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Abstract

In general, it is important to verify software as it is prone to error. This also holds for

solving tasks in classical planning. So far, plans in general as well as the fact that there is

no plan for a given planning task can be proven and independently verified. However, no

such proof for the optimality of a solution of a task exists. Our aim is to introduce two

methods with which optimality can be proven and independently verified. We first reduce

unit cost tasks to unsolvable tasks, which enables us to make use of the already existing

certificates for unsolvability. In a second approach, we propose a proof system for optimality,

which enables us to infer that the determined cost of a task is optimal. This permits the

direct generation of optimality certificates.
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1
Introduction

A classical planning task consists of a domain, which defines the universe of the task, and

the task itself, which is given by an initial configuration as well as a goal. In each state of

a task, we can apply actions which lead to a new state. In this way, we can traverse the

states of our task. Each such action has a dedicated cost. When applying multiple actions

one after the other, we sum up the cost over the individual action costs.

The solution of a task is a sequence of actions which can be performed to reach some

goal configuration from the start configuration. This sequence of actions has to be applied

consecutively to the states of the task. The first action leads from the initial state to some

successor state, and the last action has a goal state as its successor.

A planning system can compute such a sequence of actions, which can either be a solution

independent of the cost or a so-called optimal solution where the sum of the action costs is

minimal. If no sequence can be found, the system will state that the problem is unsolvable.

This outcome should ideally be independently verified, since planning systems can contain

bugs and do not always provide a correct output.

Validating a sequence of actions for a solvable task is fairly simple. It just requires the

verification that starting in the initial state and applying the actions consecutively will lead

to a goal state. This can be performed with the help of validation tools already available.

However, verifying that a problem is unsolvable is harder, since we cannot simply check

the output sequence. Instead, a certificate is created alongside the output. It states that the

output, in this case the statement that the task is unsolvable, is correct. Such a certificate

must again be validated by a verifier. The generation of unsolvability certificates which

can be verified efficiently was first developed with the help of inductive sets [2] and further

refined in an approach using a rule-based proof system [3].

Currently, it is not possible to verify that a plan is optimal. In this thesis, we aim to close

this gap by creating certificates for optimal solutions, making it possible to verify that the

solution provided by a planning system is a solution with the lowest cost for the task.
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A first approach is to reduce a task with a path of optimal cost x to an unsolvable task.

If the computed optimal solution has cost x, it follows that there cannot exist a solution

with costs smaller than x. By reformulating our initial problem, stating that a solution is

now allowed to have costs of at most x − 1, we should get an unsolvable task. Since there

exist certificates for unsolvable tasks, we can use this method to validate that a solution is

optimal.

Since we have to first solve the original task, then reformulate it and finally solve the

reformulated task, the first approach is very time-consuming. In addition, bugs may occur

during reformulation. Lastly, since we modify the original task and solve it again, this

approach does not reflect the reasoning used by the algorithm to prove why the solution is

optimal.

Therefore, we present a second approach, which aims to create optimality certificates by

employing similar methods as are used for unsolvability certificates. In this case, we would

not have to reformulate the problem but can use the given task itself and prove that there

does not exist a cheaper solution.
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Background

In this thesis, we consider planning tasks using the STRIPS representation [4]. We will

also introduce PDDL, a language to represent such a planning task. In order to solve a

task, we can make use of different algorithms, two of which we will present in the following.

Lastly, we will introduce certificates for unsolvable tasks which make use of the algorithms

mentioned. These definitions are needed in order to be able to derive optimality certificates

later on.

2.1 Planning Tasks
We define a STRIPS planning task as a tuple Π = ⟨V,A, I,G⟩, where V is the finite set of

state variables. These state variables are binary, i.e., they can either be true or false. A is

the set of actions which can be performed in the various states. The initial state is denoted

by I and the goal of the task by G.

A state s is defined by the state variables which are true in s, hence s ⊆ V . We can

therefore write a state s as the set s = {v | v ∈ V, v = true}. The initial state I is defined

in the same way. A state s is a goal state if all state variables which are required to be true

in the goal are true in s, hence G ⊆ s. We call the set of all goal states SG.

Each action a is defined by its preconditions pre(a) ⊆ V and its add and delete effects

add(a) ⊆ V and del(a) ⊆ V . An action a can be applied in a state s if it fulfils its

preconditions, i.e. pre(a) ⊆ s. Applying an action a in a state s results in a successor

state s[a]. This state consists of the variables in s minus the variables which were removed

by a delete effect and plus the variables which were added by an add effect. Therefore,

s[a] = (s \ del(a)) ∪ add(a) must hold. For a set of states S and a set of actions A′ ⊆ A, we

write the set of all successor states of S as S[A′] = {s[a] | s ∈ S and a ∈ A′ applicable in s}.
Similarly, we formulate the set of all predecessors of S, namely [A′]S = {s | s[a] ∈ S and a ∈
A′ applicable in s}.
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We say that a certain state sn is reachable from another state s0 if there exists a sequence

of actions π = ⟨a0, . . . , an−1⟩ with ai applicable in si and si[ai] = si+1 for all 0 ≤ i ≤ n− 1.

We can apply the same concept to sets of states. A state sn is reachable from a set of states

S if there exists a state s ∈ S from which sn is reachable.

A plan is a sequence of actions with which a goal state can be reached from another state.

The sequence is started in a state s and has a goal state as the last successor state. Such a

plan is called s-plan. In order to solve a task, we start in the initial state I. We therefore call

the solution to a solvable task I-plan. If there exists no such plan, the task is unsolvable.

2.1.1 Cost
The above definition of a planning task is sufficient to determine if a task is solvable or

unsolvable. Here, we want to discuss optimal plans for a task. An optimal solution for a

task is a solution with the lowest possible cost.

Costs are introduced as an attribute ca to each action a. This cost can be positive or

zero. The cost of a plan is equal to the sum of the costs of all its actions. Therefore, the

cost of an I-plan π = ⟨a1, . . . , an⟩ is given by Σn
i=1cai .

In the case where all actions have the same cost, the cheapest path is also the shortest

path. A task where each action has the same cost is a unit cost task. In this thesis, we focus

on exactly these tasks.

2.2 PDDL
As mentioned above, a classical planning task consist of a domain and the task itself. We

can formulate these two elements using the Planning Domain Definition Language (PDDL).

This language is described by McDermott et al. [9] as follows. ”PDDL is intended to express

the ”physics” of a domain, that is, what predicates there are, what actions are possible, what

the structure of compound actions is, and what the effects of actions are.” PDDL is a form of

predicate logic, where we define the universe of the task, from which we can then ground the

task and bring it into propositional logic form. We will now show an example of a domain

as well as of a task and will use it throughout this thesis.

(define (domain BLOCKS)

(:requirements :strips)

(:predicates (on ?x ?y)

(ontable ?x)

(clear ?x)

(handempty)

(holding ?x))
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(:action pick-up

:parameters (?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect

(and (not(ontable ?x))

(not(clear ?x))

(not(handempty))

(holding ?x)))

(:action put-down

:parameters (?x)

:precondition (holding ?x)

:effect

(and (not(holding ?x))

(clear ?x)

(handempty)

(ontable ?x)))

(:action stack

:parameters (?x ?y)

:precondition (and (holding ?x) (clear ?y))

:effect

(and (not(holding ?x))

(not(clear ?y))

(clear ?x)

(handempty)

(on ?x ?y)))

(:action unstack

:parameters (?x ?y)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect

(and (holding ?x)

(clear ?y)

(not(clear ?x))

(not(handempty))

(not(on ?x ?y)))))

Listing 2.1: PDDL blocks domain

The domain defined in Listing 2.1 describes a universe where blocks can be stacked. The

predicates are variables which when grounded can either be true or false in each state, e.g.

handempty would be true if the agent’s hand is empty and false if he is holding a block.

In addition, the domain defines the possible actions within the space. Each action has a set

of preconditions which must hold for certain parameters so that the action can be executed.

If an action is performed, its effects take place and result in the transition to a new state,

where other variables are true or false.
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Once the domain is defined, we can create tasks within the space.

(define (problem BLOCKS-4-1)

(:domain BLOCKS)

(:objects A B C D)

(:INIT (CLEAR B) (ONTABLE D) (ON B C)

(ON C A) (ON A D) (HANDEMPTY))

(:goal (AND (ON D C) (ON C A) (ON A B))))

Listing 2.2: PDDL blocks task

A task is defined over explicit instances within the space. In this task, four objects are

involved. The initial state is defined by INIT, which states which predicates are true in the

beginning. The goal is again defined over specific predicates which have to be true in order

to solve the task.

2.3 Search Algorithms
Planning tasks can be solved with search algorithms which explore the states in the tasks

and determine the result, the plan, for a task. We will introduce two such search algorithms.

2.3.1 Blind Search
Blind search is a very naive approach to finding a solution. All states are explored with

increasing distances from the initial state until a goal state has been found. A layer in blind

search is determined by the g-value. This value indicates the distance of a state from the

initial state I. This means that in unit cost tasks, all states which have a g-value of 1 are

reachable with one action from the initial state. Blind search first expands all states which

have a g-value of 1. Once all these states have been expanded, all states with a g-value of

2 will be expanded and so forth. The first layer in which a goal state is reached therefore

marks the optimal cost of the task.

This algorithm is implemented with two lists, an open list and a closed list. The open

list contains all states which can be expanded next, while the closed list contains the states

which have already been expanded. Before a state s is expanded, we first check if it is already

contained in the closed list. If s is already contained in the closed list and the g-value of the

state in the closed list is lower or equal to the g-value of s, the state is not expanded again.

However, if s was not yet expanded or has a lower g-value than the state in the closed list,

s is expanded. During the expansion, all states which can be reached from s with cost 1 are

added to the open list, while the state s is added to the closed list. At first, the open list

contains only the initial state I, which is then removed and expanded. In the next step, the

state which was inserted into the open list first is expanded. This process is continued until

a goal state is removed from the open list.

Since this search expands all states per layer, it will find the cheapest path when consid-

ering unit cost tasks. However, due to this layered search, it also expands nodes which are
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not goal-leading. Therefore, blind search is very slow and expensive. In order for a search

algorithm to perform better, it should expand more promising nodes first.

2.3.2 A∗ Search
The A∗ search algorithm [5] belongs to the family of best-first algorithms. In each iteration,

A∗ will expand the most promising node. In order to determine which node is promising,

we make use of the g-value and a heuristic value, the h-value. A heuristic estimates how

far away a node is from the goal. There are many different heuristics, including the hmax

heuristic, which will be used at a later point, and h∗, the perfect heuristic, which is defined

as the actual distance of a state to its closest goal state. The A∗ algorithm starts the search

at the initial state I. All its successors are added to the open list. This list always contains

the expansion candidates for the current step. In the first step, we evaluate which state s

has the lowest value f(s), where f is the evaluation function, which is defined as follows.

f(s) = g(s) + h(s),

where g(s) is the distance from the initial state and h(s) the heuristic value of the state s.

When the most promising state s, i.e. the state with the lowest f -value in the open list, has

been found, it is removed from the open list. If s is already contained in the closed list, we

compare for the g-value as for blind search. In case the g-value of s, which was just removed

from the open list, is higher, we do not expand s. Otherwise, we expand the state again

and replace the state in the closed list. Before the expansion, it is first checked whether s

is the goal state. If this is the case, a solution has been found and the path for the task is

extracted. However, if the goal has not been found, all successors of s are added to the open

list and s is added to the closed list. The algorithm continues in each step as described,

by determining the most promising node and expanding it according to the f -value of the

states.

As we expand only promising states, we expect to need fewer state expansions in order

to find a goal than with blind search. This is especially true for tasks where the goal lies

at a deeper layer or where layers are very broad. However, the performance of A∗ always

depends on the heuristic chosen.

When using an admissible heuristic, we can guarantee that our extracted plan is optimal

[5]. A heuristic is called admissible if h(s) ≤ h∗(s) holds. This means that the heuristic

value of a state is always lower than the perfect heuristic h∗, which maps a state s to the

optimal cost of a plan for s.

2.4 Certificates
A certificate in general is an independent proof of a computed result of a planning task.

For I-plans, it is rather simple to prove that it is indeed a solution, since this can be done
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by executing the given plan. An existing tool to automatically validate a calculated plan is

VAL [8].

A more complex task is to prove that a task is unsolvable. An unsolvability certificate

aims to prove that no I-plan can exist for a given task.

A first solution was established by Eriksson et al. [2] using inductive certificates. An

inductive set of states S has the property that any action a performed in a state s ∈ S

will lead to a state s[a] which is again an element of S, so that once we enter S, we can

never leave it. An inductive certificate for any state s is given by an inductive set S which

contains s but none of the goal states. Therefore, an inductive certificate for a task Π is an

inductive set S which contains I but no goal state. Since S is inductive, the goal states are

unreachable from any state in S, in particular from I, which proves that Π is unsolvable.

A second approach was also developed by Eriksson et al. [3]. This time, the unsolvability

certificates were created with the help of a knowledge base. The main idea is that the proof

first establishes a knowledge base containing basic statements which are verifiable. This is

followed by the application of derivation steps according to certain derivation rules. The goal

of these derivations is to conclude from the generated statements that the task is unsolvable.

In this case, a task is considered unsolvable if either I or all goal states are dead. A state is

dead if it cannot be traversed by any plan. The derivation rules mainly help to determine

further dead states and should show that either I or all goal steps are dead, proving that

the task is unsolvable.



3
Reduction to Unsolvability

We want to reformulate a task such that it is unsolvable. We will do so by adding an upper

bound for the cost which is lower than the optimal cost for the task. In order to reformulate

an existing task such that an explicit maximum of costs is introduced, we have to modify

the domain as well as the description of the task itself. In the following, we will explain

how an existing domain and task have to be modified such that maximal costs are included.

For this purpose, we will use the domain and task that were presented in Section 2.2. All

changes are marked in red and further explained in the text.

Note that this transformation is only correct for unit tasks, where each action has a cost

of 1. Implementation of different costs for each action will be discussed in Section 3.3.

3.1 Domain
The domain file has to be modified by adding predicates and modifying each action according

to a certain schema. We have to define the two new predicates, (cost ?c) and (next

?c ?n). The cost predicate defines the cost already used. With each action, cost should

increase by one. Therefore, we have to introduce our next predicate. It defines the step

size between each cost and thereby acts as a counter. This predicate is static, as no action

changes its truth value. Therefore, any next predicate which is defined in the initial state

will be true throughout all reachable states, while next predicates which have not been

defined in the initial state will never be true for any reachable state.

We will now show how an action can be defined using the previously added predicates.

The following action serves as an example. All modifications, marked in red, must be applied

to all other actions as well.
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(:action put-down

:parameters (?x ?c ?n)

:precondition (and (holding ?x) (cost ?c) (next ?c ?n))

:effect (and (not(holding ?x))

(clear ?x)

(handempty)

(ontable ?x)

(cost ?n)

(not(cost ?c))))

Listing 3.1: PDDL action for unit cost

The required parameters are the current cost c as well as the next cost n. The two precon-

ditions ensure that the given parameters have the properties of c being the current cost and

n being the successor cost of c. The effect of an action a then has to include the updating of

the cost. Here, it is important to note that updating the costs does not only include the new

cost being n but also requires the old cost c to be false. This is necessary since in PDDL,

like in first-order logic, the (cost ?x) predicate holds a truth value for every instantiation

of x. Therefore, we have to set the old value to false since both (cost c) and (cost n)

would otherwise be true, and this would impair our counting.

3.2 Task
In order to introduce the previously defined costs into our specific task, we have to expand

the objects and modify the start configuration INIT. The additional objects as well as the

statements for the initial state depend on the maximum cost allowed, which is denoted by

x. The objects that have to be introduced are all consecutive numbers from 0 to x.

The required statements for the initial state include the cost used at the beginning, namely

zero. In addition, we need to define the static steps, using the next predicate for each step

from 0 up to x.

(define (problem BLOCKS-4-1)

(:domain BLOCKS)

(:objects A B C D 0 1 2 3 4 5)

(:INIT (CLEAR B) (ONTABLE D) (ON B C) (ON C A) (ON A D)

(HANDEMPTY) (COST 0) (NEXT 0 1) (NEXT 1 2)

(NEXT 2 3) (NEXT 3 4) (NEXT 4 5))

(:goal (AND (ON D C) (ON C A) (ON A B)))

)

Listing 3.2: PDDL task with cost

This extract is an example of a task where the initial cost is zero, the size of the unit cost is

one and the maximal cost x is 5. The cheapest solution for the initial task which has been

computed is 6. Therefore, the task defined above, where the solution is limited to cost 5,

would obviously be unsolvable.
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Defining a task as described allows for solutions with any costs between 0 and x. If instead

only a specific cost y with y ∈ {0, .., x} should be considered, we can include this in the goal

statements with the statement (cost y).

3.3 Individual Cost
In this section, we will present possible modifications for tasks where not all actions have

the same cost. There are two general approaches to this.

The first approach does not need any additional predicates. Instead, it uses the next

predicate already introduced. If the step size of next is one, we can modify the cost of a

single action by introducing additional parameters and preconditions in the following form.

(:action put-down

:parameters (?x ?c ?c1 ?c2 ... ?cn-1 ?cn)

:precondition (and (holding ?x) (cost ?c) (next ?c ?c1)

(next ?c1 ?c2) ... (next ?cn-1 ?cn))

:effect (and (not(holding ?x))

(clear ?x)

(handempty)

(ontable ?x)

(cost ?cn)

(not(cost ?c))))

Listing 3.3: PDDL action for cost n

This solution introduces a sequence of numbers c, c1, c2, ..., cn−1, cn where n is the cost of

the action, assuming that next is always defined for two adjacent numbers. In fact, we

have to check that next is true for all the numbers in the sequence to ensure that cn is

larger than c by value n. Again, we have to update our cost by removing the old cost and

defining the new cost cn. The idea behind this solution is rather simple, but infeasible for

tasks where the difference between costs of actions is large. This is due to the fact that

next would have to be defined for a small step size so that actions with small costs can

be realized. On the other hand, we would need a long sequence of adjacent numbers, hence

numerous parameters and preconditions to model the costs of an expensive action.

The second approach is to replace the next predicate by multiple predicates for different

step sizes. Here, once the predicates are defined, it is quite easy to modify the actions.

We can just modify Listing 3.1 by replacing the precondition (next ?c ?n) with the

suitable step size predicate. This version is very simple in the domain, but we need to define

all possible steps as static statements in the initial state of our task. This can again be

infeasible for tasks with highly varying costs.
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It is also possible to combine the two approaches. For example, one could introduce a

predicate for step size one (one ?c ?n) as well as for step size ten (ten ?c ?n). The

parameters and preconditions of a task could then be used to first increase the cost in steps

of ten and then in steps of one.

(:action put-down

:parameters (?x ?c ?t1 ?t2 ?o1 ?o2 ?n)

:precondition (and (holding ?x) (cost ?c)

(ten ?c ?t1) (ten ?t1 ?t2)

(one ?t2 ?o1) (one ?o2 ?o2) (one ?o2 ?n))

:effect (and (not(holding ?x))

(clear ?x)

(handempty)

(ontable ?x)

(cost ?n)

(not(cost ?c))))

Listing 3.4: PDDL action for cost 23

However, this only simplifies notation in the domain, but we still have to define one and

ten for every possible pair of numbers in the initial state of the task.

Introducing actions which do not have any cost is fairly simple. In this case, the action

does not have to be modified at all, i.e. no counting parameters, preconditions or effects are

required. This is due to the fact that an action with cost zero has no influence at all on the

cost predicate.
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Experiments

In determining the costs for a large number of solvable unit cost tasks, we can make use of

the reformulations for unit cost tasks as described in Chapter 3. We can then run a search

on an unsolvable task, create certificates for unsolvability and verify them.

The calculations were performed at the sciCORE1 scientific computing center at the

University of Basel. The experiments were run on a cluster consisting of an Intel Xeon

E5-2660 CPU with 2.2 GHz. For the search, including the creation of the certificates, a time

limit of 30 minutes as well as a memory limit of 3584 MiB were used. The verification of

the certificate had a limit of 4 hours and a memory restriction of 2000 MiB.

The general framework for the experiments was Downward Lab [10]. It was used to run

the Fast Downward 21.12 [6] implementation. We used A∗ search with the hLM−cut heuristic

[7] to initially solve the tasks. We then extracted the cost for each task and modified all unit

cost tasks for which an optimal plan could be found. The resulting tasks were then run again

with a fork of Fast Downward that implemented certificates for unsolvability2, introduced

by Eriksson et al. [3]. We used hmax as well as hM&S as heuristics for these runs which

showed that the modified tasks are unsolvable. The verifier and proof-generating planning

algorithms [3] were used to verify that the tasks are unsolvable, which proved that the cost

which was calculated in the first step was indeed optimal.

4.1 Results
For the results, we compare different attributes of our three runs. The three runs are the

initial run on the original task using hLM−cut as well as the two runs on the modified tasks

using hmax and hM&S . First, we will discuss how successful the runs on the modified tasks

were. We will do so by considering the number of created and verified certificates, as well as

the number of failed runs. We will then compare the time difference between the run on the

original tasks and the runs on the cost restricted tasks. We will also compare the number

1 http://scicore.unibas.ch/
2 https://github.com/salome-eriksson/downward-unsolvability

http://scicore.unibas.ch/
https://github.com/salome-eriksson/downward-unsolvability
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of expanded states as well as the time needed for the two runs on the modified tasks using

hmax and hM&S . Finally, we will compare the memory used by the different runs during

the search. The results presented are only an excerpt from the data and figures generated

during the experiments. More figures can be found in Appendix A.

created verified
universe (number of tasks) hmax hM&S hmax hM&S

airport (28) 16 11 14 11
blocks (28) 15 18 15 18
depot (7) 2 4 2 2
driverlog (13) 5 9 4 7
freecell (15) 7 14 7 13
grid (2) 1 1 1 1
gripper (7) 5 6 5 5
hiking-opt14-strips (9) 6 9 6 8
logistics00 (20) 10 10 10 10
logistics98 (6) 1 2 1 2
miconic (141) 40 45 40 40
movie (30) 30 30 30 30
mprime (22) 15 22 13 20
mystery (17) 12 15 10 14
openstacks-strips (7) 7 7 7 7
organic-synthesis-opt18-strips (7) 7 7 7 7
pipesworld-notankage (17) 10 12 8 12
pipesworld-tankage (12) 6 12 6 10
psr-small (49) 43 49 42 47
rovers (8) 4 4 4 4
satellite (7) 4 4 4 4
snake-opt18-strips (7) 2 0 2 0
storage (15) 13 13 12 13
termes-opt18-strips (6) 1 4 1 3
tidybot-opt11-strips (14) 3 1 3 1
tidybot-opt14-strips (9) 0 0 0 0
tpp (7) 5 6 5 5
trucks-strips (10) 4 4 3 3
visitall-opt11-strips (11) 8 9 8 8
visitall-opt14-strips (5) 2 3 1 2
zenotravel (13) 8 8 7 8

total (549) 292 338 278 315

Table 4.1: Number of created and verified certificates per domain for hmax and hM&S

in comparison to total number of runs

As Table 4.1 shows, hM&S was generally more successful when creating and verifying

certificates. For about 62% of the tasks, a certificate could be created and about 93% of

these certificates could be verified. In contrast, hmax generated a certificate for only about

53% of the tasks. However, 95% of the generated certificates could be verified, slightly more

than for hM&S .
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Using the data from Table 4.2, we can retrace the errors which occurred during the runs.

The sum of the errors added to the number of tasks for which a certificate could be created

adds up to 549, which is the total number of tasks.

error hmax hM&S

search out of memory 5 155
search out of time 230 34
segfault 5 5
translate out of memory 17 17

total 257 211

Table 4.2: Number of total errors for hmax and hM&S

We can observe that for hmax, most of the errors were due to the time restriction for

the task. Since the search could not be finished, no certificate was generated. This can

be explained by the fact that hM&S provides a better heuristic estimate than hmax. For

unsolvable tasks, a good heuristic guidance is crucial because it might detect at an early

stage that the task is unsolvable. In contrast, a heuristic which cannot detect early on that

the task is unsolvable requires the expansion of more states and hence more time.

In contrast to runs using hmax, most of the failed runs for hM&S are due to the lack of

memory. The reason may be that hM&S needs preprocessing, which is performed prior to

the search. For large tasks, the additional memory needed for these calculations combined

with the actual search might exceed the memory limit.

The few segfaults which occurred during the experiment are cases where there was not

enough memory for the translation. These cases are not listed as translate out of memory

as there was not enough memory left to gracefully end the experiment. Since the run could

not be ended properly, a segfault occurred instead of a translate out of memory error.
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Figure 4.1: Time comparison between hLM−cut and hM&S (left)
and between hLM−cut and hmax (right)
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Figure 4.1 shows that, in general, using hLM−cut on the original task is faster than using

hmax and hM&S on the modified task. For modified tasks, certificates are created in addition

to the search, which takes additional time. The search itself may also take longer, as all

possible paths have to be explored in order to conclude that the problem is unsolvable. In

contrast, we can stop the search with hLM−cut as soon as one solution has been found.
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Figure 4.2: Time comparison (left) and expansion comparison (right)
between hM&S and hmax

In Figure 4.2 (left), we can observe that tasks which took less time to solve had a tendency

to be solved faster when using hmax. In contrast, tasks, which took rather long to solve in

general, were mostly solved faster by hM&S . Since hM&S needs preprocessing, additional

time has to be taken into consideration. For easy tasks, these expensive calculations prior to

the search are not compensated by a faster search. However, for more difficult tasks hM&S

performs better than hmax since it provides better heuristic guidance.

In Figure 4.2 (right) we can clearly see that hmax needs more expansions during the search

than hM&S . In some cases, hM&S does not even need to make expansions because it detects

already in the initial state that the task is unsolvable. These are exactly the states with an

expansion value of 10−1 for hM&S .

In Figure 4.3, we can see that the run using hLM−cut has a significantly lower memory

consumption than the runs with hmax and hM&S . As mentioned above, this is due to the

fact that when trying to solve an unsolvable task, all possible paths have to be explored and

hence more memory is needed. In the first run, however, the search can be stopped once a

solution has been found. The certificate which is created alongside the runs with hmax and

hM&S also increases the amount of memory used.
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Figure 4.3: Memory comparison between hLM−cut and hM&S

and between hLM−cut and hmax

By comparing the left and right sides of Figure 4.3, we can observe that hM&S tends to need

less memory than hmax (see also Figure A.1). This is coherent with the observations from

Figure 4.1 and Figure 4.2. Since hM&S tends to need fewer expansions and also has a slight

tendency of needing less time during the run, it seems natural that the memory needed is

lower as well.

In order to verify that unsolvable tasks need more expansions, we had to run the modified

tasks again using the same configuration as for the initial run. We could not use the results

from the runs with hmax and hM&S for this comparison, as each heuristic performs differently

on the same task. Therefore, we used the same configuration, namely hLM−cut, for both

runs. We compared the number of expanded states from the run on the modified tasks to

the number of expanded states in the initial run on the original tasks.
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Figure 4.4: Expansions comparison between

initial and modified run for hLM−cut

With the results from Figure 4.4, we

can verify that our statement about the

difference in the number of expanded

states is true. During the first run on

the initial task, fewer expansions were

needed in order to find a goal and com-

plete the search. However, for the mod-

ified run which tried to solve the un-

solvable modified task, more expansions

were needed in order to conclude that

the task in unsolvable and to finish the

search. Comparisons between the num-

ber of expanded states for the initial run

and the two runs using hM&S and hmax

can be found in Appendix A.
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The few outliers for which the modified run needed fewer expansions could be due to the

fact that hLM−cut may detect that all states which have a distance of x− 1, where x is the

optimal cost, from the initial state are dead ends. In this case, no further states will be

explored, whereas in the initial search more states have to be expanded in order to reach

the goal.

4.2 Conclusion
We were able to verify unsolvability for the modified tasks in 62% of the cases for hM&S

and in 53% of the cases for hmax. Most of the certificates that were generated could also be

verified. The modified tasks could be solved using a moderate amount of memory and time.

In general, hM&S performed better on the modified tasks than hmax, because it provides

better heuristic guidance.

Even though the results of our experiments seem good, it remains unclear if some tasks are

unsolvable due to possible errors in the transformation of the tasks. The transformation is

prone to error, as different tasks may require different transformations. Since the translation

of the task itself is not verified, errors in the task itself cannot be detected. Therefore, a

solution independent of the transformation of tasks would be desirable. Such a solution will

be offered in Chapter 5 by creating a proof system for the optimal cost of a planning task

based on the proof system for unsolvable planning tasks introduced by Eriksson et al. [3].



5
Proof System for Optimality

The goal of optimality certificates is to prove that a computed plan for a task is optimal.

The certificate is constructed alongside the search and verified independently. The aim of

this chapter is to introduce such certificates for optimal solutions. As before, we will consider

only tasks with unit cost actions, where all actions of the task have exactly cost one.

In the following, we will introduce an approach using sets of states which allows us to

make statements about the optimal cost of a task. We will build sets which require a certain

minimal cost to a goal. These sets will be built iteratively until we are able to make a

statement about the minimal cost from the initial state to a goal. This minimal cost should

correspond to the optimal cost of the task computed.

5.1 General Concept
We can validate that the optimal solution of a task has cost x by showing that the task has

no solution with cost x − 1 or lower, and that there is a solution with cost x. In order to

show this, we can build sets of states from which a goal can be reached with at least cost

c. We will create sets for all possible minimal costs c ∈ {0, ..., x} for reaching the goal. We

define a set Sx as a set of states which need at least cost x to reach a goal state.

The set S0 is equal to SAll, the set of all states of the state space, since all states have

at least distance 0 to a goal. We know that S1 must contain only states which need one

action and hence cost 1 to a state in S0. We can create such sets for all minimum distances

to the goal up to the optimal cost x. All sets Sx always have the form Sx = {s | s[a] ∈
Sx−1 for all actions a}.

In order to show that if a task is solvable, it requires at least cost x, we can use the fact

that if Sx contains the initial state, then the minimal optimal cost is at least x. If we want

to prove that x is indeed the optimal cost, we can use the generated plan with cost x as a

witness that a plan with cost x exists.
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We have now explained the general concept behind the certificate. In a next step, we will

formally define how such a certificate can be built and how the specified sets of states can

be generated.

5.2 Formal Proof System
This proof system makes specific statements over sets of states, which then lead to the

conclusion of the proof. These sets of states can be constants such as the set containing the

initial state {I}, the set of goal states SG or the set of all states SAll. The state sets can

also be set variables, which are sets that are described in a specific formalism such as BDDs

or concrete state enumeration as well as the complement, union, intersection, predecessors

or successors of state sets.

During the proof, the state sets are defined first. Later, basic statements and derivation

rules are applied. The basic statements always need to be verified individually, while the

derivation consists of a sequence of templates, so-called derivation rules, which are applied

to concrete state sets during the proof. The fact that these derivation rules are true for any

concrete state set is shown outside the proof. In a proof step, either a basic statement or a

derivation rule is applied. The consecutive application of these steps leads to the derivation

which proves the optimal cost of a task.

We will start by introducing the derivation rules necessary for this proof system.

5.2.1 Derivation Rules
This proof system is based on x-states, states which require at least cost x to reach the goal.

Definition 1 (x-state). A state is an x-state if all paths from the state to a goal have at

least cost x. Therefore, all states are 0-states. An x-state is also a y-state if x > y ≥ 0.

A set of states is called x-state set if it consists only of x-states. Therefore, the set of all

states SAll is a 0-state set. If a state set is an x-state set, and x > y ≥ 0, then it is also a

y-state set.

We can use this property to make a statement about the union of different state sets. The

union of arbitrary x-state sets with different x is itself an y-state set, where y is the smallest

value for x among the x-state sets.

We will now define the rules which follow from this definition.r SAll is a 0-state set.r Any set of states is a subset of SAll.r A subset of an x-state set is an x-state set.r The union of arbitrary x-state sets with same x is an x-state set.
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r The union of arbitrary x-state sets with differing x is a min(x)-state set.

We need to introduce a rule which allows us to use the external knowledge that the cost of

the generated plan is x. This rule needs to be verified individually outside the proof system.

In order to prove this statement, a verifier such as VAL can be used. We will formulate the

statement for our proof system as follows.r The cost of the generated plan is x.

The following rules define how the x-states are built and are therefore the core of the system.

Theorem 1. Let S be a set of states and Sx an x-state set, such that all successors of S

are contained in Sx, i.e., S[A] ⊆ Sx. If S ∩ SG = ∅, then S has at least distance x + 1 to

the goal and is therefore an (x+ 1)-state set.

Proof. According to the definition, a state s is an x-state if it has at least distance x to a

goal state. Since all successors of S lie in Sx, we need cost 1 to reach Sx from S. As we

have at least distance x to the goal from Sx and S does not contain a goal state, we can

conclude that we must have at least distance x + 1 from the states in S to a goal state,

since the path trough Sx is the only option to reach a goal. This distance cannot be lower

because all successors of S are in Sx, i.e. we cannot leave S via another state set with lower

distance to the goal.

The following rules define how the minimal cost of a task can be determined.

Theorem 2. Let Sx be an x-state set. If {I} ⊆ Sx and the generated plan has cost x, then

the optimal cost for the task must be exactly x.

Proof. Since Sx contains only states which have at least distance x to the goal and the initial

state is contained in Sx, we know that a solution of the task must have at least cost x. If

the cost of the generated plan is also x, we can use the plan as a witness that there is a

solution which has exactly cost x. We can therefore conclude that the optimal cost of the

plan is indeed x.

We will now summarize all rules which have been introduced so far in the following definition.

Definition 2 (derivation rules).

D1 SAll is a 0-state set.

D2 S ⊆ SAll

D3 If Sx is an x-state set and S ⊆ Sx, then S is an x-state set.

D4 If S1, . . . , Sn are xi-state sets and xi = xj for every i, j ∈ {1, . . . n}, then
⋃

i∈{1,...,n} Si

is an x-state set

D5 If S1, . . . , Sn are xi-state sets and xi ̸= xj for every i, j ∈ {1, . . . n}, then
⋃

i∈{1,...,n} Si

is a min(x)-state set

D6 The cost of the generated plan is x.
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D7 If Sx is an x-state set, S[A] ⊆ Sx and S ∩ SG ⊆ ∅, then S is an (x+1)-state set.

D8 If Sx is an x-state set, {I} ⊆ Sx and x is the cost of the generated plan, then the optimal

solution has cost x.

These derivation rules define the basis for the actual proof. In the derivation steps, the

placeholder sets like Sx or S in the rules are replaced by sets of states. As mentioned above,

such a set can be either a constant set, a set variable or their concatenation, intersection,

complement, predecessors as well as successors.

The derivation steps are applied to a knowledge base. This knowledge base consists only

of atomic statements such as ”S is an x-state set”, ”S ⊆ S′” as well as ”The cost of the

generated plan is x” and ”The optimal solution has cost x”. Again, S and S′ are replaced

by set expressions. If all premises of a derivation step have been derived already, we can

apply the step. This results in adding its consequences to the knowledge base. The special

statement ”the optimal solution has cost x” concludes the proof.

During the proof, the set expressions in the derivation rules are not interpreted, i.e. the

rules are applied on the syntactic level without regard to the interpretation of their elements.

5.2.2 Basic Statements
In order to be able to apply our defined derivation rules, we always need an initial knowledge

base from which we can then make further derivations. These derivations will then be task

specific, even though the derivation rules themselves are not, since the placeholder sets in

the specified rules are replaced by sets which fulfil the conditions for the provided task.

In the proof, we will create our initial knowledge base by making use of basic statements

as well as derivation rules which have no premises. This step is followed by the application

of further basic statements and derivation rules. In the derivation, the derivation rules are

simply applied on a syntactic level where we do not consider concrete sets but only abstract

expressions of them. In addition, a rule can be applied only if all its premises have been

established either by basic statements or previous derivations. Therefore, the order of the

derivation steps matters.

Since our derivation rules require the same sort of statements as the unsolvability proof

system [3], we can take their definition of basic statements. As stated, the statements of

the form ”S is an x-state set” and ”S ⊆ S′” build our knowledge base. Again, S and

S′ are set expressions. However, we will allow only a subset of these statements as basic

statements. This is because we want our basic statements to be efficiently verifiable so

that our proof itself is efficiently verifiable as well. We will include only basic statements

which cannot be derived from other basic statements. We will allow only statements of the

form ”S ⊆ S′”, where S and S′ are allowed to be replaced only by specific set expressions.

In the following, we define the permitted basic statements. We will use X,X ′ and X ′′ as

set variables. Further, we will use L and L′ as atomic set term literals, which include set
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variables X, constant sets such as the set of goals, the set of the initial state or the empty

set as well as the complements of these.

Definition 3 (basic statements).

B1 L ⊆ L′

B2 X ⊆ X ′ ∪X ′′

B3 L ∩ SG ⊆ L′

B4 X[A] ⊆ X ∪ L

The basic statements in combination with the derivation rules allow us to define the structure

of a proof. We will sketch such a proof in the following chapter.



6
Certificates for Optimality

In this chapter, we will sketch the general form of a proof for different search algorithms.

This proof can be used as a certificate for the optimal cost of a task. We will use the basic

statements from Definition 3 as well as the derivation rules from Definition 2. The general

syntax of steps in such a sketch is as follows.

(m) DX, {(a), . . . } → s

(n) BY → s′

We distinguish between steps where a derivation rule (DX) is applied and steps where a

basic statement (BY ) is applied. In both cases, we first state the number of the current

step, here denoted by (m) and (n), respectively.

If the mth step consists of applying a derivation rule, we note the applied rule by DX,

where X is the number of the corresponding rule. As a second argument, we state a set of

previously applied steps (a), . . . whose derived statements are needed as premises for the

current step. If no premises are needed for the derivation rule, we can omit this argument.

The statement s is the statement which we can conclude in the current step.

If the nth step consists of applying a basic statement, we note the applied rule by BY ,

where Y is the number of the corresponding rule. As we do not need any premises for basic

statements, we can simply state the statement s′ which we want to verify in the current

step.

We will apply the previously defined rules for different kinds of search algorithms. Depend-

ing on the algorithm, more intermediate steps are necessary. However, the overall structure

is similar for every algorithm. We can create certificates using the predefined rules for any

unit cost task. However, depending on the search algorithm used, the specified certificate

may not be efficient.

In order to apply the proof steps, we need to define the concrete sets for the corresponding

proof. The creation of these sets will again differ slightly from algorithm to algorithm.
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We will now discuss how the concrete sets of states S1, . . . , Sx as well as the general proof

are built for different search algorithms.

6.1 Blind Search
To create a certificate for blind search (see Section 2.3.1), we need to build concrete sets

which have at least a certain distance to a goal. As before, we denote a set of states which

have at least distance 1 to the goal with S1. The 0-state set SAll simply consists of all states

of the task. In order to build the sets S1, . . . , Sx, we will need to make use of the g-value.

We know that a goal state must have a g-value of at least x, as x is the optimal cost for the

task. From this, we can derive that all states which have a g-value of x−1 or less must have

at least distance 1 to the goal. We can therefore define S1 as the set of all explored states

which have a g-value between 0 and x − 1. The set S2 would then be the set of explored

states which have a g-value between 0 and x− 2 and so forth.

Since x is the optimal cost for the task, we know that there must be at least one state in

S1 for which the shortest path to the goal has exactly cost 1, namely the state prior to the

goal state in the path with optimal cost. In fact, there must always exist a state in Sn for

which the optimal path to the goal has exactly cost n for all sets Sn with n ∈ {0, . . . , x}.
We can guarantee this by making use of the same reasoning as before. We can therefore also

conclude that I must be in the set Sx, since the initial state must have the optimal distance

of x to the goal state.

6.1.1 Proof of Premises for Blind Search
We will now prove some observations about blind search, which are necessary for the creation

of the corresponding certificate.

Theorem 3. Sn ∩ SG = ∅ for any set Sn with n ≥ 1.

Proof. Blind search expands in order of g-value and stops when finding a goal. Since blind

search stops when finding a goal with g-value x, we know that all states with g-value y < x

cannot be goals. Therefore, the g-value of a goal state must be at least x. Since the sets Sn

consist only of states with g-value x− n and n ≥ 1, we can conclude that no goal state can

be contained in any such set.

Theorem 4. Sn[A] ⊆ Sn−1 for any sets Sn, Sn−1 with n ≥ 1.

Proof. Since we consider only unit cost tasks, we know that the successor s′ of a state s can

have a g-value of at most g(s) + 1 (it can also be less than g(s) + 1 since there might be a

shorter path from I to s′ that does not lead over s). Since Sn consists of states which have

a g-value of at most x− n, we know that all successors of Sn can have a g-value of at most

x − n + 1 = x − (n − 1). Since we have seen all states in Sn, we know that all successors

have to be either in the open or in the closed list and are therefore known. It follows that

all successor states of Sn are known and have a g-value of at most x− (n− 1). These states

are exactly the states contained in Sn−1.
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6.1.2 Proof Sketch for Blind Search
The general idea of the proof is to start with the set of all states and the fact that this set

is a 0-state set. In a next step, we consider the set S1. As proven, this set does not contain

any goal state, and all its successors are in the set SAll. We can therefore conclude that the

set S1 is a 1-state set. We continue in the same manner for the remaining sets S2, . . . Sx

by always applying the same derivation rules. Once we have concluded that Sx is a x state

set, we know that all states in Sx have at least distance x to the goal. We also know that

x is the cost of the generated plan. If the initial state I is contained in the set Sx, we can

conclude that the optimal solution has indeed cost x.

We will now provide a formal sketch of the proof. The sets S1, . . . , Sx will be used as

defined for blind search, where x is the optimal cost of the task.

(1) D1 → SAll is a 0-state set

(2) B4 → S1[A] ⊆ SAll
3

(3) B3 → S1 ∩ SG ⊆ ∅

(4) D7, {(1), (2), (3)} → S1 is a 1-state set

(5) B4 → S2[A] ⊆ S1

(6) B3 → S2 ∩ SG ⊆ ∅

(7) D7, {(4), (5), (6)} → S2 is a 2-state set

. . .

(n-3) D7, {(n-6), (n-5), (n-4)} → Sx is a x-state set

(n-2) B1 → {I} ⊆ Sx

(n-1) D6 → The cost of the generated plan is x.

(n) D8, {(n-3), (n-2), (n-1)} → The optimal solution has cost x.

6.2 A∗ Search
In contrast to the blind search, A∗ search (see Section 2.3.2) uses a heuristic as an indicator

of how close a state is to the goal. This h-value is used in addition to the g-value to determine

which state is to be expanded next during the search. We can make use of different heuristics,

which have distinct attributes. We will first describe the general form of the proof for A∗

search, and in a later step include proofs for the hmax heuristic.

3 Technically, B4 has the form X[A] ⊆ X′ ∪L. We could conform to this by writing S1[A] ⊆ Sall ∪ ∅. But
for the sake of simplicity, we will omit the union with the empty set.
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To create a certificate for A∗ search, we again need to build concrete sets. We once more

use the notation of Sx sets introduced above. The 0-state set SAll again consists of all states

of the task. We will distinguish between states which have been expanded during the search

and states which have not. States which have been expanded have only successors that are

known. For these states, we again use the g-value to determine to which x-state set they

belong, as already explained for blind search. This means that an expanded state with a

g-value of x− n or lower will be assigned to the set Sn.

Since we require all successors of an n-state set to be in an (n − 1)-state set, we cannot

simply add non-expanded states to an n-state set, since their successors are not in an (n−1)-

state set. Therefore, we will use the heuristic value h of the non-expanded states to prove

that they are h-states so that we can form unions over any n-state set and h-state sets for

which h ≥ n holds. Once this union has been formed, our premise that all successors of a

state are in the corresponding state-set is fulfilled. We will prove individually for the hmax

heuristic that a state with a heuristic value of h is actually an h-state. In general, this can

be proven for other admissible heuristics as well.

We know that the optimal path of the cost must consist of states which have been expanded

during the search. Since we use the same assignment for expanded states to sets as in blind

search, we can apply the same argumentation as in Section 6.1 in order to verify that Sx

contains the initial state I and that all other states of the optimal path are contained in

their respective sets as well.

6.2.1 Proof of Premises for A∗ Search
As for blind search, we will first prove some observations about A∗ search, which we will

need during the creation of the certificate.

Theorem 5. Sn ∩ SG = ∅ for any set Sn with n ≥ 1.

Proof. Since Sn contains only states which have been expanded and have a g-value between

0 and x− n, we can use the same argumentation as in Section 6.1.1.

Theorem 6. Sn[A] ⊆ Sn−1 ∪
⋃

h(s)≥n−1{s} for any sets Sn, Sn−1 with n ≥ 1.

Proof. For any state in Sn, its expanded successors are in Sn−1 as explained in Section 6.1.1.

The non-expanded states are in
⋃

h(s)≥n−1{s}. We will prove that all non-expanded succes-

sors of Sn must indeed have a h-value which is equal or larger than n−1. We will show this

property using a contradiction.

Assume the state s′ is a non-expanded successor of a state s ∈ Sn and h(s′) < n − 1. The

following three statements follow.

I g(s) ≤ x− n since s ∈ Sn

II g(s′) ≤ x− n+ 1 since s′ = s[a] and ca = 1

III h(s′) < n− 1 by assumption



Certificates for Optimality 28

From these statements, we can conclude that f(s′) = g(s′) + h(s′) < x− n+ 1+ n− 1 = x.

This result means that the heuristic value of s′ is lower than the optimal cost of the task

x. Since s′ must be in the open list and A∗ always expands states with a lower f -value

first, the state s′ must have been expanded before a goal state sg since f(sg) = x for goal-

aware heuristics. Since we consider admissible heuristics which are always goal-aware, this

statement holds for our case. However, the statement is a contradiction to our assumption,

as we assumed that s′ is a non-expanded state.

We can therefore conclude that no non-expanded successor of a state in Sn can have a

h-value which is smaller than n−1. Therefore, all non-successors s of Sn must be contained

in
⋃

h(s)≥n−1{s}.

6.2.2 Proof Sketch for A∗ Search
The general idea of the proof is to first derive for each non-expanded state that it is an

h-state so that we can later use this fact to form the union with other x-state sets. As for

blind search, we start with the set of all states and derive that the set S1 is a 1-state set.

In contrast to blind search, we cannot simply continue with the set S2. We first have to

form the union over the set S1 and all non-expanded states, which are h-states where h is

equal or larger to 1. We can conclude that this union must be a 1-state set and also includes

all successors of the states in S2. We can now continue by deriving the fact that S2 is a

2-state set. We continue the derivation by always forming the union over an x-state set,

with all expanded states which have a h-value larger or equal to x. Once we have derived

the fact that I is an element of an x-state set, x being the cost of the generated plan, we

can conclude in the same manner as for blind search that x is the optimal solution of the

task.

We will now provide a formal sketch of the proof. The sets S1, . . . , Sx are used as defined

for A∗ search. In addition, we have the sets consisting of a non-expanded state si,j , where i

is the h-value of the state and j distinguishes between states with the same h-value. Again,

x is the optimal cost of the task.

(11) h(s1,1) = 1 → {s1,1} is a 1-state set

. . .

(1n) h(s1,n) = 1 → {s1,n} is a 1-state set

. . .

(k1) h(sk,1) = k → {sk,1} is a k-state set

. . .

(km) h(sk,m) = k → {sk,m} is a k-state set

(1) D1 → SAll is a 0-state set
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(2) B4 → S1[A] ⊆ SAll

(3) B3 → S1 ∩ SG ⊆ ∅

(4) D7, {(1), (2), (3)} → S1 is a 1-state set

(5) D5, {(11), . . . (1n), . . . , (k1), . . . , (km), (4)} → S1 ∪
⋃

h(s)≥1{s} is a 1-state set.

(6) B4 → S2[A] ⊆ S1 ∪
⋃

h(s)≥1{s} 4

(7) B3 → S2 ∩ SG ⊆ ∅

(8) D7, {(5), (6), (7)} → S2 is a 2-state set

. . .

(n-3) D7, {(n-6), (n-5), (n-4)} → Sx is an x-state set

(n-2) B1 → {I} ⊆ SX

(n-1) D6 → The cost of the generated plan is x.

(n) D8, {(n-3), (n-2), (n-1)} → The optimal solution has cost x.

6.3 hmax Heuristic
We will first introduce the hmax heuristic so that we can later use this definition to prove that

any non-expanded state with a heuristic value of h is an h-state. As hmax is an admissible

heuristic, we are able to do so. The definition for the hmax heuristic of a state s is taken

from Bonet and Geffner [1].

hmax(s) = min(max(gs(v))
v∈pre(G)

+ ca) = min(max(gs(v))
v∈pre(G)

+ 1),

where ca is the cost of the action a which results in G. Since we consider only unit cost

tasks, ca will always be equal to 1. The value gs(v) is the cost for starting in state s

and achieving variable v, which is a precondition needed to reach the goal G. This cost is

calculated iteratively by starting with the variables vI in state I for which gs(vI) = 0. For

variables v′ which can be achieved by applying an action that is coherent with the available

preconditions, gs(v1) = min(max(gs(v0)) + ca) holds. The variable v0 is a precondition

of the action a which results in variable v1. Therefore, the gs value of a variable v always

corresponds to the cheapest sum of the cost of an action resulting in v plus its most expensive

precondition.

This heuristic estimates the distance to the goal by determining the cost of the precondi-

tion which is most expensive to achieve. Since hmax is an admissible heuristic, its value for a

state will always be lower or equal to the actual path cost. This can be explained intuitively

by the fact that achieving all remaining preconditions usually needs additional actions. In

4 This again does not technically conform to basic statement B4, since it only allows a union of size 2. We
could form this union step by step, which would blow up the proof, but not exponentially.
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the case where all other preconditions are achieved in parallel and are not deleted, we have

hmax(s) = h∗(s), which means that our h-value matches the perfect heuristic. In any case,

our estimate can never be higher than the actual distance to the goal, because we will always

need to achieve the most expensive precondition in order to reach the goal.

6.3.1 Proof of h-states for hmax

We have to prove that a non-expanded state s with hmax(s) = h is an h-state. We can do

so by using the knowledge we gained while calculating the hmax value of a state. We will

use this knowledge in combination with the derivation rules from Definition 2 and the basic

statements from Definition 3 in order to prove that s is an h-state.

Since we consider the variables which can be achieved from a state during the calculation

of hmax, we will use these variables in order to define our x-state sets. We again use gs(v)

as defined previously. In this case, s is the state with hmax(s) = h. For any variable v ∈ s,

the value of gs(v) will be zero. For any variable v ̸∈ s, the value is determined again by the

cost of the most expensive precondition in addition to the action cost. We will build our set

as follows. The set S0 is again the set of all states SAll. Any layer x consists of all states,

which contain only variables v for which gs(v) ≤ h − x holds. We can reformulate this by

stating that any layer x consists of all states which do not contain a variable v for which

gs(v) > h− x holds. Hence, they contain ¬v. We define a set Sx as the set of states which

contain ¬v for any variable v for which gs(v) > h − x holds. Therefore, the state set S1

contains only states which do not contain a variable v where gs(v) is larger than h− 1.

We know that S1, . . . , Sh cannot contain a goal, since at least one variable which is needed

for the goal has not been achieved yet. This is because the hmax value is equal to the cost

of the most expensive goal variable. We also know that successors of an x-state set can only

be contained in an (x − 1)-state set since they contain all states which are in Sx as well

as all states which contain variables that can be reached with an additional action, which

always has cost 1. Since gs(v) = 0 for all variables in the state s, we know that s must be

contained in the h-state set since gs(v) > h− h = 0 for all variables v ̸∈ s. We can now use

these sets to prove that s is an h-state set.

(1) D1 → SAll is a 0-state set

(2) B4 → S1[A] ⊆ SAll

(3) B3 → S1 ∩ SG ⊆ ∅

(4) D7, {(1), (2), (3)} → S1 is a 1-state set

. . .

(n-2) D7, {(n-6), (n-5), (n-4)} → Sh is a h-state set

(n-1) B1 → {s} ⊆ Sh

(n) D3, {(n-2), (n-1)} → {s} is an h-state set.
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Using the same proof structure, we can show that {s} is an h-state for any non-expanded

state s in the task.



7
Conclusion

We have presented two possibilities to prove that the optimal solution of a task has been

found. The first attempt made use of the already introduced certificates for unsolvability.

In this approach, the original task was reformulated in such a way that it was allowed

to be solved only with less than the initially determined cost, making the modified task

unsolvable if the determined cost was optimal. Hence, an unsolvability certificate could be

generated and verified for the task. In the second approach, an independent proof system

for optimality was introduced. This system used the notion of x-state sets and was based

on the proof system introduced for unsolvability. We will now discuss the results of the two

approaches.

The first approach could be tested experimentally by modifying unit cost tasks as de-

scribed. These modified tasks were then run using two different heuristics, namely hM&S

and hmax. In general, the results of the runs were good. Unfortunately, certificates could

be generated for only slightly more than half of the runs. This was due to time and memory

constraints used for the runs. However, most of the generated certificates could be verified.

In addition, no severe memory or time overhead occurred for the successful runs. However,

this approach is prone to error as the modification of the task might not be performed

correctly, especially for tasks with special features. Since the translation of the tasks is

never verified, these errors are not likely to be detected. Therefore, the second approach is

intended to remedy the situation since it considers the original task without modifications.

In our second approach, we designed a formal proof system which used the notion of

x-state sets, i.e. sets of states which have at least distance x to the goal. Using this notion,

we could individually prove that a certain cost was indeed the optimal cost for the task by

using the fact that the initial state had at least the corresponding distance to the goal. This

proof system makes it possible to independently verify that the calculated cost of a task is

indeed optimal.

Future work could include the extension of search algorithms by the generation of proofs

based on the introduced proof system, as well as a stand-alone verifier for the proof system.
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In order to actually implement these certificates, it is necessary to first investigate which

types of state set representations are suitable for the certificates sketched.

This thesis only considered unit cost tasks. However, many tasks do not have the same

cost for each action. It would therefore be interesting to extend the approaches presented

for non-unit cost tasks.
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Figure A.1: Memory comparison between hM&S and hmax
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Figure A.2: Expansions comparison between hLM−cut and hM&S
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Figure A.3: Expansions comparison between hLM−cut and hmax
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