases, originally, we would not

choose to merge. However, the shrinking resulted in a smaller size for the product; therefore,

merging and shrinking after is a better choice. Important to note is that cost partitioning

itself cannot be better than merging, but if shrinking is involved as well, we can deal with

the option when cost partitioning gives us more information than merge-and-shrink. To deal

with this, special options to perform shrink and check shrink were added to the algorithm.

The user can choose between shrinking and not shrinking, as well as decide whether shrinking

should influence the quality calculation or not. Similarly to pruning, shrinking can be used

initially, on atomic projections, to calculate the quality, but also at before merging the pair

with the highest quality.
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Figure 3.3: The Mechanics of The Algorithm

3.2.2.3 Flexible Quality and Merging Threshold

On a more experimental side, paving the path to the next chapter, we also took into con-

sideration the flexibility of choosing the threshold for merging or a way of computing the

quality. The latter can now be calculated using only the heuristic values (if we only care

only about the actual and raw difference in information between merging and cost parti-

tioning) but also using both the heuristics and the memory sizes (if controlling the size

allocation in memory is of high importance as well), mode that the user can choose. We

can use this in order to catch some edge cases, such as always merging if the size of the

resulting synchronised product is equal to the size of the individual abstractions summed up.

We impose a quality threshold in the form of the minimal heuristic value of the synchronised

product accepted for a merging to take place. With this, we make sure to merge only if it

brings results good enough. For instance, with a threshold of 0, we suggest that the heuristic

value of the synchronised product must be better than the cost partitioning of the atomic

projection, while with -1 we allow a marge to take place even if it has the same heuristic. It

can also be used to reproduce the main algorithms: merge-and-shrink and cost partitioning.

Moreover, we consider a parameter that dictates the maximum times allowed to overpass

this quality threshold. Let us look at this example: we consider the threshold 0 and take

a set of transition systems. Here in the first iteration, the maximum possible quality is 1.

After merging, in the next iteration, we face the maximum quality of 0, which usually would

terminate the process and not further merge. However, if we had continued to merge, the

next best quality would be 3, which would even be the highest so far. This feature allows

the calculation to keep going over the minimal accepted quality for as many times as we

offer by the command line argument.

Moving on to the merging threshold, this parameter can put a higher limit on the size of

the synchronised product, as well as a triggering point for shrinking. As the previous cases,

it can also be chosen by the user for a more adaptable environment. More details on a

practical level and experimental analysis of each parameter will be discussed and proved in

the following chapter.



4
Experimental Analysis

This chapter aims to give an overview of the experimental side of the thesis, with insights

regarding the tests that have been concluded for better development and implementation

of the thesis. There are four main checkpoints of analysis present, referring to the baseline

algorithm and each of the improvements. Further experiments took place concerning the

parameters and arguments, as well as comparisons with the previous work done on this same

topic carried out by Sievers et al [11]. The experiments have been conducted on the sciCORE

infai server, under Linux, using Fast Downward and various benchmarks. The maximum

loop is controlled by a constant timer of 900 seconds throughout the experimental phase.

4.1 The Baseline
On a vast spectrum of algorithms, the two main techniques considered for this thesis, merge-

and-shrink and cost partitioning, are situated on opposite sides. In between, there are many

algorithms with distinct aims and goals, among which the approach for this thesis can be

found. Having the purpose of getting the best of the aforementioned techniques, we start

with the baseline and therefore infuse only merging with cost partitioning at this step.

The experimental phase was run on a set of benchmarks, listed in Appendix A, that will be

further referred to during this discussion. Additionally, the main subject of this analysis is

parameter optimisation based on the quality threshold, merge threshold, coverage, number

of merges and initial heuristic value. The quality threshold implies the minimum value

allowed for the quality calculation - how much better does merging have to be in order to

merge and not cost partition. Next, the merge threshold implies the maximum number of

states of the transition systems further considered for merging. Next, the coverage suggests

the number of problems solved. In this baseline variant of the algorithm, a simple approach

that only uses the merging part of merge-and-shrink is considered. Lastly, as suggested by

the name, the number of merges refers to how many merges have been executed using the

given parameters, while the initial heuristic is the value of the heuristic initially calculated.

The aim is getting larger values in all cases.
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Figure 4.1: Baseline - Coverage Analysis

As illustrated in Figure 4.1, one could easily notice the outlier coverage values reached by

using the quality threshold of -1 for merge thresholds exceeding 100,000. This phenomenon

is most likely due to the very large size allowed for the transition systems, combined with

a very permissive merging strategy. In turn, it can cause massive memory and time usage

that can often exceed the hard limits imposed by this approach. Next, looking at 0 as the

quality threshold, the values seem to reach their maximum coverage value at the 50,000

merge threshold, declining slightly afterwards. As for the quality threshold of 1, it seems to

evolve similarly to the case of quality 0, with all the values being underachieving with regard

to coverage. Looking at the average coverage for each merge threshold, it can be noticed

that 50,000 offers the largest mean value of 876, followed closely by 10,000 with an average

of 874. Consequently, the aforementioned factors signal that quality threshold 0 helps solve

the most problems among the benchmarks. More, in the case of a merge threshold of 50,000,

over 900 successfully solved problems are encountered, this result being the highest so far.

Figure 4.2: Baseline - Number of Merges Analysis
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In Figure 4.2, the number of merges that took place is further analysed, keeping the attention

on the merge and quality thresholds. There is a clear delimitation between the quality

threshold values based on the number of merges. A large value of the quality threshold

implies a more restrictive algorithm regarding the number of merges. This can be observed

as well from the line chart, especially when looking at quality thresholds 0 and 1. With a

quality of 0, the algorithm will merge in every case when the synchronised product offers

a better value than the cost partitioning within limits imposed by the merge threshold,

therefore having large and increasing values. For quality 1, extra weight is added to the

maximum needed merging value to be for the pair to be considered; hence, there are very

few merges. In theory, the quality threshold of -1 would be expected to perform more merges.

However, due to the large number of states that occur with increased merges, the merge

threshold prevents pairs from being considered, thus actually resulting in a lower amount of

merged transition systems. This would also be the reason for the decrease in the number of

merges as the merge threshold grows, contrary to our expectations. Otherwise, the values

seem to follow an ascending trend with relatively small steps, as expected.

4.2 Adding Pruning
Merging brings value and information but can also bring massive memory usage. Sometimes

memory is used to store irrelevant or unreachable states that bring nothing to the final re-

sult. As suggested by Figure 2.4, extra memory use can be eliminated by simply pruning.

Taking a closer look at how the current algorithm works, only transition systems of size

below a certain limit will be further processed and considered for merging. Hence, pruning

brings us a step closer to the purpose of merging as much as possible without losing value

or increasing the memory allocation significantly. Pruning can be controlled from the com-

mand line, as the user can choose whether to consider this option or not. Similarly to the

previous section, we look at the quality and merge threshold. The experiment is split into

3 cases given by the quality threshold, to study the program for different merging thresholds.

Figure 4.3: Merge and Prune - Coverage Analysis
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As shown in Figure 4.3, in a similar manner as discussed in the previous section, there are

3 main study cases for different quality threshold values: -1, 0 and 1. It can be noticed that

for value -1, the merge thresholds of 100,000 and 500,000 present significantly lower cover-

age. Similar to the baseline variant, we deal with a major increase in memory and runtime,

behaviour explained by the permissive merging strategy and the allowed transition systems

with many states. As for the default quality threshold of 0, the coverage reaches its peak

at 50,000 maximum states and begins to degrade for larger amounts. This is not the case

for a quality threshold of 1, as it can be observed a linear and slow increase. Overall, the

most promising variant of the algorithm can be found between a merge threshold of 10,000

and 50,000, where the mean coverage of the three quality threshold cases is 874 for the first

mentioned, while the second averages 873. Moreover, as the case of the merge threshold

50,000 with quality threshold 0 is the most valuable overall, this will be considered as the

new main algorithm for further analysis and comparisons.

Figure 4.4: Merge and Prune - Number of Merges Analysis

Taking a closer look at the number of merges, Figure 4.4 shows pattern similarities to the

variant of the algorithm that only considers merging discussed in the previous section. Gen-

erally, the number of merges is higher than previously. This is mainly due to the fact that

pruning brings memory-saving options by removing irrelevant and unreachable states. As

we are only storing and considering the informative states, there are even fewer cases where

the merge threshold stops a pair of transition systems from being merged. All quality cases

kept their trend evolution, with a slight change from quality threshold -1, that now starts all

the way up at over 15,000 merges. The values for this particular case are yet still decreasing,

signalising that not enough memory has been saved.

Even if coverage-wise the changes are not major, and sometimes even fewer problems are

solved, by looking at the number of merges we can understand the value pruning brings into

this approach. More merges are allowed to take place by saving enough memory that would
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have been used by uninformative states. Not only the merged product is pruned, but also

the atomic projections during the pre-process, making the starting point even more memory

effective. By simply looking at quality threshold 1, we can notice a 700% increase in the

number of merges.

Figure 4.5: Merge and Prune - Expansions

Next, we switch our attention to the heuristic value, comparing the expanded states from

before and after adding pruning as an option. We strive for a value of expansions as low as

possible, implying that the initial heuristic calculates by the algorithm is valuable enough

for the planning problem. As can be seen in the scatter plot above from Figure 4.5, there are

different cases where each of the approaches performs better heuristic-wise than the other.

There are lower expansions in 18 instances for the new implementation that also considers

pruning, showing the potential of this feature. One example would be openstack-strips, a set

of small to medium-sized problems. The big similarities in terms of initial heuristic value

can be determined by the large number of items present on the diagonal line, with only a

few cases of under 20 instances being expanded.

4.3 Adding Shrinking
Looking for a way to prune and subsequently merge even more, shrinking comes in as a

helping hand. Therefore, by creating abstractions of the already existing transition systems,

the memory is yet further decreased. However, contrary to pruning, the actual quality of the

resulting synchronised product can be affected. Same as for pruning, the option of shrinking

can be changed from the command line, choosing between performing shrinking, performing

and calculating the quality using shrinking, or not shrinking at all.
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Figure 4.6: Merge, Prune and Shrink - Coverage Analysis

Figure 4.6 represents the coverage analysis after adding shrinking as a feature to the algo-

rithm. As opposed to the previous cases, this version of the algorithm succeeded in getting

a higher coverage even when allowing large transition systems with more states and a per-

missive merging strategy. Easily observable is the increasing trend for quality threshold 0,

which is no longer having the peak at 50,000 but rather at the last tested value for the

merge threshold of 500,000. This is not the case for quality -1, as the top value is seen as

expected at 50,000. Taking a closer look at the average coverage per merge threshold value,

even if the most valuable case is seen for quality 0 at 500,000 merge quality, we notice that

the highest mean is once again present for the 50,000 merge threshold, with a value of 882.

Overall, there has been an improvement in coverage of over 4%.

Figure 4.7: Merge, Prune and Shrink - Number of Merges Analysis

Next, Figure 4.7 illustrates the number of merges for all threshold cases, after the addition

of shrinking. As we have seen when studying the coverage, we are dealing with pattern

changes, especially for quality threshold -1. In the case of the number of merges, the values
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are no longer decreasing but rather steadily growing. This, along with the coverage val-

ued similarly to the other cases, implies better handling of the memory space. Therefore,

it seems that the often-encountered timeouts and memory issues are now kept under control.

As mentioned, the coverage in the case of a quality threshold of 0 is increasing, having

the peak at the 500,000 merge threshold, which is the last one analysed. Hence, for this

study, and solely for the quality threshold valued at 0, additional merge thresholds have

been further tested, as seen in Table 4.1:

Threshold 1k 10k 50k 100k 500k 700k 1M 2M 5M

Coverage 872 886 896 900 905 906 905 901 887
Merges 9551 10688 11161 11387 11739 11747 11753 11388 10964

Table 4.1: Testing Larger Merging Thresholds

We see that the peak is actually between 500,000 and 1,000,000 as the value of the merge

threshold. However, with a closer look at memory usage, we can see a massive increase of

over 63% as the value of the merge threshold grows.

Figure 4.8: Merge, Prune and Shrink - Expansions

Similarly to the last section, Figure 4.8 plots the expansions, comparing the most promising

configuration previously discussed with the highest achieving version after adding shrinking.

We can see how the new approach brings us a larger amount of cases in which the number

of expanded states is lower. There are still problems that can be better solved with one

approach than the other. A good example would be miconic, represented by the dark blue

circle, where it is clear that most instances are present on the upper side of the diagonal line.

Here we are dealing with a domain of smaller problems with under 60 transition systems.

The newest approach manages to offer a better initial heuristic value for all these problems,
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illustrated by the lower number of expansions for all outliers. We can see that the approach

including shrinking, in the bottom half, managed to score a better heuristic initially in 107

cases, while the older version only 31.

To summarise the parameter optimising section of the experimental phase, the variant of the

algorithm employing both pruning and shrinking, with a quality threshold of 0 and a merge

threshold of 500,000, outperforms all the other tested versions for this implementation.

4.4 Quality Analysis
As quality is the main idea behind the merging strategy proposed for this thesis, several

testing methods have been used to determine the most value of this parameter. Therefore,

two additional options have been added to the program, controlling the way quality is

handled throughout the program. For the following results, we have used the aforementioned

final version of the algorithm decided upon.

Considering Size in Quality: Sometimes, not only the final heuristic value is important,

but also the space in memory used. Hence, an option to calculate the quality of merging by

also weighing in the estimated size of a merge has been offered. This follows a mathematical

formula that increases the quality of the heuristic as the synchronised product gets larger

and its size gets smaller:

quality =



999999, if | α× β |≤| α | + | β | and hα ⊗ hβ ≥ hα+β

1, if | α× β |≤| α | + | β | and hα ⊗ hβ = hα+β

hα ⊗ hβ − hα+β , if | α× β |≤| α | + | β | and hα ⊗ hβ < hα+β

hα⊗hβ−hα+β

|α×β|−(|α|+|β|) , otherwise

(4.1)

where α and β are abstractions of size | α | and | β |, and the merged size of the abstractions

is | α× β |, with heuristics hα and hβ .

Allow Size Yes No

Coverage 900 905
Merges 58019 13909

Table 4.2: Testing Size in Quality Calculation

Table 4.2 shows not only a very similar coverage value in the case where size weighs in

towards quality calculation but also a significant increase of almost 25% in the number of

merges effectuated during the algorithm.

Allowing Occurences Minimal Quality: Furthermore, there are cases when the first

few steps offer directly the minimum allowed quality, but the merging happening in later

stages brings a very informative result. Due to time limitations, a proper look-ahead option

to avoid this issue was not implemented, but a variable to allow the minimal quality to

be overlooked a given amount of times was added to the algorithm. In this manner, if the



Experimental Analysis 28

option is set to, for instance, 2 and the quality threshold is 0, the algorithm will continue to

merge even if the merging gives a quality of 0 but allows this to happen only 2 times.

Occurrences of Min Quality 0 1 2 3

Coverage 905 889 886 881
Merges 13909 15144 16905 18593

Table 4.3: Testing Maximum Occurrences of Minimal Quality

As seen in Table 4.3, the number of merges grows linearly. The initial heuristic value also

increases alongside the number of merges, with an increase of over 99%.

4.5 Comparing to Cost Partitioning
We can reproduce cost partitioning by setting the merge threshold to -1, the quality thresh-

old to infinity, and all the other parameters to false so that we make sure that no merge,

shrink or prune will take place during the process.

Figure 4.9: Versus Cost Partitioning - Coverage

In Figure 4.9, three algorithms are compared: cost partitioning, this algorithm’s cost parti-

tioning representation and the proposed algorithm for this thesis. Coverage-wise, while cost

partitioning could only solve 824 problems, the highest-performing algorithm from the last

section achieved a top value 905. Moreover, the algorithm was successful in reproducing

precisely the coverage value 824 of cost partitioning using the parameter values mentioned

above.
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Figure 4.10: Versus Cost Partitioning - Number of Merges

As expected, we can see that the algorithm is able to reproduce pure cost partitioning with 0

number of merges. As cost partitioning does not perform any merges, the quality threshold

of infinity prevents any merge from taking place.

Figure 4.11: Versus Cost Partitioning - Expansions

Figure 4.11 aims to picture the initial heuristic value through the expanded states. The

side of the plot over the diagonal represents the states expanded for the algorithm of this
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thesis, while the bottom side is cost partitioning. Above the diagonal, there are fewer

instances of the benchmarks, while the bottom half contains most of them. This implies

that cost partitioning resulted in more expansion after the calculation of the initial heuristic

in 485 cases, to our advantage. This represents an increase of over 1000% compared to cost

partitioning, being lower for only 44 tasks.

4.6 Comparing to Merge-and-Shrink
Before diving deeper into the comparison results, it is important to mention that while the

cost partitioning can be reproduced almost perfectly, it is not exactly the case for merge-and-

shrink. The algorithm used a so-called merge strategy to compute the results, a parameter

not used in the implementation suggested by this thesis. The reason behind this is that

the proposed algorithm presents itself as a form of merging strategy, and its value consists,

among others, of how the merging is being done. Moreover, the merge-and-shrink algorithm

includes a fourth step of label reduction, a concept not yet implemented for this thesis. For

the sake of these experiments and yielding towards a fair comparison, label reduction has

not been used for the merge-and-shrink tests.

Figure 4.12: Versus Merge-and-Shrink - Coverage

As shown in Figure 4.12, the potential of this approach is suggested by the coverage. While

merge-and-shrink solved a total of 863 problems, the algorithm of this thesis managed to

score 905 as the top coverage. The difference of 42 unsolved cases, alongside the information

that merge-and-shrink reaches 905 coverage only when adding label reduction, implies a very

high chance of overall better results if label reduction is included in the algorithm.
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Figure 4.13: Versus Merge-and-Shrink - Number of Merges

Moving on to Figure 4.13 showing the number of merges, the expected behaviour can be

observed. As the merge-and-shrink algorithm is used to merge all the transition systems

until only one is left, but the algorithm suggested for this thesis only merges based on the

quality of the resulting synchronised product, the number of merges is always higher for all

the benchmarks. However, there are a few cases in which the number of merges is equal

or of very close value, such as instances in miconic, blocks or scanalyzer-opt11-strips. Most

cases indicate smaller problems with higher initial heuristic values. There are also cases

such as pipesworld-notankage, where we merge considerably less, as from one point, most

synchronised products of transition systems offer a quality of 0.

Figure 4.14: Versus Merge-and-Shrink - Expansions
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Looking at expansions in Figure 4.14, we can see a rather balanced representation, comparing

merge-and-shrink without label reduction with the main approach chosen for this thesis. The

fewer values on the upper side suggest a more valuable initial heuristic for the algorithm

from the scope of this thesis for those instances. This implies that there are problems that

merge-and-shrink can solve better, but also many instances that the algorithm of this thesis

can solve more efficiently. There are clearly cases where we perform better, showing once

again the potential that this idea has.

4.7 Comparing to Sievers et al Paper [11]
This section takes a closer look at the previous work on the same subject, done by Sievers

et al [11]. Similarly, as the original merge-and-shrink algorithm, their approach uses label

reduction, a feature that was not included in this work due to time limitations. Moreover,

slightly different benchmarks have been used. Therefore, there can be an offset in the values

presented in this section.

Figure 4.15: Versus Sievers et al [11] - Coverage

Figure 4.15 is another indicator towards the potential for further research of this approach.

Having in mind that their algorithm also used label reduction, this can be one more hit at

the improvement this feature can bring to our approach. The longer period of time associ-

ated with their work can be observed upon the high value of coverage and closer attention

to the amount of testing for parameters. There are also similarities, such as the shrinking

strategy used throughout the experiments, a non-greedy shrink bisimulation, as well as sat-

urated cost partitioning. While the experiments behind our approach consider only random
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orders, their approach also takes into consideration greedy and fixed orders. However, the

highest results have been encountered using random orders. While our idea is based mainly

on the quality value of merging two transition systems compared to the cost partitioning of

the atomic projections, their approach relies on taking a single snapshot of each iteration

in the merge-and-shrink algorithm, computing one cost partitioning heuristic over the input

transition systems.

The next chapter will conclude the thesis with a brief reflection on the course of the study

and an overview of possible future work that has great potential to boost the results and

offer greater value to this implementation.



5
Conclusion

This last chapter offers a concluding step to this thesis, putting together all the notions

and concepts studied throughout the six months to gain a deeper understanding of cost

partitioning, merge-and-shrink heuristics, the way they eventually influence each other, and

how we could use this connection to achieve better efficiency and value of results.

5.1 Reflection
Taking a retrospective look at the duration of this project, I am grateful to admit that I have

accomplished all the aims and objectives set for the development. Even if not everything set

in mind from scratch has been included in the final implantation of the project and there were

slight deviations from the initial plan, I consider this a valuable learning opportunity that

resulted in a worthwhile product. It is satisfying to see that my approach to integrating cost

partitioning with merge-and-shrink techniques brought significant findings. I am delighted

that this thesis has contributed to classical planning and has the potential to pave the way

for further research in this area.

Figure 5.1: Gantt Chart of Project Timetable
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In the above-displayed picture, my project’s Gantt Chart contains all the relevant stages of

my master’s thesis experience, along with the duration associated with them. Starting the

research earlier, during the thesis preparation, helped me get a better understanding of the

project and the period that needs to be connected with each step of the project. My biggest

regret is not being able to implement further improvements for this approach, mainly due

to the very limited time, thus allocating more room for delivering my achievements in the

best way that was intended from the beginning of the project.

5.1.1 Future Work and Further Improvements
As the time period for this project, as a master thesis, is limited, some ideas were left out of

the final result that could have improved the results. Among the ideas I had regarding the

enhancement of the implementation, I consider the following improvements very probable

to sky-rocket the efficiency, effectiveness and value of my project. There have been attempts

at addressing these implementations, but the limited time allows me to only theoretically

present them and their purpose in extending the current version of the thesis.

Look-ahead Factor

One possible improvement is the option to know how much value a decision to merge can

bring in future iterations. This would serve as a look-ahead factor that tells us if choosing

to merge the transition systems would bring us a larger quality later in the process. Hence,

let us take as an example 2 pairs to merge with the same quality of 4. Currently, the tie-

breaking is made completely random, and one pair is chosen to proceed with. In the case of

this new possible implementation, the algorithm computes the quality in the next iteration

based on this iteration’s calculations - if the first pair with current quality 4 assures the best

quality next iteration of 3, but the other pair will guarantee the next quality to be 6, the

second pair will be chosen. This addition could catch some edge cases not yet considered in

this thesis, such as abstractions without goal variables, that we would like to merge as often

as possible with the hope of better future results.

Non-Linear Merge Strategy

The next interesting extension of this thesis would be to weigh in non-linear merge strategies

[1]. In this case, the main idea refers to being able to merge a transition system more

times. Basically, in the current implementation, once a transition system is merged, it

becomes inactive. This can cause a lower number of overall merges and, sometimes, even a

lower heuristic value. With non-linearity, we can simulate parallelism, being very useful in

very large problems with a very large amount of states [10]. This presents itself as a very

flexible approach that could boost the overall coverage significantly. However, with this, all

transition systems must remain alive during the process, potentially resulting in unwanted

colossal memory usage, which we are trying to avoid.
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Label Reduction

As part of the base merge-and-shrink algorithm, label reduction is a very probable further

improvement that might boost this implementation. The main idea of label reduction refers

to recognising which transition labels can be combined into one label with the property of

still maintaining all relevant information [9]. Even if our approach assures better memory

usage, we still face large numbers for the total size used. Therefore, label reduction presents

the potential to lower the size of the transition system representation by fusing parallel

transitions with distinct labels into one, simplifying the underlying problem.

Non-Random Saturated Cost Partitioning Order

We have talked about different improvements over the merging part of the algorithm, but

cost partitioning can also come with a set of improvements. So far, our cost partitioning

approach only considers random orders. One possibility that we have thought about is being

able to specify a specific order. While we deal with a small enough number of heuristics,

we can generate a good result most o the time by diversifying random orders. But, with

the increase in the number of heuristics and, subsequently, the likelihood of orders, we need

more concrete and fast options rather than waiting for the best one to perhaps happen [5].

5.2 Conclusion
To sum everything up, merge-and-shrink gives us a perfect product, while cost partitioning

is not the case. But, using these techniques combined, we can decide whether doing such

an expensive action as merging is the right choice. Merging brings in a significant memory

increase, and it does not always guarantee a more informative result. This is where cost

partitioning comes in very useful - we can calculate the heuristic of the synchronised product

and compare it with the sum of the heuristics for the atomic projections. Now, if the

value of the merged product is higher, it pays off to do the action despite the memory

boost. However, if we face a value equal or smaller, there is no new information; therefore,

merging would not bring anything new to the table. Thus, this thesis has presented a

novel approach to integrate cost partitioning with merge-and-shrink heuristics, proposed for

searching algorithms in solving classical planning problems by using a quality measurement

to guide and control the number of merges. The experimental results, conducted on a range

of benchmark domains on the Fast Downward planning system, have demonstrated the perks

and drawbacks of this method by showing an improvement in coverage of approximately 10%

compared to cost partitioning and of 5% compared to merge-and-shrink. By combining the

strengths of both ways, we have successfully achieved our desired purpose of fusing merge

and shrink with cost partitioning, with a 30% decrease in expanded states than merge-

and-shrink and over 1000% lower expansions compared to cost partitioning. The suggested

approach has the potential to be further studied and could serve as a basis for future research

in classical planning. The thesis successfully reached its purpose, bringing a more detailed

and experimental point of view to offer more certain answers to the question:

To merge or to cost partition?
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