
Mutex Based Potential Heuristics
Bachelor thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

https://ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Salomé Eriksson

Salome Müller

salo.mueller@unibas.ch

2017-063-058

06. 11. 2020

Acknowledgements

First, I want to thank Prof. Dr. Malte Helmert for the opportunity of writing my bachelor

thesis in the AI group at the University of Basel. I am very grateful for the support of

Dr. Salomé Eriksson, who patiently answered all my questions and guided me through this

work. I would like to acknowledge Dr. Florian Pommerening for helping me understand the

LP constructor of Fast Downward.

Further, I received a great deal of support and assistance from Lucas Galery Käser, as well

as from my flatmates. Thank you all for keeping me nourished.

Last, I want to thank Ada Lovelace, the first programmer there was, for being an inspiration

to women in computer science.

Calculations were performed at sciCORE (http://scicore.unibas.ch/) scientific computing

center at University of Basel.

Abstract

One dimensional potential heuristics assign a numerical value, the potential, to each fact

of a classical planning problem. The heuristic value of a state is the sum over the poten-

tials belonging to the facts contained in the state. Fǐser et al. (2020) recently proposed

to strengthen potential heuristics utilizing mutexes and disambiguations. In this thesis,

we embed the same enhancements in the planning system Fast Downward. The experi-

mental evaluation shows that the strengthened potential heuristics are a refinement, but

too computationally expensive to solve more problems than the non-strengthened potential

heuristics.

The potentials are obtained with a Linear Program. Fǐser et al. (2020) introduced an

additional constraint on the initial state and we propose additional constraints on random

states. The additional constraints improve the amount of solved problems by up to 5%.

Table of Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Background 2

2.1 Planning Tasks . 2

2.2 Heuristics . 3

2.3 Mutexes and Disambiguations . 4

3 Strengthening Potential Heuristics 5

3.1 Potential Heuristics . 5

3.1.1 Generalization with Mutexes . 6

3.2 Transition Normal Form . 7

3.2.1 Generalization with Mutexes . 8

3.3 Linear Program . 9

3.4 Optimization Functions . 9

3.4.1 Strengthening All State Potentials . 10

3.4.2 Strengthening Conditioned Ensemble Potentials 11

3.4.3 Adding Constraint on Initial State . 11

3.4.4 Adding Constraints on Random States 12

3.5 Implementation . 12

4 Experimental Evaluation 14

4.1 Results . 15

4.1.1 Mutex Based Linear Program . 15

4.1.2 Mutex Based Optimization Functions 17

4.1.3 Ensemble Heuristics . 18

4.1.4 Additional Constraint on the Initial State 19

4.1.5 Additional Constraints on Random States 20

4.2 Comparison to Fǐser et al. 22

5 Conclusions 23

Table of Contents v

Bibliography 25

Declaration on Scientific Integrity 26

1
Introduction

One dimensional potential heuristics assign a potential, i.e., a numerical value, to each fact

of a classical planning problem. They can be used in a heuristic search, the most common

approach to solve such problems. The potentials are obtained with a Linear Program, which

optimizes the potentials according to an optimization function. Different optimization func-

tions yield different heuristics. The heuristic value of a state is the sum over the potentials

of the fact in this state.

In this thesis, we reproduce the work of Fǐser et al. (2020) who proposed to strengthen

potential heuristics with mutexes and disambiguations. Mutexes are sets of facts, which can

never appear together in any reachable state. They can be used to build disambiguation

sets for partial states. They contain all remaining facts which can be assigned to this partial

state, i.e., which are not mutex with any of the facts in the partial state.

As introduced by Fǐser et al. (2020) we use mutexes and disambiguations to build a less

restricted Linear Program. This does lead to better heuristics but the computation is too

expensive and slightly less problems are solved.

Next, we use mutexes and disambiguations to strengthen the optimization functions. This

leads to good single and ensemble heuristics, however not more problems can be solved,

than with the non-strengthened optimization functions.

Further, we add the additional constraint on the initial state to the constraints of the LP,

as Fǐser et al. (2020) proposed. This does indeed enhance the performance, as the resulting

heuristics solve more problems as the same heuristics computed without the additional

constraint.

Taking this idea one step further, we add additional constraints on random states. Therefore,

random states are generated with random walks, and constraints gained by optimizing the

LP for this states are added. These additional constraints do not enhance the performance

of the resulting heuristics in comparison to the constraint on the initial state. They are,

however, better than using no additional constraint at all, and could be further enhanced.

Last, we compare our results to the evaluation of Fǐser et al. (2020). It turns out, that

the translation and pre processing of the planning tasks they use, as well as their way for

generating of the potentials, are faster than ours.

2
Background

The goal of this chapter is to define and explain the terminology used in this thesis. For

visualization, we use the 8-Tiles problem as an example. This is a classical planning problem,

in which 8 tiles are arranged in a 3x3-grid. One spot remains empty, the goal is to bring

the tiles in a specific order by sliding them around.

2.1 Planning Tasks
In order to solve a problem with an algorithm, we first need to establish mathematical

expressions which represent the problem.

We define V as the finite set of variables, where each of the variables V ∈ V has a finite

set of values called the domain dom(V). For 8-Tiles, the variables could be defined as the

9 fields in the grid (v1, . . . , v9), and their domains hold the values of all tiles and the blank

space (1 to 8 and 0 for the blank tile). A fact f = 〈V, v〉 consists of a variable V ∈ V and

one of its values v ∈ dom(V). The fact for tile number 5 being in the first position would be

〈v1, 5〉. The set FV holds all possible facts of variable V ∈ V while F is the set of all facts

of this problem.

A partial state p of size t contains t facts of t different variables, i.e., it is the variable

assignment over the variables vars(p) ⊆ V with |vars(p)| = t. We denote the value assigned

to V in p as p[V]. In other words, p = {〈V, p[v]〉|V ∈ vars(p)}. If a partial state s is fully

assigned i.e., vars(s) = V, we call s a state. A state s extends the partial state p ⊆ s, if

s[v] = p[v] for all v ∈ vars(p). The partial state p = {v1 7→ 0, v2 7→ 1} represents all states

where the first grid in the field of the 8-Tiles puzzle is the blank space while tile number

one lies in the second field.

I is the initial state, in 8-Tiles this is some specific random order of the tiles. G is a

partial state representing the goal. State s is a goal state, if it is an extension of G.

In 8-Tiles G is a state representing one specific order of the tiles e.g. sorted by number:

s = {v1 7→ 1, v2 7→ 2, v3 7→ 3, v4 7→ 4, v5 7→ 5, v6 7→ 6, v7 7→ 7, v8 7→ 8, v9 7→ 0}.
O is a finite set of operators. Each o ∈ O has a precondition pre(o) and an effect eff(o)

which are both partial states over V, and a cost c(o) ∈ R+
0 .

The operator o is applicable in state s iff pre(o) ⊆ s. We call the resulting state oJsK. In

Background 3

the resulting state oJsK, oJsK[v] = eff(o)[v] holds for all v ∈ eff(o), while the other variables

do not change, i.e., oJsK[v] = s[v] for all v /∈ eff(o). In 8-Tiles, the operators encode the

movement of one tile to the blank space. The precondition assures that the tile is next to

the blank space, the effect swaps the values of the corresponding two variables, while all

other tiles remain at the same position.

In order to reach the goal multiple operators need to be applied in a specific order. A

sequence of operators π = 〈o1, . . . , on〉 is called a path. It is applicable in s if o1 is applicable

in s and o2 is applicable in s1 = o1JsK and so on. The resulting state is πJsK = sn. The cost

of a plan is the sum over the cost of all contained operators, i.e., c(π) =
∑n

i=1 c(oi). A path

π is an s-plan, if π is applicable in s and πJsK is a an extension of G and therefore a goal

state. If it has minimal cost among all s-plans it is called optimal.

The set R is defined as the set of all reachable states. A state s is reachable, if a path

π is applicable in I such that πJIK = s. An operator o is reachable, if it is applicable in a

reachable state. A state s is a dead-end state if it does not extend the goal state, and no

s-plan exists.

We specify the tuple Π = 〈V,O, I, G〉 where Π is a planning task in the SAS+ formal-

ism (Bäckström and Nebel, 1995).

2.2 Heuristics
One very common approach to solve planning tasks is heuristic search. A heuristic h :

R → R ∪ {∞} estimates the cost of the optimal plan for a state s ∈ R. The problem of

8-Tiles has uniform cost, as sliding a tile always costs the same, i.e. 1, and there are no other

operators. Therefore, the cost of a s-plan of any state which is not a dead-end equals the

amount of tiles, which need to be slid in the plan. The optimal heuristic h∗(s) maps each

state s to its actual optimal cost, or to ∞ if it is a dead-end state. We aim to approximate

this heuristic.

Heuristics are used by search algorithms. They evaluate on where to continue the search

based on the heuristic values of states. This thesis uses heuristics in the forward heuristic

search where unreachable states are never expanded. Therefore they are defined over R
instead of over all states and the following holds for reachable states only.

A heuristic is admissible, if it never overestimates the optimal heuristic, i.e., h(s) ≤ h∗(s).
It is goal-aware iff h(s) ≤ 0 for all reachable goal states, i.e., it recognizes a goal sate as

such. Further, it is consistent iff h(s) ≤ h(oJsK) + c(o) for all o applicable in s.

A heuristic which is goal-aware and consistent is also admissible. The search algorithm

A? (Hart et al., 1968), which we will use for our evaluation (Ch. 4), always finds the optimal

plan, if the used heuristic is admissible. We will therefore only consider admissible heuristics.

One class of heuristics are potential heuristics which assign a numerical value to certain

features of a planning task. One dimensional potential heuristics, which are subject of this

thesis, assign a potential to each possible fact of the planning task (Pommerening et al.,

2015).

Definition 1. Let Π denote a planning task with facts F . A potential function is a

function P : F 7→ R. A potential heuristic for P maps each state s ∈ R to the sum of

Background 4

potentials of facts in s, i.e., hP(s) =
∑

f∈s P (f).

The potentials themselves are obtained through optimization which will be further analyzed

in Chapter 3.

One further approach is ensemble heuristics. Instead of only one heuristic, this approach

uses multiple heuristics and chooses the highest value as heuristic value for for each state.

2.3 Mutexes and Disambiguations
A mutex is a set of facts which never appear together in any reachable state. If a partial

state p in 8-Tiles holds p[v3] = 1, then tile one may not be in any other spot of the grid,

i.e., the fact 〈v3, 1〉 is mutex with all other facts 〈v, 1〉 with v ∈ V \ {v3}.
The following definitions were introduced by Fǐser et al. (2020).

Definition 2. Let Π denote a planning task with facts F . A set of factsM⊆ F is a mutex

if M * s for every reachable state s ∈ R

Further, we define the setM. For a given set of mutexes M ,M contains all mutexes which

are in M and all further mutexes which can directly be inferred from M . For any (partial)

state s it holds, that s ∈M if s contains a subset of facts which are a mutex. For 8-Tiles,M
would contain, among others, the partial state p = {〈v3, 1〉, 〈v4, 1〉}, and all possible partial

states extending p.

We can use M to derive disambiguations.

Definition 3. Let Π denote a planning task with facts F and variables V, let V ∈ V denote a

variable, and let p denote a partial state. A set of facts F ⊆ FV is called a disambiguation

of V for p if for every reachable state s ∈ R such that p ⊆ s it holds that F ∩ s 6= ∅ (i.e.,

〈V, s[V]〉 ∈ F).

The disambiguation of a variable V for a partial state p is the set of facts F ⊆ FV which

occur in all reachable extended states of p. This means, that each fact of V which is not

in F is a mutex with p. If F contains exactly one fact then p can be safely extended with

that fact, as it is the only non-dead-end extension of the state. If F is the empty set every

extended state of p is a dead-end. This knowledge can be used to prune operators o for

which p ⊆ pre(o) and unreachable states s ⊆ p. If the goal state G is one of this states, the

problem is unsolvable.

If a partial state s of the 8-Tiles problem holds p[v3] = 1 and p[v2] = 1, then it is a dead-end,

as these facts are a mutex. If p = {v1 7→ 1, v2 7→ 2, v3 7→ 3, v4 7→ 4, v5 7→ 5, v6 7→ 6, v7 7→
7, v8 7→ 8} then p is not a dead-end and v9 can safely be assigned with 0, as it is the only

fact in Fv9
which does not form a mutex with any of the already assigned facts.

The set Mp = {f |f ∈ F , p ∪ {f} ∈ M} is the set of facts which are mutex with p. All

facts of a variable f ⊆ FV not contained in Mp build the disambiguation F of V for p.

In Chapter 3 we will use this to improve potential heuristics by narrowing down possible

extensions of partial states.

3
Strengthening Potential Heuristics

Fǐser et al. (2020) propose a method to improve potential heuristics with mutexes and dis-

ambiguations. This chapter contains the changes which are required to do so, regarding the

transformation of a planning task into TNF and the adaption of the optimization functions.

It shows how the equations which were later implemented (Section Implementation) are

derived.

3.1 Potential Heuristics
When Pommerening et al. (2015) first introduced potential heuristics, they described to

inequalities to assure the admissibility of the heuristic. The first one assures goal-awareness,

the second one consistency.

Theorem 4. Let Π = 〈V,O, I, G〉 denote a planning task, P a potential function, and for

every operator o ∈ O, let pre∗(o) = {〈V,pre(o)[V]〉|V ∈ vars(pre(o)) ∩ vars(eff(o))} and

vars∗(o) = vars(eff(o)) \ vars(pre(o)). If∑
f∈G

P(f) +
∑

V ∈V\vars(G)

max
f∈FV

P(f) ≤ 0 (3.1)

and for every operator o ∈ O it holds that∑
f∈pre∗(o)

P(f) +
∑

V ∈vars∗(o)

max
f∈FV

P(f)−
∑

f∈eff(o)

P(f) ≤ c(o) (3.2)

then the potential heuristic for P is admissible.

Eq. (3.1) of Theorem 4 assures goal-awareness of the potential heuristic. As all variables are

assigned in a goal state, the potential of one fact per variable has to be summed up. For the

variables v ∈ vars(G) we can simply use the potentials of their respective facts. Meanwhile

we assume the worst case for the other variables, by using the maximal potential over their

facts, as we do not know what fact they are assigned.

Eq. (3.2) assures consistency. Recall the general heuristics consistency equation h(s) ≤
h(oJsK) + c(o). It can be rewritten as h(s) − h(oJsK) ≤ c(o). As the facts which do not

occur in the effect are the same in both s and oJsK we can leave them aside. For s we know

Strengthening Potential Heuristics 6

what facts of the variables of the preconditions are assigned and sum the potentials of the

facts which are in the effect as well. For the variables which are in the effect but not in the

precondition we proceed similarly to (3.1), as we do not know their values. The potentials

of the facts in the effect can be used without modification for oJsK.
The advantage of these equations is that they are not state-dependent, even though they

do not tell us explicitly what the potentials should be. However, they can be used as the

constraints for a linear program, the solution of which is a potential function that forms an

admissible potential heuristic. More about this in Section 3.2.

3.1.1 Generalization with Mutexes
Mutexes can be used to reduce the domain of variables, which are not yet assigned in a

partial state p. This property is very helpful, as it minimizes the amount of facts which are

candidates for the not assigned variables in Equations (3.1) and (3.2) of Theorem 4. We

perform this reduction with the following algorithm (Fǐser et al., 2020).

Algorithm 1 Multi-fact fix-point disambiguation.

Input: A planning task Π with variables V and facts F , a partial state p, and a mutex-set
M.

Output: A set of disambiguations Dp of all variables V for p.
1: Dv ← FV for every V ∈ V
2: A←Mp

3: change ← True
4: while change do
5: change ← False
6: for all V ∈ V do
7: if DV \A 6= DV then
8: DV ← DV \A
9: A← A ∪⋂

f∈DV
Mp∪{f}

10: change ← True
11: end if
12: end for
13: end while
14: Dp ← {DV |V ∈ V}

At the beginning of the algorithm, the set DV contains all possible values for the variable

V ∈ V, while A contains all facts which are a mutex with p. In each iteration of the while-

loop, all f = 〈v, V 〉 which are in A and in DV are removed from the corresponding DV . On

line 9, A is extended with all facts that form a mutex with all facts remaining in DV , i.e.,

which are a mutex with p ∪ {f} for all f ∈ DV .

In conclusion, after applying multi-fact fix-point disambiguation p can be extended with any

fact in Dp without reaching a dead-end state. If any DV ∈ Dp is empty, then p is already a

dead-end itself.

This algorithm is used for several applications during the remainder of this chapter. In this

section, it can be used to generalize Theorem 4 by removing the potentials of facts, which

are a mutex with the corresponding goal or effect. Since we define heuristics over R, the

resulting potential heuristic is still admissible.

Strengthening Potential Heuristics 7

Theorem 5. Let Π = 〈V,O, I, G〉 denote a planning task with facts F , and let P denote a

potential function, and

(i) for every variable V ∈ V, let GV ⊆ FV denote a disambiguation of V for G s.t.

|GV | ≥ 1, and

(ii) for every operator o ∈ O and every variable V ∈ vars(eff(o)), let Eo
V ⊆ FV denote a

disambiguation of V for pre(o) s.t. |Eo
V | ≥ 1.

If ∑
V ∈V

max
f∈GV

P(f) ≤ 0 (3.3)

and for every operator o ∈ O it holds that∑
V ∈vars(eff(o))

max
f∈Eo

V

P(f)−
∑

f∈eff(o)

P(f) ≤ c(o) (3.4)

then the potential heuristic P is admissible.

Fǐser et al. (2020) prove the theorem by showing that Equations (3.3) and (3.4) are gener-

alizations of Equations (3.1) and (3.2), respectively.

The disambiguation GV equals DV ∈ DG with V ∈ V, which is generated by applying

Algorithm 1 on the goal state. If it is empty for any of the variables, then the problem is

unsolvable, as the goal contains a mutex and is therefore not a reachable state. The set Eo
V

is equal to DV ∈ Dpre(o). If Eo
V is empty for any V ∈ vars(eff(o)), o is not applicable in any

state.

Since we later use this equations as constraints for a Linear Program, we must bring them

in a form which does not contain an optimization function. We do this by transforming the

planning task into transition normal form.

3.2 Transition Normal Form
A planning task can always be compiled into Transition Normal Form or TNF (Pommeren-

ing and Helmert, 2015). In TNF, a planning task has a fully defined goal (vars(G) = V) and

all variables of the effect are also in the precondition for each operator o ∈ O (vars(pre(o)) =

vars(eff(o))). These properties are essential to form the Linear Program, which we will dis-

cuss in the next section. Any planing task Π = 〈V,O, I, G〉 can be transformed into TNF

with the following rules cited from Fǐser et al. (2020):

� Add a fresh value U to the domain of every variable.

� For every variable V ∈ V and every fact f ∈ FV , f 6= 〈V,U〉, add a new forgetting

operator of with pre(of) = {f} and eff(of) = {〈V,U〉} and the cost c(of) = 0.

� For every operator o ∈ O and every variable V ∈ V:

– If V ∈ vars(pre(o)) and V /∈ vars(eff(o)), then add 〈V,pre(o)[V]〉 to eff(o).

– If V ∈ vars(eff(o)) and V /∈ vars(pre(o)), then add 〈V,U〉 to pre(o).

Strengthening Potential Heuristics 8

� For every V ∈ V \ vars(G) add 〈V,U〉 to G.

Each Variable V ∈ V gets a new value U in its domain, which can be seen as a sort of

placeholder. The fact 〈V,U〉 can be assigned with cost 0, as the forgetting operator of

which assigns it has no cost, regardless of the current state. The next point is to assure that

for each operator the variables which are in the precondition are also in the effect.

If V is present in the preconditions of an operator o ∈ O but not in the effect, then we

can simply add the fact 〈V, pre(o)[V]〉 to the effect. This is a formal change, but does not

change the effect of the operator at all, as it would not have changed this fact anyway.

The case of an operator o ∈ O where V is in the effect but not in the precondition, is a

little more complicated. Here, the precondition is changed such that it contains also the

fact 〈V,U〉. If o was applicable in s before, then, after transforming the plan into TNF,

the corresponding of needs to be applied beforehand in order to forget the value of V .

This change of the variable is insignificant, as the value then gets changed by applying the

operator anyways.

Last, all variables which were not included in the partial state G need to be added into

it. If they are assigned the fresh value U , then the goal state can be reached from every

state which expanded it before. Without creating more cost, the values of all unimportant

variables are changed to the fresh value. The compilation into TNF can produce a planing

task twice the size of the original task in worst case (Seipp et al., 2015).

3.2.1 Generalization with Mutexes
Similar to Section 3.1.1, these rules can be generalized with disambiguations. Therefore,

to replace U we introduce the fresh values UGV
and UEo

V
. Instead of adding forgetting

operators from every fact in every V ∈ V, we use the disambiguation sets GV and Eo
V .

� Add fresh value UGV
to the domain of every V ∈ V.

� For every variable V ∈ V and every fact f ∈ GV , f 6= 〈V,UGV
〉, add new forgetting

operators ofG with pre(ofG) = {f} and eff(ofG) = {〈V,UGV
〉} and the cost c(ofG) = 0.

� For every V ∈ V \ vars(G) add 〈V,UGV
〉 to G.

� For every operator o ∈ O add fresh value UEo
V

to the domain of every V ∈ V:

– If V ∈ vars(pre(o)) and V /∈ vars(eff(o)), then add 〈V,pre(o)[V]〉 to eff(o).

– If V ∈ vars(eff(o)) and V /∈ vars(pre(o)), then add 〈V,UEo
V
〉 to pre(o).

� For every variable V ∈ V, every operatoro ∈ O and every fact f ∈ Eo
V , f 6= 〈V,UEo

V
〉,

add new forgetting operators o′f,o with pre(o′f,o) = {f} and eff(o′f,o) = {〈V,UEo
V
〉} and

the cost c(o′f,o) = 0.

For the goal state, forgetting operators are only created for the facts in FV which are not

a mutex with G for every V /∈ vars(G). Similarly, facts in FV which are a mutex with any

f ∈ pre(o) are not taken into account for all o ∈ O and every V ∈ vars(eff(o)). This creates

at most |O| ∗ |V| UEo
V

and |V| UGV
and the amount of forgetting operators is in the worst

Strengthening Potential Heuristics 9

case the same, multiplied with the sum of the cardinalities of the domains of all V ∈ V.

In practice, Fǐser et al. (2020) show that the transformation with disambiguations is never

bigger than without disambiguations.

3.3 Linear Program
The formulas and rules which were defined in the previous two sections can now be used to

form a Linear Program (LP).

An LP consists of LP-variables which are constrained by multiple inequalities (constraints)

and which are part of an optimization function. An LP-solver then assigns each LP-variable

a value, such that all constraints are satisfied and the optimization function is optimized.

We will look at different optimization functions in the next section (3.4).

In order to find a potential heuristic, the LP-variables are the potentials of the facts, P (f).

Further, we introduce the the LP-variables Xf = P(f) for every f ∈ F and MGV
and MEo

V

corresponding to UGV
and UEo

V
, respectively, with the constraint that Xf ≤MGV

for every

f ∈ GV and Xf ≤ MEo
V

for every f ∈ Eo
V . Using these variables, we can transform the

Equations (3.3) and (3.4) into the constraints∑
f∈G

Xf +
∑

V ∈V\vars(G)

MGV
≤ 0 (3.5)

and ∑
f∈pre∗(o)

Xf +
∑

V ∈vars∗(o)

MEo
V
−

∑
f∈eff(o)

Xf ≤ c(o) (3.6)

which assure admissibility. MGV
and MEo

V
correspond to UGV

and UEo
V

, respectively, since

these are the facts which are assigned if a variable is not defined in the goal state or in a

precondition of an operator. Th LP can then be used to build the potential heuristic (Pom-

merening et al., 2015):

Definition 6. Let f be a solution to the following LP:

Maximize opt subject to (3.5) and (3.6), where the objective function opt can be chosen

arbitrarily.

Then the function potopt(〈V, v〉) = f(P〈V,v〉) is the potential function optimized for opt and

hp is the potential heuristic optimized for opt.

Since 3.5 and 3.6 assure admissibility, any solution of the LP builds an admissible hp. The

solution of the LP might differ vastly depending on the used optimization function.

3.4 Optimization Functions
An optimization function opt is a linear combination of the LP-variables. In our case, the

goal is to have best possible heuristic value for as many states as possible. Using different op-

timization functions optimizes different aspects of a heuristic. The perfect heuristic would be

achieved if we optimized the potentials for each state separately, but this is computationally

too expensive.

Strengthening Potential Heuristics 10

In the first proposal for potential heuristics from Pommerening et al. (2015), the optimization

for the initial state was used,

optI =
∑
f∈I

P(f). (3.7)

It optimizes the heuristic value for the initial state. The drawback is that facts which do

not appear in the initial state are not taken into account.

Alternatively, we could optimize the potentials for all reachable states, as we are only inter-

ested in these:

optR =
1

|R|
∑
s∈R

∑
f∈s

P(f). (3.8)

It calculates the weighted sum of all facts, i.e., it multiplies the potential of a fact with

the amount of reachable states containing this fact and normalizes it with the total amount

of reachable states. The potentials generated with this optimization function would result

in the heuristic with the maximal average heuristic value over all reachable states. Un-

fortunately, calculating this is, again, computationally expensive or even infeasible, if the

planning task and therefore the size of R are big, as the set of reachable states is not known.

To avoid this, we could sample some states S ⊆ R, and calculate Equation (3.8) over these

states, instead of R:

optŜ =
1

|S|
∑
s∈S

∑
f∈s

P(f). (3.9)

This equation can easily be used for ensemble heuristics. We could generate multiple sets of

sample states, optimize for each and create a multiple potential heuristic for each of these

sets. The optimization function could also assume uniform distribution and give all facts

the same weight. Instead of going over all facts of all states, we would sum over the domains

of all variables, optimizing the average value of all syntactic states:

optS =
∑
〈V,v〉∈F

1

|dom(V)|P(〈V, v〉). (3.10)

We call this the all-states-potential optimization function. Both, (3.10) and (3.9), can be

strengthened with mutexes and disambiguations.

3.4.1 Strengthening All State Potentials
To estimate the amount of reachable states containing f = 〈V, v〉, we will calculate the upper

bound of these states, and try to lower it for each f ∈ F . The product of the domains of

all variables except V , since V is already assigned, is the total amount of states, reachable

and non-reachable, which contain f . With Algorithm 1 from Section 3.1.1 we can remove

all facts from all domains which are mutex with f . These facts could never be assigned in

any reachable state containing f . Therefore, the product over all domains in the resulting

disambiguation set is again an upper bound of appearances of f in R.

This holds not only for a single fact, but can be applied to estimate the appearances of any

partial state p. As the product of all domains in the disambiguation set is taken the value

is zero, if p is a mutex itself.

Strengthening Potential Heuristics 11

We define Mp as the set of all facts which form a mutex with partial state p and P{f}k as

all partial states of size k extending {f}. Then an upper bound for the amount of reachable

states of size k containing f is

Ckf (M) =
∑

p∈P{f}k

∏
V ∈V
|FV \Mp|. (3.11)

The Equation has the constraint to only extend states to size k, as it would get computa-

tionally too expensive to compute all reachable states for which f holds.

We will now use Equation (3.11) to calculate the weight of each f ∈ F as its relative ap-

pearance in all states extending any p ∈ P{f}k and form the following optimization function:

optkM =
∑

f=〈V,v〉∈F

Ckf (M)∑
f ′∈FV

Ckf ′(M)
P(f). (3.12)

The result is a modification of optS (Eq. (3.10)) that does not assume uniformly distributed

facts. Each fact is weighted according to its estimated appearance in all reachable states of

size k in relation to the other facts of the corresponding variable. The sum of the weights

for all facts of one variable is 1. We can use this not only as a single heuristic, but also in

ensemble heuristics.

3.4.2 Strengthening Conditioned Ensemble Potentials
If we divide R into multiple subsets Si ⊂ R, with i = 1, . . . , n and S1 ∪ · · · ∪ Sn = R,

the solution of the LP with optimization function optŜi
gives better heuristic values for

the states in Si than optR. If we calculate the potentials for the optimization of all Si,

the resulting heuristics can be used as ensemble heuristics. This gives a result which lies

somewhere between the all-states-potential heuristic and calculating the potentials for each

individual state.

We will choose Si as the states extending one particular partial state t, and use the potentials

generated with an adjusted optkM as one of multiple ensemble heuristics. For this we adapt

Equation (3.11), such that it counts how many reachable states of size |t|+ k extend t:

Kk
f (M, t) =

∑
p∈Pt∪{f}

|t|+k

∏
V ∈V
|F \Mp|. (3.13)

The corresponding optimization function uses the weights calculated with Kk
f (M, t),

optt,kM =
∑

f=〈V,v〉∈F

Kk
f (M, t)∑

f ′∈FV
Kk

f (M, t)
P(f). (3.14)

For this thesis, the partial states t were sampled uniformly at random, as did Fǐser et al.

(2020). Future research could be to investigate other ways to choose them.

3.4.3 Adding Constraint on Initial State
Both optkM and optt,kM optimize the potentials in regard of the entire reachable state space.

However, the importance of states may vary strongly, depending on where we start and what

Strengthening Potential Heuristics 12

path is taken from there towards the goal. For example, a planning task with multiple goal

states may have smaller heuristic values, even though the constraints enforce goal-awareness.

This is why we now look at a third approach which gives the initial state more weight and

add the constraint ∑
f∈I

P(f) = hPI(I) (3.15)

to the Linear Program, where hPI denotes the potential heuristic optimized for the initial

state (Eq. (3.7)). By calculating the potentials for this heuristic first and then taking it into

account for the actual potentials, we force the solver to find potentials which guarantee high

heuristic values for the initial state. This approach can be combined with all previously

discussed optimization functions.

3.4.4 Adding Constraints on Random States
Taking the idea of the additional constraint a step further, we decided to add constraints

on random states. For multiple states s we add the constraint

∑
f∈s

P(f) = hP(s). (3.16)

,

to the Linear Program, where hPs denotes the potential heuristic optimized for state s, i.e.,

optŜ ((3.9)) with S = s.

The states are generated with random walks. The length of the walks is binomially dis-

tributed around the ratio of the heuristic value of the initial state, hP(I), divided by the

average cost over all operators. Similarly to the additional constraint on the initial state,

this gives more weight to states reachable with this amount of steps from the initial state.

This rises the average heuristic value for the states in this area, which are the ones we are

interested in.

Since the states are generated randomly, the positive effect of these additional constraints

can not be guaranteed. To avoid this, a considerable amount of generated states would be

necessary, but this is computationally expensive.

3.5 Implementation
Our implementation of mutex based potential heuristics is embedded in the planning system

Fast Downward (Helmert, 2006) and written in C++.

We first implemented Algorithm 1, using the Fast Downward hm-heuristic with m = 2 to

build a mutex table. The computation of the hm-heuristic in Fast Downward is very slow.

Therefore, we implemented a new generator for the mutex table, which is very similar to

the hm-heuristic, but optimized for finding mutexes and therefore significantly faster.

Fast Downward has a potential optimizer, which initializes and constructs an LP-solver. We

implemented a new LP-constructor which builds the constraints according to Equations (3.5)

and (3.6). For both the non-mutex and the mutex constructor, we added the option to use the

additional constraints on the initial state and random states. They can be used individually

Strengthening Potential Heuristics 13

or combined. The additional constraints on random states do not take mutexes into account

for generating the states. The Linear Program is optimized for each state individually, and

the new constraint is added to the LP before optimizing for the next state.

Next, we implemented the optimization function optkM. All partial states of cardinality

one (pf = {f} for all f ∈ F) are generated, and then recursively all partial states of size

k extending pf are created, using the disambiguation set Dpf
. Even for small tasks the

amount of extended states can grow very fast. For memory efficiency partial states are

implemented as maps, containing the assigned facts only. Using these states, we calculate

the weight of each fact with Ckf (M). The weights are stored as vectors and passed to the

potential optimizer, which uses them to generate the optimization function.

The optimization function optt,kM was implemented implicitly. As all former mentioned

methods can handle partial states of cardinalities ≥ 1, only one new method was needed. It

generates n mutex based potential heuristics, each of which uses a random state of size t.

With each of these we perform the same procedure as above with pf .

Running Fast Downward, the heuristics obtained with the strengthened optimization func-

tions, called mutex based potential heuristics, can be used with the command --search

"astar(mutex based potential())", where astar can be replaced by any other

search algorithm of Fast Downward. The size to which pf should be extended can be

set with k, the default value is k=2.

The command --search "astar(mutex based ensemble potential())" uses the

mutex based ensemble heuristics. The variables can be set manually and their respective

default values are t=1, k=2 and n=50. k must be greater than t, but smaller than the size

of a fully extended state. n can be chosen arbitrarily, however the evaluation in Chapter 4

shows that the results are best with n=10.

Further, all potential heuristics can be solved using LP-constraints built with mutexes

through the option mutex=1. The default value is mutex=0 for all potential heuristics,

except for the mutex based ones. The constraint for the initial state is added through

init-const=1, the default value for this is 0 for all potential heuristics. With rand-con-num

the amount of additional constraints on random states can be set, with the default value 0

none are added.

We will evaluate our implementation in the next chapter.

4
Experimental Evaluation

We tested our implementation of the strengthened potential heuristics on 1827 STRIPS

problems with the official domains from the International Planning Competition (IPCs).

Further, we used Downward Lab (Seipp et al., 2017) to set up the tests and ran them on

the sciCORE high-performance computing infrastructure. We set the time limit for each

problem to 30 minutes and the memory limit to 8 GB. The different heuristics were all used

in an A? search (Hart et al., 1968).

We test whether the LP constraints built with disambiguations improve performance and

compare the different optimization functions against each other. Further, we compare dif-

ferent ensemble heuristics and their respective amount of heuristics used, as well as the

additional constraints on the initial state and on random states. Last, we compare our

results to the results from the evaluation of Fǐser et al. (2020).

We refer to the compared variants of heuristics as follows:

lmc: The LM-Cut heuristic, introduced by Helmert and Domshlak (2015).

init: The initial state potential heuristic (Eq. (3.7)).

all: The all states potential heuristic (Eq. (3.9)).

max: The maximization over init and all.

div: The diversification heuristic (Seipp et al., 2015) with 1000 samples.

Sni: The sample based potential heuristic (Eq. (3.10)), n being the number of heuristics

and i the number of samples per heuristic.

Mk: The strengthened all states potential heuristic with optkM (Eq. (3.12)).

Knk: The strengthened ensemble potential heuristic with optt,kM (Eq. (3.14)) with |t| = 1

and n heuristics.

Lnk: The same as Knk, but with |t| = 2.

Jnk: The same as Knk, but with |t| = 3.

In addition, N refers to the non-strengthened LP, while D uses the LP strengthened with

disambiguations. When the additional constraint on the initial state is used, I is appended

to the name of the heuristic and R if the constraints on random states are used.

The attributes we use to compare different configurations are:

Experimental Evaluation 15

Coverage: The amount of problems solved with the respective configuration.

Expansions: The number of state expansions needed to solve the problem.

Total Time: The total time needed to solve the problems without pre processing,

in minutes.

Search Time: The time needed for the search only, in minutes.

Out of Memory: The amount of problems which failed due to a lack of memory.

Out of Time: The amount of problems which failed due to a lack of time.

The attributes expansions, total time and search time are the geometric mean over all

problems which were solved by all configurations. The search time is exclusively the time

needed to perform the search. In all tables, the best value per attribute is written in bold.

For coverage, this is the highest value and for the other attributes it is the lowest.

4.1 Results
The following table shows results for the heuristics which were already provided in the Fast

Downward planning system.

lmc all-N init-N max-N div-N S1001 -N S11000-N

Coverage 958 929 891 948 963 945 961
Expansions 1287 10244 22415 8270 6904 7181 9238
Total Time 0.57 0.29 0.54 0.33 0.74 0.94 0.33

Search Time 0.52 0.23 0.43 0.24 0.74 0.94 0.22
Out of Memory 0 870 911 854 623 170 844

Out of Time 852 11 8 8 224 695 5

Table 4.1: Test results for the already provided heuristics.

We see that lmc, div-N and S11000-N have the highest coverage over all problems. Further,

lmc has the lowest number of expansions and therefore the lowest out of memory errors.

S11000-N, on the other hand, is the fastest of the three configurations and has only few out

of time errors.

As the same search algorithm is used for all configurations, the number of expansions can

be used as an indicator for the quality of the heuristic value. Few expansions combined with

a high coverage, e.g. with lmc, can be interpreted as an efficient search, with only few state

expansions, due to a good heuristic value.

In the following subsections, we compare these results to the results we obtained with the

features we implemented.

4.1.1 Mutex Based Linear Program
First, we compare the results from above with the ones obtained with the LP built with

mutexes and disambiguations. The following table shows multiple configurations and their

respective results.

The coverage is lower for these configurations. However, the number of expansions is better

for all configurations with respect to their non-mutex version, except for all. The scatter

Experimental Evaluation 16

all-D init-D max-D div-D S1001 -D S11000-D

Coverage 879 881 932 837 853 952
Expansions 12101 18964 7863 5269 5503 7697
Total Time 0.68 0.90 0.84 4.18 3.29 0.64

Search Time 0.27 0.39 0.24 0.19 0.31 0.19
Out of Memory 824 824 770 560 273 726

Out of Time 75 73 76 381 652 100

Table 4.2: Test results for mutex based Linear Programs.

plot 4.1 shows how the the amount of expansions differ between the two different LPs for

all solved problems for all and S11000. Dots above the diagonal represent problems for

which D has more expansions, dots below the diagonal represent problems for which N has

more expansions. For all, more dots are above the diagonal, as it has a higher number of

expansions. For S11000, more dots are below the diagonal.

100 101 102 103 104 105 106 107 108 109

100

101

102

103

104

105

106

107

108

109

N (lower for 283 tasks)

D
(l
ow

er
fo
r
38
5
ta
sk
s)

expansions

all

S11000

Figure 4.1: Number of expansions of all and S11000 for both LPs per problem.

Due to the smaller amount of expanded states, less out of memory errors occur. The number

of out of time errors, on the other hand, are higher. This is no surprise, as the total time is

higher for all configurations as well. The search time is roughly the same, which indicates

that the building of the mutex table and the mutex based LP is the most time consuming

difference. Hence, it is the reason for the high amount of out of time errors and the relatively

low coverage. This holds especially for div-D and S1001 -D, where the total time is much

higher than before and the difference between total and search time is immense. The search

itself is a lot faster, which indicates good heuristic values. Both heuristics build the LP

multiple times and, in our implementation, each time the mutex table needs to be computed

from a fresh start.

Experimental Evaluation 17

We already greatly enhanced the performance of building the mutex table. However, finding

a more efficient way for building the mutex table would lead to a higher coverage. To build

the mutex table, we optimized the (very slow) Fast Downward hm-heuristic for m = 2 and

ignored heuristic values, as we are only interested in the binary reachability. Before the

optimization, the mutex table was built for 1450 problems, in 117 seconds on average. Now,

1776 mutex tables are built in 34 seconds on average. Thus, over 300 additional mutex

tables can be built in less than 30 minutes, some of them in less than 20 seconds.

Comparing the configurations amongst each other, we see that the coverages of S11000-D and

max-D are still good, as they only decrease by around 10 problems. So does the coverage

of init. These are also the configurations, for which the expansions and search time sunk,

as well as the out of memory errors. The other configurations are significantly worse with

disambiguations. This does not hold for mutex based optimization functions.

4.1.2 Mutex Based Optimization Functions
The next table shows the results for our mutex based optimization functions. For the

ensemble heuristics (K, L and J), we chose n = 10, since using 10 heuristics gave the best

results on average (Table 4.4).

M1-D M2-D K101 -D K102 -D L101 -D L102 -D J101 -D J102 -D

Coverage 900 859 911 831 921 840 922 845
Expansions 8297 8240 6790 6847 6126 6273 6197 6039
Total Time 0.59 1.23 0.89 4.23 0.99 3.93 1.02 3.20

Search Time 0.20 0.20 0.86 4.08 0.86 3.78 0.89 3.04
Out of Memory 802 726 714 608 691 589 677 586

Out of Time 77 203 155 351 169 364 193 364

Table 4.3: Test results for mutex based potential heuristics.

For the four different categories, M, K, L and J, we see that the configurations with smaller

k are always better. This is due to the higher time and memory consumption needed for

bigger extensions, which can be concluded from the increasing sum of out of time and out

of memory failures. We can also see that extending partial states by two facts is more time

consumptive, as more out of time errors occur for these configurations. Our pretests showed,

that for k = 3 the coverage decreases about 30% compared to k = 1. For even higher k, it

would drop vastly, as the memory and time limits are not high enough to extend (multiple)

partial states to this size.

Currently, the implementation for mutex based potential heuristics is able to work with any

k ∈ N smaller than the size of a state. An optimization for k = 1 and k = 2 could, similarly

to the optimization of building the mutex table, enhance the coverage as well.

However, the fact that the amount of expansions decreases for greater k and t shows that

the approach for mutex based potential heuristics is good. For |t| = 3, the coverage and the

number of expansions are better than for smaller t.

The comparison of the results for mutex based potential functions with Table 4.1 shows

that the coverage is not higher than for any of the former configurations. However, less out

Experimental Evaluation 18

of memory errors occurred, while the out of time errors increased. This is, similar to the

results for the mutex based LP (Sec. 4.1.1), due to the building of the mutex table.

We also tested the configurations M1-N and M2-N, which have a slightly higher coverage.

With the non-mutex based LP, the number of expansions and therefore the amount of out of

memory errors are higher. The higher coverage is due to the saved effort by not considering

mutexes for building LP.

4.1.3 Ensemble Heuristics
Table 4.4 shows the coverage for different sample based ensemble heuristics, for different

amounts of used heuristics.

n 5 10 50 100 250 500

S1 889 888 867 852 815 773
K1 904 911 896 861 790 747
K2 835 831 888 865 669 615
L1 911 921 884 856 771 734
L2 840 840 796 756 670 615

Table 4.4: Comparison over different n for different ensemble heuristics.

The best results are achieved with smaller n. In fact, the best coverage, 921, is achieved

with L101 .

However, the number of expansions decrease with increasing n, indicating that the ensemble

heuristics are more accurate when using more heuristics. But the more heuristics are used,

the more out of time errors occur. This is both because more heuristics need to be computed

and because they all need to be considered for each state which is evaluated.

The absolute numbers in Table 4.4 should be taken with a grain of salt, as they are produced

with randomness and differ for each run. Running the tests multiple times shows that n = 5

is too small, as the variety of generated samples is not big enough to produce good results.

For n = 50 on the other hand, the time consumption of computing all heuristics is to high.

Further tests would be necessary, to see whether n = 10 really is the sweet spot, or if it lies

somewhere else in between 5 and 50

Experimental Evaluation 19

4.1.4 Additional Constraint on the Initial State
The best coverage for all configurations is obtained with the additional constraints on the

initial state.

all-N-I div-N-I S11000-N-I M1-D-I M2-D-I

Coverage 965 956 963 950 906
Expansions 8532 7741 9040 6585 6561
Total Time 0.27 0.70 0.33 0.60 1.21

Search Time 0.21 0.70 0.21 0.17 0.17
Out of Memory 837 716 843 729 705

Out of Time 8 127 4 115 183

Table 4.5: Test results for the additional constraint on the initial state.

None of the configurations shows a higher total time nor search time than before, despite

the fact that the LP is solved twice. First, to optimize the heuristic value for the initial

state, then for the actual optimization function. In addition, the number of expansions is

smaller than before, and less time and memory errors occur in total. The plots 4.2 and 4.3

show very nicely how the number of expansions and the search time is smaller for all-N-I,

compared to all-N.

100 101 102 103 104 105 106 107 108 109

100

101

102

103

104

105

106

107

108

109

all-N (lower for 68 tasks)

al
l-
N
-I
(l
ow

er
fo
r
20
6
ta
sk
s)

expansions

Figure 4.2: Number of expansions for all for both LPs per problem

It is remarkable, that all-N-I has a better coverage than max-N (948). Presumably, max

chooses init for states which are close to the initial state and all otherwise. all-N-I

on the other hand has high heuristic values on average, with a main focus on on the initial

state. This results in two very similar heuristics. The higher coverage of all-N-I is due

to its lower time consumption. The configuration max-N takes longer to compute, as it

must generate two independent LPs. It takes less effort, to build an LP, solve it and then

resolve it, as all-N-I does, since the presolving of the LP is only done once. As plot 4.4

shows, the search time is much lower for all-N-I than for max. This is because max must

Experimental Evaluation 20

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

all-N (lower for 286 tasks)

al
l-
N
-I
(l
ow

er
fo
r
36
3
ta
sk
s)

search-time

Figure 4.3: Search Time for all for both LPs per problem

consider two heuristics for each evaluated state.

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

maxIA-N (lower for 92 tasks)

al
l-
N
-I
(l
ow

er
fo
r
82
6
ta
sk
s)

search-time

Figure 4.4: Search Time for all for both LPs per problem

4.1.5 Additional Constraints on Random States
In order to test the additional constraints on random states, we first tested different amounts

of samples. The pretests showed that 5 samples are best, which is why all following results

are for n = 5.

In comparison to Table 4.1, the coverage is higher with the additional constraints, as can

be seen in Table 4.6. For init-N-R the number of expansions, search time and total time

are better as well. For all other listed configurations, these attributes are better without the

additional constraints on random states.

As we only used 5 samples, this could be a coincidence. A higher amount of samples would

Experimental Evaluation 21

all-N-R init-N-R div-N-R M2-D-R

Coverage 930 898 905 863
Expansions 11672 16182 11306 9190
Total Time 0.35 0.44 0.76 1.51

Search Time 0.34 0.44 0.76 1.37
Out of Memory 858 899 798 728

Out of Time 16 11 105 205

Table 4.6: Test results for the additional constraints on random states.

be better, since an outlier in the samples could then be compensated with the other sample

states. As is, with only 5 samples, if the random walk occurs in the wrong direction, the

resulting potentials are distorted. However, for more samples, building the LP is not feasible

inside our time limit. This is, because we implemented the additional constraint such that

the Linear Program is optimized for one state after the other and the new constraint is

added to the LP before optimizing for the next state. Another solution, which could take

more samples into account, would be to optimize the LP for multiple samples at a time, and

then add their respective heuristic values to the solver as a constraint.

Taking mutexes and disambiguations into account when generating the samples could pos-

sibly enhance the result as well.

In Table 4.7, the results for the combined additional constraints on the initial and on random

states are listed. The results are better compared to only using the constraints on random

states, but still not as good as with the sole use of the constraint on the initial state. In fact,

all attributes lie between the configurations with only one type of additional constraints.

all-N-I-R div-N-I-R M2-D-I-R

Coverage 963 954 895
Expansions 8671 8897 6245
Total Time 0.29 0.74 1.36

Search Time 0.29 0.74 1.24
Out of Memory 827 798 694

Out of Time 26 58 206

Table 4.7: Test results for the combination of the additional constraints on the initial state
and on random states.

We also tested different variants of max. Using max of init and all with the additional

constraint on the initial state (max(init-N, all-N-I)), the coverage was 957 and there-

fore better than without the constraint. It was a little lower with the additional constraints

on random states for both init and all (max(init-N-R, all-N-R), 927). However, it

was the only configuration, where the combined additional constraints yielded a better cov-

erage, as the single use of the additional constraint of the initial state. For max(init-N-R,

all-N-I-R), the coverage was 960.

Experimental Evaluation 22

4.2 Comparison to Fišer et al.
In comparison to our results, Fǐser et al. (2020) obtained a higher coverage using mutexes

and disambiguations. In order to find out why, we used their code (cpddl1) for translating

and pre processing the planning tasks and generating the potentials. The potentials where

then used in the Fast Downward A? search. The results can be seen in Table 4.8.

all-N all-D max-D div-D S11000-D M1-D K501 -D

Coverage 926 952 961 946 985 962 923
Expansions 37795 29386 47314 24544 26908 31841 49766
Total Time 0.61 0.52 0.80 0.45 0.48 0.56 0.71

Search Time 0.54 0.46 0.71 0.40 0.42 0.49 0.63
Out of Memory 833 807 792 643 770 791 812

Out of Time 2 2 5 92 3 5 5

Table 4.8: Test results obtained with cpddl

For all-N, the coverage is worse than in our implementation. All other configurations yield

a higher coverage with cpddl.

Since cpddl uses a different preprocessor, we should not compare the relative attributes

expansion, total time and search time with our former results.

What we can compare though are the out of time and out of memory errors. That they

are significantly lower than before, especially the out of time errors, indicates that cpddl

is faster than our implementation. As this holds for all-N as well, we can assume this is

not only due to our implementation of the mutex calculation and the mutex based LP, but

also due to the fact that cpddl uses a different preprocessor as Fast Downward.

1 https://gitlab.com/danfis/cpddl/

5
Conclusions

In this work we consider potential heuristics to solve classical planning tasks. The potentials

for each fact of the problem are computed with a Linear Program. The LP optimizes the

potentials with regard to an optimization function, such that all given constraints hold.

Fǐser et al. (2020) proposed to use mutexes and disambiguations for building the LP-

constraints. It is an additional option, which can be used for all potential heuristics. How-

ever, the results we obtained with our implementation are not better than for the original

LP. Our experimental evaluation shows that this is mainly due to the high amount of time

needed to obtain the mutexes.

Further, we strengthen an optimization function with mutexes and disambiguations as in-

troduced by Fǐser et al. (2020) We give a weight to each fact of the problem, according to its

relative appearance in all reachable states. The optimization function maximizes the sum

over all potentials multiplied with the weight of their respective fact. The evaluation shows

that the resulting heuristic is good, but not better than the heuristics generated with other

optimization functions.

Like Fǐser et al. (2020), we also strengthened ensemble heuristics. For this approach, multiple

heuristics are computed and for each state the maximal value of all heuristics is used as the

heuristic value. In our case, for each heuristic we uniformly randomly sample a partial state

of a given size. The weights of the facts represent their relative appearance in all reachable

states, which extend this partial state. They are then used to compute the potentials for

this heuristic. The results are better for this approach as for the single heuristic. A partial

state of greater starting size yields better results. The question which remains open is how

to select the partial states, other than uniformly at random, in order to solve more problems.

Both of the approaches to strengthen optimization functions are good. Once the search has

started, they are very efficient. However, computing the potentials needs a lot of time. The

current implementation may extend partial states by an arbitrary amount of facts. But

extending for more than two facts does decrease the amount of problems solved by using the

resulting heuristic drastically. Optimizing the implementation for extending states by one

or two additional facts could decrease the time needed and enhance the obtained results.

Last, we add additional constraints to the Linear Program. The constraints are obtained by

solving the LP for a state, i.e., the initial state or a random state. The resulting heuristic

Conclusions 24

value for the respective state is then used in an additional constraint. The additional

constraint on the initial state, proposed by Fǐser et al. (2020), yields very good results. It

exceeds the additional constraints on random states. The results of the combination of both

the additional constraints lies in between the results obtained by using them separately in

terms of quality and efficiency.

For the additional constraints on random states, we generate the states with a random

walk. Using mutexes and disambiguations could improve the quality of the received states.

Another approach to improve the results would be to solve the LP for multiple states at a

time and add the respective constraints. This way, more states could be taken into account

which would decrease the effect of a single outlier.

The comparison of our results to the results from the evaluation of Fǐser et al. (2020) shows

that using mutexes and disambiguations has more relevance in their implementations. The

translation and pre processing of the planning tasks and generating the potentials takes

longer in Fast Downward, leaving less time for the search.

Bibliography

Christer Bäckström and Bernhard Nebel. Complexity results for sas+ planning. Computa-

tional Intelligence, 11(4):625–655, 1995.

Daniel Fǐser, Rostislav Horč́ık, and Antońın Komenda. Strengthening potential heuristics

with mutexes and disambiguations. In Proceedings of the Thirtienth International Con-

ference on Automated Planning and Scheduling, pages 124–133, 2020.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,

4(2):100–107, 1968.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What’s

the difference anyway? In Proceedings of the Twenty-Fifth International Conference on

Automated Planning and Scheduling, pages 162–169, 2015.

Florian Pommerening and Malte Helmert. A normal form for classical planning tasks. In

Proceedings of the Twenty-Fifth International Conference on Automated Planning and

Scheduling, pages 188–192. AAAI Press, 2015.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-

negative to general operator cost partitioning. In In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence (AAAI 2015), pages 3335 – 3341. AAAI Press,

2015.

Jendrik Seipp, Florian Pommerening, and Malte Helmert. New optimization functions for

potential heuristics. 2015.

Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.790461, 2017. URL https://doi.org/10.5281/

zenodo.790461.

 https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Salome Müller

Matriculation number — Matrikelnummer

2017-063-058

Title of work — Titel der Arbeit

Mutex Based Potential Heuristics

Type of work — Typ der Arbeit

Bachelor thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 06. 11. 2020

Signature — Unterschrift

	Acknowledgements
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Planning Tasks
	2.2 Heuristics
	2.3 Mutexes and Disambiguations

	3 Strengthening Potential Heuristics
	3.1 Potential Heuristics
	3.1.1 Generalization with Mutexes

	3.2 Transition Normal Form
	3.2.1 Generalization with Mutexes

	3.3 Linear Program
	3.4 Optimization Functions
	3.4.1 Strengthening All State Potentials
	3.4.2 Strengthening Conditioned Ensemble Potentials
	3.4.3 Adding Constraint on Initial State
	3.4.4 Adding Constraints on Random States

	3.5 Implementation

	4 Experimental Evaluation
	4.1 Results
	4.1.1 Mutex Based Linear Program
	4.1.2 Mutex Based Optimization Functions
	4.1.3 Ensemble Heuristics
	4.1.4 Additional Constraint on the Initial State
	4.1.5 Additional Constraints on Random States

	4.2 Comparison to Fišer et al.

	5 Conclusions
	Bibliography
	Declaration on Scientific Integrity

