
To Merge or to
Cost Partition?

by Miruna Muntean

Examiner: Gabriele Röger
Supervisor: Thomas Keller

Table of contents

Introduction

Implementation

Key Concepts

Experiments01

03

02

04

Future Work

Conclusion

05

06

#
#
#
#
#
#

Menu

Introduction
01

#

Objective
● Planning = a sequence of actions aiming to accomplish the target

● Huge state space

● Interested in the cheapest path for optimal planning

0

3
1

2
Assuming all path costs are 1:

➔ 0 -> 1 -> 2 -> 3 (possible path)

➔ 0 -> 2 -> 3 (cheapest path)

Planning in Our Lives

Menu

Key Concepts
02

#

Vast Field of Algorithms

Cost partitioning

Merge-and-shrink
2 different algorithms…
among many others:

Merge-and-Shrink
● Used to generate well-informed abstraction heuristics
● Starts from atomic projections

● Steps:
1. Merge
2. Shrink
3. Prune
4. Label Reduction

0 21

0 1

o2 o2o2

o1 o4

o3 o3

o2

o1, o4

A

B

Merge
= Perform synchronised product of transition systems

0 21

0

1

00 10 20

01 11 21

B

A

o2 o2o2

o2 o2 o2o2

o1

o1
o4

o1

o4

o4

o3

o3

o3o3

o3

Shrink
= Reduce the size of a single factor by abstraction

00
20 1011 01

21
o2

o2

o1 o4

o3o3

Prune
= Remove irrelevant and unreachable states

00 10 20

01 11 21

o2 o2o2
o1 o4

o3

o3

Prune
= Remove irrelevant and unreachable states

00 10

11 21

o2
o1 o4

A B C D

B’

C’A⊗B’

A⊗B’⊗C’

(A⊗B’⊗C’)’

(A⊗B’⊗C’)’⊗D

Merge-and-Shrink

Cost Partitioning
= Admissibly combining multiple heuristic values

● Optimal cost partitioning is very expensive to compute in practice

0 21

0 1

● Best known in practice:
saturated cost partitioning

○ Quick sub-optimal cost partitioning
○ Results depend on heuristic order

o2 o2o2

o1 o4

o3

o3 o3

o2

o1, o4

costA:

o1 → 0.5
o2 → 1
o3 → 1
o4 → 0.5

costB:

o1 → 0.5
o2 → 0
o3 → 0
o4 → 0.5

A

B

Menu

Implementation
03

#

Combining the Key Concepts
Main idea:

● Start by computing the atomic projections
● Calculate the quality of merging compared to cost partitioning
● If merging is more informative, merge
● Else, cost partition
● When no merging is more informative, stop

Quality-based algorithm

➔ Merge-and-shrink: always one system in the end
➔ Cost partitioning: always all systems in the end
➔ This algorithm: in-between the 2 above

The Algorithm

A B C D

A factored transition system

The Algorithm

quality = 0

A⊗B -> 0

A B C D

The Algorithm

quality = 0

A B C D

A⊗B -> 0

A⊗C -> 0

The Algorithm

quality = 3

A B C D

A⊗D -> 3

A⊗B -> 0

A⊗C -> 0

The Algorithm

quality = 0

A B C D

A⊗D -> 3

A⊗B -> 0

A⊗C -> 0

B⊗C -> 0

The Algorithm

quality = 1

A B C D

A⊗D -> 3

B⊗D -> 1

A⊗B -> 0

A⊗C -> 0

B⊗C -> 0

The Algorithm

quality = 2

A B C D

A⊗D -> 3

C⊗D -> 2

B⊗D -> 1

A⊗B -> 0

A⊗C -> 0

B⊗C -> 0

The Algorithm

● A and D are now merged as:
○ Merging brings us more value than cost partitioning
○ The size is within the imposed limit

● The process starts again
○ A and D are removed and replaced by their merged product

quality = 3

A B C D

The Algorithm

quality = 0

B C A⊗D

A⊗D -> 3

C⊗D -> 2

B⊗D -> 1

A⊗B -> 0

A⊗C -> 0

B⊗C -> 0

B⊗(A⊗D) -> 0

The Algorithm

quality = 2

A⊗DB C

C⊗(A⊗D) -> 2

B⊗C -> 0

B⊗(A⊗D) -> 0

The Algorithm

A⊗DB C

quality = 2

A⊗DB C

● C and A⊗D are now merged as C⊗(A⊗D) has the highest quality of 2

● The process starts again
○ C and A⊗D are removed and replaced by their merged product

The Algorithm

quality = 0

B

C⊗(A⊗D) -> 2

B⊗C -> 0

B⊗(A⊗D) -> 0

B⊗(C⊗(A⊗D)) -> 0

C⊗A⊗D

The Algorithm

● All qualities are 0 => cost partitioning
over the remaining atomic projections

● 2 projections are left, not only 1

B C⊗A⊗D

cost partition

C⊗(A⊗D) -> 2

B⊗C -> 0

B⊗(A⊗D) -> 0

B⊗(C⊗(A⊗D)) -> 0

The Algorithm

A⊗DB C

A B C D

C⊗A⊗DB

cost partition

A B C D

B’

C’

A⊗B’

A B C D

A⊗DB C

A B C D

C⊗A⊗DB

cost partition

cost partition

A⊗B’⊗C’

(A⊗B’⊗C’)’

(A⊗B’⊗C’)’⊗D

Merge-and-shrink

Cost partitioning

MSCP

Quality

● For two abstractions α and β with heuristics hα and hβ, where
○ hα ⊗ hβ is the heuristic of the synchronised product
○ hα+β is the heuristic of the cost partitioning

● Shows the degree of increase in information brought by using
merge-and-shrink

“How much more does merging brings in?”

Pruning

prune! prune! prune! prune!

quality = 2

merge!

prune!

A B C D

A⊗D

Shrinking

quality = 1

shrink!shrink!

A B C D

A’ D’

merge!

A’⊗D’

Menu

Experiments
04

#

Analysis Aspects

Check 3 main aspects:

● Coverage
● Expansions
● Number of merges

Based on:

● Merge threshold
○ How large do we allow a merge to be?

● Quality threshold
○ How much more informative does merging need to be?

The Baseline (Merge vs Cost Partition)

The Baseline (Merge vs Cost Partition)

Adding Pruning and Shrinking

Adding Pruning and Shrinking

Adding Pruning and Shrinking

Comparing to Cost Partitioning

● The algorithms can reproduce
cost partitioning by setting:

○ merge threshold as -1
○ quality threshold as infinity
○ other parameters to false

● As theoretically expected:

Number of merges always
zero for cost partitioning

Comparing to Cost Partitioning

Comparing to Merge-and-Shrink

● Can only partially reproduce
merge-and-shrink algorithm:

○ label reduction not implemented
○ no merge-strategy involved

● Merge-and-shrink used with
and without label reduction

● As theoretically expected:

Number of merges always
higher for merge-and-shrink

Comparing to Merge-and-Shrink

Comparing to Merge-and-Shrink

M&S M&S - no label
reduction

MCP (baseline) MSCP

coverage 905 863 903 905

number of
merges

82,000 136,425 12,848 13,745

total time 4.03 2.21 0.97 1.59

Comparing to Previous Work

● Label reduction = very important

○ Different approach
○ Same goal

Sievers et
al: best

Sievers et al:
no lab red

MSCP

coverage 933 871 905

total time 4.33 3.88 1.80

Quality Enhancing (Max Occurrences)
● Sometimes we can have all qualities as 0, such as:

{B⊗(A⊗D) -> 0, B⊗G -> 0, G⊗H -> 0, C⊗H -> 0, B⊗C -> 0, ...}

● However, the next step could bring us a better quality
● But, the algorithm would stop merging and opt for cost partitioning

● Solution: Allowing occurrences of minimal quality
○ Fixed number of allowed cases of minimum quality
○ Example: if we set this to 2, there will be 2 iterations allowing quality = 0

=> More merges take place
=> Larger initial heuristic value

Quality Enhancing (Consider Size)

● For two abstractions α and β with heuristics hα and hβ, where
○ hα ⊗ hβ is the heuristic of the synchronised product
○ |α x β| is the size of the synchronised product
○ hα+β is the heuristic of the cost partitioning
○ |α| + |β| is the sum of the size of atomic projections

∞

Menu

Future Work
05

#

Look-ahead Factor

● How much value a decision to merge brings in future iterations

● Currently: If all qualities are 0 => stop and cost partition

What if next iteration would bring a valuable result?

● Maximum occurrences of minimal quality blindly solves this,
but it does not actually consider if it is worth it…
… or how many times can we ignore a minimal value

● Solution:
○ The possibility to calculate the quality of the next iteration
○ Based on the merging that took place in the current iteration

Non-Linear Merge Strategy

● Currently, once a transition system is merged, it becomes inactive
● All already existing data about it is not considered anymore
● And linearly looping through systems can be time-consuming

● Pearks:
○ Simulate parallelism
○ Merge a transition system more times
○ Useful in very large problems

● Drawback:
○ Potential massive memory usage

A B C D

Menu

Conclusion
06

#

Conclusions

● The 2 main concepts can be combined with
a simple, greedy, quality-based approach

● Label reduction is a very important step of
merge-and-shrink for good results

● Similar coverage to merge-and-shrink, with and without improvements
… but without label reduction!

● Less than half time and much less overall number of merges

● Better coverage and time than most similar version of previous work

Thank you!
Questions?

