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Abstract

Classical planning is the discipline of finding a sequence of operators that reach a goal from

a given initial state. Search algorithms are used to explore the state space of a problem to

find a sequence of operators that solve it. When a problem is encoded, accidental complexity

may be added. This accidental complexity makes the problem harder than it fundamentally

is. One approach to reduce accidental complexity is safe abstraction. We have implemented

safe abstraction in the Fast Downward planning system to simplify the problems before a

search algorithm is used on them. Our findings show that safe abstraction can significantly

reduce the complexity of some problems.
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1
Introduction

Classical planning is a subfield of artificial intelligence studies. The goal of planning is to

find a sequence of actions that reaches a specified goal from some initial state. There are

two approaches to this. There is optimal planning, which aims to find the optimal sequence

of actions, and there is satisfying planning, which is interested in finding any valid solution

as quickly as possible.

Search algorithms are used to explore the state space of a given problem and find the se-

quences of actions that, when applied, produce a goal state. In general, however, the state

space of so-called planning problems can grow exponential in the size of the problem descrip-

tion. For a problem with a larger state space, the search algorithm requires more time and

memory to find such a sequence. There are two main approaches to improve the performance

of the search. The first approach is to create more sophisticated search algorithms, and the

second is to improve the performance of heuristics. Modern algorithms use heuristics to

guide them to be as efficient as possible. Heuristics estimate the distance of a certain path

from the goal. With heuristics, a search algorithm can make estimations about which paths

are more promising, hopefully allowing us to find a solution while having to explore as little

of the state space as possible.

Another approach is to simplify the problem. Whenever a problem is described, its com-

plexity can be grouped into two classes: essential complexity and accidental complexity1.

Essential complexity is the complexity inherent in the problem. This complexity can not

be simplified without changing the semantics of the problem. Accidental complexity is the

complexity added to a problem when its encoding or form is ill-suited for the tool we want

to use. This complexity can be reduced by reformulating the problem into another form

more suited for the approach used to solve it.

Reformulating a problem to reduce its accidental complexity without changing the seman-

tics of the problem is not an easy task. One approach introduced by Helmert [8] and later

1 The terms essential complexity and accidental complexity were first introduced by Brooks [3].
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expanded by Haslum [7] is safe abstraction. Safe abstraction simplifies a problem in such

a way that a solution in the simplified problem can be efficiently expanded into a solution

for the unmodified problem. Safe abstraction reduces the size of the state space the search

algorithms have to search through and in some cases fully solve problems, without needing

to search the state space at all. Safe abstraction guarantees that a solution of a simplified

problem can be extended to be valid in the concrete problem, it doesn’t guarantee that these

solutions are optimal. Because of this, safe abstractions are only useful in satisfying planning.

In Chapter 2, we will first introduce the background knowledge needed for the paper. Next,

in Chapter 3, we will present the theory of safe abstraction and then, in Chapter 4, discuss

our implementation of safe abstraction in the Fast Downward planner. In Chapter 5 we

test our implementation over various problem domains and finally, in Chapter 6 we will

summarize the main points and discuss open questions.



2
Background

2.1 Planning Tasks
Planning involves finding a sequence of actions that transitions a system from a given initial

state to a desired goal. These problems are referred to as planning tasks, and the sequences

of actions that solve them are called plans.

There are many ways to describe a planning task formally. The Fast Downward planner

introduced by Helmert [9] uses a finite domain representation formalism called SAS+ pro-

posed by Bäckström and Nebel [2]. The following definitions are based off their work.

Definition 1. (SAS+ planning task) A SAS+ planning task is defined by a four tuple

Π = ⟨V,O, s0, s∗⟩ where V is a finite set of variables, O is a finite set of operators, s0 is the

initial state and s∗ is the goal.

Planning tasks are sometimes also called planning problems or just problems.

One simple SAS+ planning task used by Haslum [7]2 is a simple transportation problem we

will call “trucks”. It has two locations, A and B, a truck that can drive between them and

a package p. The package starts in location A and needs to be transported to B by loading

and unloading it from the truck. The variables and operators of the problem are listed in

Fig. 2.1. We will return to this example throughout the paper.

Definition 2. (Variable) A variable v ∈ V has a finite domain Dv of values d ∈ Dv. A

variable can be assigned one value from its domain v 7→ d.

When a variable is assigned a value, we call it a value assignment or atom v 7→ d.

In the trucks example, we have the following variables truck with domainDtruck = {at-A, at-B},
p with domain Dp 7→ {at-A, at-B, in-truck} and cargo with domain Dcargo 7→ {empty,

contains-p}.

2 Their example has two packages: pkg1 and pkg2, but is otherwise the same.
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Variables:
truck

Atom at-A
Atom at-B

p
Atom at-A
Atom at-B
Atom in-truck

cargo
Atom empty
Atom contains-p

Operators:
drive-truck-a-b

pre: truck := at-A
eff: truck := at-B

drive-truck-b-a
pre: truck := at-B
eff: truck := at-A

drop-truck-a-p
pre: truck := at-A, p := in-truck, cargo := contains-p
eff: p := at-A, cargo := empty

drop-truck-b-p
pre: truck := at-B, p := in-truck, cargo := contains-p
eff: p := at-B, cargo := empty

pick-up-truck-a-p
pre: truck := at-A, p := at-A, cargo := empty
eff: p := in-truck, cargo := contains-p

pick-up-truck-b-p
pre: truck := at-B, p := at-B, cargo := empty
eff: p := in-truck, cargo := contains-p

Figure 2.1: The variables and operators of the trucks problem

Figure 2.2: The trucks problem in its initial state

Definition 3. (State) A state s is a value assignment over all variables s = {v 7→ d | v ∈
V, d ∈ Dv}.

A partial state p is only defined over a subset of all variables V. We denote the set of

variables over which p is defined as Vp.

We say partial state p holds in or is consistent with s if each variable vp ∈ Vp is assigned

the same value as in state s.

The set of all possible states is called the state space of the planning task.

For two partial states p and q, we say they are disjoint if no variable defined in p is defined

in q and vice versa: Vp ∩ Vq = ∅.
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In the trucks example, s = {truck 7→ at-A, p 7→ at-A, cargo 7→ empty} is a valid state

shown in Fig. 2.2, and p = {truck 7→ at-A} is a valid partial state that holds in s.

Definition 4. (Initial State) The initial state s0 is the starting state of the planning task

before any operators are applied.

The initial state of the trucks problem is the state s0 = {truck 7→ at-A, p 7→ at−A, cargo 7→
empty(truck)} as seen in Fig. 2.2

Definition 5. (Operator) An operator o ∈ O is a tuple, ⟨p, e⟩ where p are its preconditions

and e are its effects. Both p and e are partial states.

We say that operator o is applicable in state s if the preconditions of o hold in s

Applying o to s yields a successor state sJoK = s′. If a variable v is defined in the effects e

of o, then it will have that value assignment in s′. For all other variables, s′ will have the

same value assignment as s.

Applying a sequence O of operators ⟨o1, o2, ...⟩ to s will apply each operator oi in sequence:

sJOK = ((sJo1K)Jo2K)...

Operators have an associated cost, and the cost of an operator sequence is equal to the sum

of operator costs. Since we are not concerned with finding an optimal solution to a planning

task, we assume the cost of each operator to be one.

In the trucks example, one such operator is drive-truck-a-b with preconditions p = {truck 7→
at-A} and effects e = {truck 7→ at-B}. Applying this operator to the state shown in Fig. 2.2

will yield a new state as shown in Fig. 2.3.

Figure 2.3: The effect of applying the operator drive-truck-a-b to the initial state of the
trucks problem.

Definition 6. (Goal) The goal s∗ is a partial state. If we reach a state s where s∗ holds

from s0, then the planning task is solved successfully.

The only goal condition in the trucks problem is s∗ = {p = at-B}. All states that fulfil this

condition are goal states.
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Definition 7. (Plan) A plan π is a sequence of operators ⟨o1, o2, ..., on⟩ that solves the

planning task. If the plan is valid, the state reached after applying the sequence to the initial

state s0JπK is consistent with the goal s∗.

In our running example, a valid plan would be ⟨pick-up-truck-a-pkg1, drive-truck-a-b,

drop-truck-b-pkg1⟩. In this case this would be the optimal path but as already mentioned

in the introduction, in this paper we do not aim to generate optimal plans. Instead, we are

interested in finding any plan that solves the planning task, so another longer path that

results in a goal state would also be valid.

With the definition of a plan, we have all definitions needed to describe a SAS+ planning

task. Next we will look at the domain transition graphs of variables. They are useful to find

out which values of a variable are reachable from a given value. The following definition of

a domain transition graph is based on a definition of DTGs from Huang et al. [10].

Definition 8. (Domain Transition Graph (DTG)) Given a variable, v ∈ V, it’s DTG is

a directed graph DTGv with a vertex set Nv and an arc set Av. For each value, d in the

domain Dv of variable v, there is a vertex nd in Nv. An arc a = (ni, nj) belongs to Nv only

if there is an operator with precondition v = i and effect v = j

The domain transition graph for p is shown in Fig. 2.4. In later chapters, we will use the

domain transition graph of a variable to determine which variables can be safely abstracted.

Figure 2.4: The domain transition graph of variable p of the trucks problem.

2.2 Abstractions
Because the state space of a planning task grows exponential in the size of the problem

description[2], the number of states can quickly grow out of control. Since the search for a

plan has to operate on the state space, we should try to reduce the size of the state space

as much as possible. The idea of abstractions is to reduce the size of the state space. One

possible use case for abstraction is the calculation of heuristics. Edelkamp [4] shows how

abstractions can be used to greatly simplify a problem and solve it much quicker. The so-



Background 7

lutions in this abstracted problem are generally not solutions in the concrete problem, but

can be used as a heuristic to guide the search in the concrete problem.

Abstractions are defined on the state space of a planning task. The transition system is a

graph that represents this state space.

Definition 9. (Transition Systems) A planning task Π = ⟨V,O, s0, s∗⟩ induces a transition

system T (Π) = ⟨S,L, c, T, s0, S∗⟩ where S is the set of all states over variables V, L is the

set of operators O, c(o) is the cost of operators o ∈ O, T is the set of transitions defined

by tuples ⟨s, o, s′⟩ where operator o is applicable in state s and yields the state s′, s0 is the

initial state and S∗ is the set of all states that are consistent with the goal s∗.

A planning task’s transition system can be represented as a graph, where each vertex cor-

responds to a state of the planning task, and the arcs from one vertex to another represent

all possible state transitions achievable by applying an operator to the state represented by

the source vertex.

To reduce the number of states we have to consider while creating our plan, we want to

create a function α that remaps the set of states S of T to another, usually smaller, set of

states. There are many such mappings, but a common approach is to ignore some subset

of the variables or combining groups of states into a single state. With the vertices of new

abstract state, inheriting all the ingoing and outgoing arcs of its component state’s vertices.

Definition 10. (Abstractions) Given a transition system T , an abstraction is a function

α : S → Sα which maps the set of states S of the transition system to another set of states

Sα.

When a transition system T is abstracted with α, written as α(T ), a new abstract tran-

sition system is created α(T ) = ⟨Sα, L, c, Tα, sα0 , S
α
∗ ⟩ where Sα is the new set of states

defined by α, L and c are unchanged, Tα is the set of transitions over the new states:

Tα = {⟨α(s), o, α(s′)⟩ | ⟨s, o, s′⟩ ∈ T} and sα0 = α(s0) is the new initial state and Sα
∗ =

{α(s) | s ∈ S∗} the new goal states.

We can always revert the changed of an abstraction α by applying its inverse α−1 to the

abstracted transition system: α−1(α(T )) = T . Note that in general, abstractions are not

commutative, so the transition system resulting from β(α(T )) is not necessarily the same

as when applying α(β(T )). In the same way, applying the inverse of α on a transition sys-

tem where α is not the most recent abstraction will not necessarily undo the changes of α:

α−1(β(α(T ))) ̸= β(T ).

We can see this clearly by imagining a transition system with three states that describe the

colour of a box. The box can be blue, red, or green, but the colours can only be changed

by first colouring the box red. Now we construct two abstractions: α =“Group the state
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where the box is red and the state where the box is blue together” and β =“Group the state

where the box is red and the state where the box is green together”. See Fig. 2.5 for an

illustration of the transition system and the abstractions. If our original transition system

is T , then by first applying α, we group the states where the box is red and blue together,

creating α(T ). This new transition system has only two remaining states: one for the state

where the box is blue or red and one for the state where the box is green. Since neither is

the state where the box is red, we can not apply β to α(T ). If we instead apply β to T
first, we can not apply α since, once again, the state where the box is red no longer exists.

Since applying an abstraction can make the application of another abstraction impossible,

the order in which they are applied matters.

Figure 2.5: Effect of applying abstractions α and β.

One useful abstraction used by Edelkamp [4] is described by the projection. A projec-

tion is a function pV that is applied to a planning task Π. Given some subset of the

variables V ⊆ V, the projection removes the variables V \ V from the planning task

pV (Π) = ⟨VpV ,OpV , spV

0 , spV
∗ ⟩. The new variable set VpV contains only variables that are in

V . The new operator set OpV contains all the operators from O of the Π, but all precondi-

tions and effects over variables not in V have been removed. The new initial state spV

0 is the

same as, s0 except that all variable assignments over variables not in V are removed. Sim-

ilarly, the goal is the same, except that all requirements over variables not in V are removed.

If T is the transition system induced by a planning task Π and pV is a projection that when

applied to Π creates a new planning task pV (Π) which induces a transition system T ∼, then



Background 9

pV describes an abstraction α such that α(T ) = T ∼.

2.2.1 Abstraction Hierarchy
It is possible that a transition system is not just abstracted one time. Since abstractions

are not generally commutative, the order in which they are applied matters. When multi-

ple abstractions are applied to a transition system T , their sequence builds an abstraction

hierarchy H = ⟨T , α(T ), β(α(T )), . . . ,γ(. . . β(α(T )). . . )⟩. This hierarchy begins with the

concrete, non-abstracted, transition system T at the bottom and each higher step is a more

abstracted version of the transition system in the next lower step. We call this sequence of

abstractions Q = ⟨α, β, . . . , γ⟩.



3
Safe Abstraction

While abstractions are a useful tool, in general they come with significant drawbacks. As

described in Haslum [7], because some details are ignored, solutions in an abstract problem

may be computed cheaper, but they are generally not valid in a more concrete version of

the problem. These plans are often used as the basis for heuristics. However, with safe

abstractions, we can guarantee that such plans can be efficiently refined into valid solutions

for the concrete version of the problem. An abstraction is safe if in each abstraction step, we

can guarantee that a valid solution in the more abstract problem can be efficiently refined

into a valid solution in the more concrete version of the problem.

Haslum [7] introduces two theorems regarding safe abstraction: (safe) variable abstraction

and operator composition. Both are functions that manipulate a planning task. We call such

functions simplifications. Variable abstraction is a projection as described in Section 2.2. It

reduces the size of the state space of a problem by removing variables from it. Despite its

name, variable abstractions are not actual abstractions. They are projections that describe

abstractions. This is an important nuance because abstractions as defined in Definition 10

can not be applied to planning tasks. In contrast, operator composition is a function that

does not reduce the state space of the problem, instead it adds and removes operators from

the planning task, hopefully enabling more safe variable abstraction in later steps. We call

safe variable abstraction αs and operator composition βc.

To organise these simplifications, will loosen our definition of abstraction hierarchies from

Section 2.2.1. A simplification hierarchy is a tuple of planning tasks, S = ⟨Π, σ1(Π), σ2(σ1(Π)),

...σn(...σ2(σ1(Π))...)⟩ where Π is the concrete planning task and σi are simplifications. We

call the sequence of simplifications Q∼ = ⟨σ1, σ2, ..., σn⟩ the simplification sequence.

The idea is to repeatedly apply αs and βc in any order, until no further simplifications can

be made. Their order is our simplification sequence Q∼ and the problems they create, build

our simplification hierarchy S. If the sequence Q∼ only consists of variable abstractions,

Q∼ = ⟨αs1, αs2, ...⟩ then the abstractions they describe form an abstraction hierarchy.
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Once we finished applying simplifications, we initiate a search on the most simplified version

of our problem. If a plan was found, we undo the simplifications by going through Q∼ in

reverse and applying the inverse of each simplification. This is called refinement. As we do

so, we also refine our plan and once we have arrived back at the concrete problem, the plan

is a valid plan for that problem too.

3.1 Safe Variable Abstraction
Safe variable abstraction revolves around the identification and removal of “safe variables”.

If only such safe variables are removed in a simplification step, we have the guarantee that

a plan in the more simplified problem can be efficiently extended to a valid plan in the more

refined problem. Removing a variable this way simplifies a problem by reducing the amount

of states in its state space. In the following chapters, when we say we abstract a variable,

we mean that save variable abstraction is applied.

We can safely remove a variable v if it can, independently of other variables, take those

values required to change other variables, from values it was assigned to in the initial state

or by operators that changed other variables. The free domain transition graph, a subgraph

of a variable’s domain transition graph, allows us to determine which values of v can be

reached without changing or requiring anything from other variables.

Definition 11. (Free Domain Transition Graph (free DTG)) The free DTG of a variable

v is a subgraph of the variable’s DTG. The vertex set of the free DTG is the same as the

DTG. An arc a = (ni, nj) in the arc set of the DTG only belongs in the arc set of the free

DTG if there is an operator whose preconditions only contains v 7→ i and whose effects only

contains v 7→ j.

In other words, an arc from the DTG is included in the free DTG only if there is an operator

that does not require or affect another variable as part of its precondition or effect. A value

dj is said to be free reachable from a value di if there is a path from di to dj in the free

DTG. We can compare the free DTG of p shown in Fig. 3.1 against its DTG from Fig. 2.4.

We see that though each of the values are reachable from the others in general, all these

transitions require operators who contain other variables in their preconditions or effects.

For the variable truck we see that its free DTG, shown in Fig. 3.2 is strongly connected

since the drive-truck-a-b and drive-truck-b-a have no other variables in their preconditions

or effects.

Definition 12. (Externally Required) A value dj of a variable v is externally required if it

appears in the preconditions of an operator whose effects include changes over other variables

than v.
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Figure 3.1: The free domain transition graph of p.

Figure 3.2: The free domain transition graph of truck.

Definition 13. (Externally Caused) A value dj of a variable v is externally caused if it

either is the value of v in the initial state or if it appears in the effects of an operator that

also includes changes over other variables than v in its effects.

With this information, we can now apply the safe variable theorem introduced in Haslum [7]:

Theorem 1. (Safe Variables) If all externally required values of v are strongly connected

in the free DTG and free reachable from every externally caused value of v, and the goal

value of v (if any) is free reachable from each externally required value, then abstracting v

is safe (i.e., preserves downward refinement3)

We can see why these conditions need to be met by considering only a variable v and its

free DTG. We do not know what operators are being applied in the problem overall. All

we know is what value the variable is and what value the variable should be, and we can

only apply operators that do not require a value of another variable, or cause a change in

another variable. When we look at such a case, our variable may be assigned any value that

is marked as externally caused, either because it is assigned that value in the initial state

or because some operator oc may be needed to change the value of some other variable and

as a side effect it changes the value of our variable. Our variable may be required to take

any value that is marked as externally required, since those values may be needed to apply

some operator or that changes another variable. Similarly, our variable may be required to

take its goal value if it has one to complete the problem. Finally, we can only transition on

arcs in the free DTG, since those represent the operators that do not change or require a

value from any other variable.

3 If the downward refinement property[1] holds, a solution to a more abstract problem can be extended to
a solution for the next lower level in the abstraction hierarchy just by inserting missing operators into
the plan.
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We can safely abstract a variable if the operators that are required to change its values

to the externally required ones do not interfere with other variables. Imagine we have two

kinds of operators o and os. Assume the operators with the superscript s are operators

that do not require nor change any other variable than some safe variable vs. They are

represented by the arcs on the safe variable’s free DTG. If we know that we can cause vs

to have any externally required value (or the goal value) from any externally required or

caused value by applying such operators os, then the operators os in the plan only enable

the applicability of other operators o by assigning vs to a required value or the reachability

of a goal state by assigning vs its goal value. If we remove vs from the goal condition and

ignored the preconditions and effects over vs for all operators o , then we could also remove

all operators os from the plan since they no longer contribute to the plan’s validity. We can

then undo this by reinstating vs to the goal condition and to all preconditions and effects

from which it was removed. Now the plan may not be valid since an operator oi may have

as part of its effects vs 7→ a and the next operator in the plan oi+1 may have as part of its

preconditions vs 7→ b. However, we know there is a sequence of os operators that changes the

assignment of vs from a to b without changing or requiring another variable. By inserting

such sequences between all operators oi and oj with such a conflict, and at the end to assign

vs its goal value if it has one, we can restore the plan to full validity without fundamentally

changing it. Since we can transform vs from any externally caused value to any externally

required value by just inserting sequences of operators os, this validity restoration is possible

for all valid plans. Therefore, we can remove the variable vs from the problem entirely be-

fore we start the search, and any plan found during the search can be extended to include vs.

The search for these sequences of os can be performed in the free DTG of v which grows

polynomial in the size of the problem description. Compared to that size of the state space,

which can grow exponential in the size of the problem description, it is easy to see that insert-

ing a sequence os into a plan is more efficient than having to search the full state space for it.

Since a safe variable is independent, meaning it doesn’t require other variables to take on

its externally required values, if we find multiple safe variables in the same problem, they

can easily be removed by repeating the procedure above for each safe variable in any order.

Removing all safe variable Vs of a problem is a projection on V\Vs as described in Section 2.2

For an example, let’s think back to the trucks problem. If we apply Theorem 1 to the

problem shown in Fig. 2.1, we will find that the variable truck is a safe variable.

It has only two values; the truck is either in location A or in location B. Both values

are externally required from operators like drop-truck-a-p and drop-truck-b-p but neither

value is externally caused, since the only operators that change the location are the drive

operators, both of which only have truck in its effects. Since the drive operators does not

contain another variable than truck in its preconditions or effects, they both form an arc

on the free DTG of truck (See Fig. 3.2). Since there is neither a goal value for the variable

nor any externally caused values, and the externally required values are strongly connected,

we can abstract it by applying a variable abstraction αtruck that removes the variable from
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the problem. The package can now be loaded in one location and immediately unloaded

in another without having to apply the drive operator in-between. We can imagine this by

thinking of the truck being in both locations at once as shown in Fig. 3.4. The variables

and operators of the simplified trucks problem are shown in Fig. 3.3.

Variables
p

Atom at-A
Atom at-B
in-truck

cargo
Atom empty
Atom contains-p

Operators
drop-truck-a-p

pre: p := in-truck, cargo := contains-p
eff: p := at-A, cargo := empty

drop-truck-b-p
pre: p := in-truck, cargo := contains-p
eff: p := Atom at-B, cargo := empty

pick-up-truck-a-p
pre: p := at-A, cargo := empty
eff: p := in-truck, cargo := contains-p

pick-up-truck-b-p
pre: p := Atom at-B, cargo := empty
eff: p := in-truck, cargo := contains-p

Figure 3.3: The variables and operators of the trucks problem after the location of the
truck has been abstracted away.

Figure 3.4: The initial state of the trucks problem after the location of the truck was
abstracted away.

3.2 Operator Composition
Operator Composition combines sequences of operators into one composite operator. Oper-

ator Composition itself does not necessarily simplify a problem, but may causally decouple

variables, allowing them to be abstracted with variable abstraction.

Remember the trucks example. We have already removed the variable truck with safe vari-
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able abstraction. If we tried to immediately run the safe variable abstraction again, we

would not find any more safe variables because the remaining operators change both p and

cargo.

However, the states where the package is in the truck are not really “interesting states”.

Our goal is to transport the package from one place to another, not to leave it in the truck.

So in the current problem where the location of the truck has been abstracted away, every

time we load the package into the truck, the next action is always going to be unloading it

from the truck. We say the variable cargo is transient. Since we really only care about load-

ing a package somewhere and unloading it somewhere, we don’t care what happens to the

package in-between (remember, the location of the truck has been abstracted). We can see

that for all possible pairs of “pick-up” and “drop” operators, the cargo variable starts and

ends with empty. The only variable that changes is p. If we were to “hide” the intermediate

states, we could abstract cargo away. This can be done via operator composition, replacing

all the “pick-up” and “drop” operators by composite operators of the form “pick-up→ drop”.

To find such chains of operators we can composite without affecting solvability, we used a

theorem also introduced in Haslum [7]:

Theorem 2. (Safe Sequencing Theorem) Let c be a condition on two or more variables,

let A be the set of all actions whose effect includes c, and let B be the set of actions whose

precondition includes c. If c does not hold in the initial state; c is either inconsistent with or

disjoint from the effects of every action not in A; the postcondition of every action in A is

either inconsistent with or disjoint from the goal condition; and every action not in B whose

precondition is consistent with c is commutative with every action in A ∪B, then replacing

the actions in A ∪ B with one composite action for each executable sequence a, b1, ..., bk,

where k ≥ 1, a ∈ A and each bi ∈ B – excluding sequences with no effect — is safe (i.e.,

preserves solution existence).

Since Theorem 2 is more complex than Theorem 1, we can not explain it in the same depth

but if we look at each of the four conditions in the theorem separately, we can see what case

each condition covers. The conditions are:

1. “c does not hold in the initial state”

2. “c is inconsistent with or disjoint from the effects of every action, not in A“

3. “The postcondition of every action in A is either inconsistent or disjoint from the goal

condition”

4. “Every action not in B whose precondition is consistent with c is commutative with

every action in A ∪B”

Condition 1 is important to preserve the ability to leave the initial state. Since c (partially)

describes the states between the application of the operators in A and B, if we allow such
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a c, we could end up in a situation where the only operator that leaves the initial state is

replaced by a composite operator.

Say we have a solvable planning task where the initial state is not a goal state. Let B only

consist of one operator b and it is the only operator whose preconditions hold in the initial

state and A is not empty. Assuming the other conditions hold, but we ignore this condition,

following the rest of the theorem, we would replace the operators in A and operator b with

composite operators ⟨ai, b⟩. Since the preconditions of operators ai do not hold in the initial

state, the precondition of composite operators ⟨ai, b⟩ also do not hold in the initial state.

In this case, there is no operator that allows us to leave the initial state and the solution’s

existence would not be preserved.

Condition 2 is important to preserve the ability to apply all valid operator sequences. If

we do not check for this condition, there could be sequences of operators o1, o2 which are

needed to reach a goal but no longer exist after composition.

Say we have a solvable planning task. Let o be an operator whose effects are consistent and

not disjoint from c but is not in A. Further, o is the only operator that changes the value

assignment of a variable v1 (v1 7→ 0 in initial state) to be v1 7→ 1. Let b be an operator

in B and the only operator that changes the value assignment of a variable v2 (v2 7→ 0 in

initial state) to be v2 7→ 1. Let A be not empty and SA be the states in which the operators

in A are applicable. Let none of the states in SA be reachable from the states yielded by

o. Finally, there is an operator g which takes as its preconditions v1 7→ 1 and v2 7→ 1

and is the only operator to yield a goal state. Assuming all other conditions hold, but we

ignore this condition, we would replace the operators in A and operator b with composite

operators ⟨ai, b⟩. Since the states SA are not reachable by the sates yielded by o, none of the

composite operators ⟨ai, b⟩ can ever be applied after applying o. Since we can not establish

both v1 7→ 1 and v2 7→ 1 we can not apply g, meaning it is now impossible to reach a goal

state and the solution’s existence is not preserved.

Condition 3 is important to preserve the ability to set variables to their goal value. It could

be the case that an operator in a is the only operator that sets a variable’s value to its goal

value, and if we replace it, we might not be able to reach a goal state anymore.

Say we have a solvable planning task. Let v be a variable and its goal value is v 7→ g. Let

A consist of just one operator a. a is the only operator that assigns v 7→ g in its effects.

Let B be filled with operators whose effects contain the assignment v 7→ 0. Assuming all

other conditions hold, but we ignore this condition, we would replace a and the operators

in B with composite operators ⟨a, bi⟩. Since all operators in B assign v 7→ 0 as part of their

effects, all composite operators ⟨a, bi⟩ also assign v 7→ 0 in their effects. In this case, there is

no operator that allows us to establish the assignment v 7→ g, making it impossible to reach

a goal state and the solution’s existence is not preserved.

Conditions 4 is important to preserve the ability to use all operators not in B. It could be

the case that an operator o not in B is only applicable in the state between the application

of an operator in A and an operator of B. If we replace them with composite, operators o
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would no longer be applicable in any reachable state.

Say we have a solvable planning task. o is an operator whose preconditions are consistent

with c but o is not in B. Further, the only reachable state from the initial state in which o

is applicable is s and the effects of o yield the only goal state sg. s is the state in which c

holds and all operators that yield it are in A. B is not empty. Assuming all other conditions

hold, but we ignore this condition, we would replace the operators in A and the operators

in B with composite operators ⟨ai, bi⟩. In this case, it is no longer possible to reach state s

and since o is only applicable in s and is the only operator that yields the goal state sg, we

can no longer reach the goal state. The solution’s existence is not preserved in this case.

Given some set of composite operators Oc and the sets of operators A and B then β is the

simplification that adds an operator o to Oβ only if o is in Oc or if it is in O but not in

A or B. In other words, applying β to a planning task removes all the operators in A ∪ B

from the planning task and adds the composite operators from Oc to the planning task. Ap-

plying β to a planning task Π creates a more simplified planning task β(Π) = ⟨V,Oβ , s0, s∗⟩.

For an example, let’s carry on with the abstracted trucks problem shown in Fig. 3.3. If we ap-

ply Theorem 2 to the problem with a c = ⟨p 7→ in-truck, cargo 7→ contains-p⟩, we will get the
sets A = {pick-up-truck-a-p, pick-up-truck-b-p} and B = {drop-truck-a-p, drop-truck-b-p}.
Condition 1 holds, since c does not hold in the initial state. Operators drop-truck-a-p,

drop-truck-b-p are not in A and their effects are inconsistent with c because they assign

p 7→ at-A and p 7→ at-B respectively, so condition 2 also holds. Condition 3, holds because

the effects of both pick-up-truck-a-p and pick-up-truck-b-p are inconsistent with the goal

condition because they assign p 7→ in-truck. Finally, since none of the operators not in B

have preconditions consistent with c, condition 4 holds in a trivial sense.

Since all conditions hold, we create the composite operators and replace the original opera-

tors in A and B. The new composite operators are listed in Fig. 3.5.

Theorem 2 only considers what replacements are safe, but not what replacements are use-

ful, to further simplify the problem. If we remind ourselves of the trucks problem: operator

composition was useful because there was a chain of operators that changed only one vari-

able p permanently. The other variable in(truck, pkg1) changes only in an intermediate,

uninteresting state before being immediately reverted.

So a secondary condition is added. Consider a pair of variables v1 and v2. If for all possi-

ble c involving those two variables, the safe sequencing theorem holds and each of the new

composite operators changes at most one of the two variables, then replacing the involved

operators with these composite operators will remove the causal coupling between the two

variables and potentially making them into safe variables to be abstracted. We call this

condition the decoupling condition.

The simplification with the decoupling condition is similar to the simplification without con-

sidering the decoupling condition. Instead of the set of composite operators Oc being those

composite operators generated from a specific c, it is O⟨vi,vj⟩, which contains all composite
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Variables
p

Atom at-A
Atom at-B
in-truck

cargo
Atom empty
Atom contains-p

Operators
[pick-up-truck-a-p -> drop-truck-b-p]

pre: p := at-A, cargo := empty
eff: p := at-B, cargo := empty

[pick-up-truck-b-p -> drop-truck-a-p]
pre: p := at-B, cargo := empty
eff: p := at-A, cargo := empty

Figure 3.5: The variables and operators of the trucks problem after the location of the
truck has been abstracted away, and the remaining operators have been composited. The
operators [pick-up-truck-a-p → drop-truck-a-p] and [pick-up-truck-b-p → drop-truck-b-p]
are not included since they have no effect (preconditions and effects are identical).

operators generated from all valid c of a variable pair ⟨vi, vj⟩. And instead of replacing the

operators in the set A∪B of a specific c, we similarly pool the operators of sets A and B from

all valid c into a single set O∼
⟨vi,vj⟩. With the decoupling condition, β is the simplification

that adds an operator o to Oβ only if o is in O⟨vi,vj⟩ or if it is in O but not in O∼
⟨vi,vj⟩. Ap-

plying β to a planning task Π creates a more simplified planning task β(Π) = ⟨V,Oβ , s0, s∗⟩.
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Implementation

We have implemented the findings of Haslum [7] in the Fast Downwards planner introduced

by Helmert [9]. The planner consists of two phases: translation and the search. The transla-

tor transforms the planning tasks encoded in PDDL[6][5] and replaces propositional variables

with multi-value variables where possible. During the search phase, Fast Downwards uses a

given search algorithm to solve the problem. Safe Abstraction has to simplify the problem

after translation but before the search is performed. It also has to refine the plan after

the search. Fast Downward currently does not neatly support problem manipulation of this

kind. This means that the integration of Safe Abstraction into Fast Downward is not clean.

We will build a simplification hierarchy by alternatively applying a safe variable abstraction

αs followed by an operator composition βc. A single simplification step will transform some

planning task Π into βc(αs(Π)).

After we finished our simplification step, we will pass the simplified planning task βc(αs(Π))

to the next simplification step and save the pair ⟨αs, βc⟩. Once a plan is found, we can apply

the inversion of the simplifications in reverse order to refine the task βc(αs(Π)) into a more

concrete task Π.

Three major components are used to perform this simplification and refinement. The (vari-

able) abstractor4, compositor and refiner. The abstractor uses Theorem 1 to find the cur-

rently safe variable in the problem, the compositor uses Theorem 2 to find a set of safely

composable operators and the refiner will apply the inverse of the simplifications to refine

the problem (and its plan) back to the concrete version.

The abstractor and the compositor are applied in a loop. In each step, we first pass the

abstractor a planning task Π. The abstractor performs a safe variable abstraction αs and

returns a simplified task αs(Π). This simplified task is then passed to the compositor, which

applies operator composition and returns a further simplified task βc(αs(Π)). We then use

4 Note that, despite its name, the abstractor performs a projection which describes the save variable
abstraction αs. It should not be mistaken for abstractions in a more general sense.



Implementation 20

βc(αs(Π)) as our starting point in the next iteration of the loop. We exit the loop if, after

finishing the last step, the problem was solved, meaning the set of variables V of Π is empty

or if both the abstractor and the compositor made no further simplification the last time

they were called. Once the loop has terminated, if the problem wasn’t fully solved, the most

simplified task Πs is passed to the search component of Fast Downwards. If the search finds

a solution, it will return a plan. That plan is then passed to the refiner. If the problem was

solved by safe abstraction and no search was needed, an empty plan containing no operators

is passed to the refiner instead. The refiner will extend the plan and, once finished, return

a plan that is valid in the original, unmodified planning task.

Let us first have a look at the abstractor.

4.1 Abstractor
The abstractor takes as input only the planning task Π. It iterates through all operators

in the problem and, using Definition 11 of the free domain transition graph, builds the

free DTG for each variable. Simultaneously, the abstractor will identify and mark the ex-

ternally required and externally caused values of the variables the using Definition 12 and

Definition 13. Once this information has been collected, the abstractor will, for each vari-

able, apply Theorem 1 and mark all safe variables. Then the abstractor removes all safe

variables from Π as described in Section 3.1. As already mentioned in that section, the or-

der in which safe variables which were found in the same step are processed does not matter.

The Theorem 1 introduces by Haslum [7] does not account for a specific edge case where

there are no externally required values. In this edge case, a variable could be marked as safe

even if it was not.

4.1.1 Uncovered edge case
The theorem states that if the externally required values are strongly connected, they are

reachable from every externally cause value and that the goal value (if any) is free reachable

from every externally required value, then the variable is safe. If there is at least one exter-

nally required value, this is sufficient, as we are guaranteed to reach the goal value from the

externally caused values via the externally required values.

However, in the case where we have a goal value, and some externally caused values but no

externally required values, the given theorem is not well defined. All the requirements are

fulfilled in the sense that an empty graph (the graph of the externally required values) is

strongly connected and since there are no externally required values, the requirements “all

externally required values of V are (. . . ) free reachable from every externally caused value”

and “the goal value of V (if any) is free reachable from each externally required value” are

true in a trivial sense.
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In this case, the theorem would tell us that the variable is safely abstractable. This however

is not necessarily true. Imagine the simple case of a variable v with domain Dv = {0, 1}.
v 7→ 1 the variable’s goal value and v 7→ 0 the variable value in the initial state. v has no

externally required values. There is an operator that changes the value of v from 0 to 1,

but it also changes some other variable. In this case, the free DTG of v would consist of

two vertices with no arcs. So the goal value is not free reachable from the initial value. As

discussed above, however, since v has no externally required values, the theorem would still

mark it as a safe variable.

To cover this edge case, we inserted an additional check. If there are no externally required

values, we instead require the goal value (if any) to be free reachable from all externally

caused values.

Next, let us have a look at the compositor.

4.2 Compositor
The compositor takes as input the planning task Π. To begin with, it generates a variable

pair ⟨vi, vj⟩ and from them generates all possible value assignment pairs ⟨vi 7→ dk, vj 7→ dl⟩
which do not hold in the initial state s0 as is required by Condition 1 of Theorem 2.

Next, we use each of these assignment pairs as a c⟨vi,vj⟩ in Theorem 2 to generate the sets

A and B for that c and check them for the conditions 2, 3 and 4 of Theorem 2. If any of

the conditions do not hold for any c⟨vi,vj⟩ of the variable pair, we throw out any composite

operators already generated and start over with the next variable pair.

If the safe sequencing condition holds for all c of the variable pair, we recursively build

the operator sequences that will make up our composite operators. Each sequence begins

with one operator from A, then, in each subsequent function call, the compositor adds one

operator from B and checks if the new sequence is executable.

To determine if a sequence is executable, we iterate through the sequence with a simulated

partial state ssim. We initialize it with the preconditions of the first operator in the sequence

o0. Then, starting with o0, we check if the preconditions of the current operator oi are met

in ssim. For each precondition v 7→ d, there are three cases: either the precondition is

explicitly met, meaning v is assigned a value in ssim and that value is d, it is implicitly met,

meaning v is not assigned a value in ssim, or it is not met, meaning v is assigned a different

value than d in ssim. If the precondition is explicitly or implicitly met, no further effort is

required. If the precondition is not met, the sequence is not executable and we can stop the

simulation. If all preconditions of oi are met (explicitly or implicitly), we update ssim with

the effects of oi and move on to the next operator oi+1. If all operators in the sequence

were checked and all preconditions either explicitly or implicitly met, then the sequence is
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executable.

If the new sequence is executable, a composite operator is generated from it and the pro-

cedure is continued by appending another operator from B to the sequence. If the new

sequence isn’t executable, the compositor will try to append another operator from B in-

stead.

Once all executable and unique composite operator have been constructed, they are checked

with the decoupling condition to determine whether the composition removes the causal

coupling between the variables vi and vj . If they do, the compositor replaces all those oper-

ators which were used to create the composite operators with the composite operators, then

terminates. Otherwise, the results are discarded, and the next variable pair is generated

until either a pair can be found where their causal coupling is removed or until all variable

pairs have been tested.

While Theorem 2 establishes which chains could be composited, it isn’t entirely clear how

these chains should be constructed. The most straightforward idea would be to create all

possible combinations of chains from the actions in A and B. This approach fails, however,

if there is a cycle of applicable actions within B, in which case there would be an infinite

number of executable sequences.

4.2.1 Avoiding infinite loops
Imagine a set A = {a} and a set B = {b1, b2}. The effects of a and b2 establish a partial

state s1 and the effects of b1 establishes a partial state s2. b1 is applicable in partial state

s1 and b2 is applicable in both partial states.

Since there are cycles in B (b1 ↔ b2 and b2 ↔ b2), we can create an infinite number of

executable sequences by repeatedly applying the cycles. Since we have to replace each exe-

cutable sequence with a composite operator, the algorithm would never terminate.

To avoid this, whenever, we add a new operator to the end of an operator sequence, after

we check if the sequence is executable, we check if the composite operator generated by the

sequence is unique. For an operator to be unique, its preconditions or effects have to be

different from each of the already created composite operator.

To find the preconditions and effects of a composite operator oc generated by a sequence,

we iterate through the sequence with a simulated partial state ssim. We also keep track of a

partial state, which will record the sequence’s preconditions spre. We initialize both partial

states with the preconditions of the first operator in the sequence o0. Then, starting with o0,

we check the preconditions of the current operator oi. Since we already know the sequence

is executable, for each precondition v 7→ d, there are two cases: either the precondition is

explicitly met, meaning v is assigned a value in ssim and that value is d or it is implicitly met,
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meaning v is not assigned a value in ssim. If the precondition is explicitly met, no further

effort is required. If the precondition is implicitly met, we record the precondition in spre.

Next, we update ssim with the effects of oi and move on to the next operator oi+1. Once

the effects of the last operator have been applied to ssim, it records the effects of oc. Then,

to determine if oc is unique, its preconditions spre and effects ssim are compared against

all other composite operators already generated and if, for any other composite operator oc

both are identical, then the sequence is not unique.

If the new composite operator is not unique, it is discarded and the last operator of the

sequence is replaced with another operator from B that wasn’t tried yet. If it is unique,

it is added to the list of composite operators and the recursion continues by appending an

operator from B to the sequence.

4.2.2 Soft Composition
There is a lack of clarity in the description of the composition procedure used by Haslum [7].

Theorem 2 as described by them, talks about one specific condition c. If the safe sequencing

conditions hold for that c and its sets of operators A and B, then we should replace the

executable sequences a, b1, ..., bK with composite operators.

However, the decoupling condition, that this replacement actually removes the causal cou-

pling, talks about a set of such c, those generated from the variable pair ⟨v1, v2⟩. If the safe

sequencing condition holds for all c generated this way, and the composite operators remove

the causal coupling due to simultaneous change between them, then all involved operators

across all c are replaced by all composite operators in one step.

Unfortunately, with the assumptions we made as described in Section 4.2, we were unable

to reproduce the composition of the trucks problem as described in their paper.

To see why, let’s go back to the trucks example, from Fig. 3.3 where the location of the

truck has just been abstracted. Now, if we want to perform a composition, the only choice

we have for a variable pair is ⟨p, cargo⟩. As described in, Section 4.2 this is what we want

to remove the causal coupling between them. There are five5 valid c we can build from this.

The one c we are really interested in is ⟨p 7→ in-truck, cargo 7→ contains-p⟩ since that will

put the pick-up operators into A and the drop operators into B. Luckily, the safe sequencing

condition holds in this case. However, we can only perform the composition if it holds for

all c. However, the c where ⟨p 7→ at-B, cargo 7→ empty⟩ also needs to be considered. In

this case, A contains only the operator drop-truck-b-p and B the pick-up operators. How-

ever, the effects of drop-truck-b-p are not disjoint nor inconsistent with the goal condition,

since p = at-B is a goal condition. This violates the condition 3 of Theorem 2. In this

case, we have to throw out the composite operators computed so far, and since there are

no further variable pairs, the compositor terminates without replacing any operators. Since

5 ⟨p 7→ at-A, cargo 7→ empty⟩ is not a valid c since it holds in the initial state
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the abstractor can not find any more safe variables in this state either, safe abstraction ends.

Since we do not have access to their encodings, we have tried to reconstruct the trucks

example from Haslum [7] as best as we can, but can not guarantee that our encoding is

identical with theirs. In another encoding, it is possible that composition would happen

without further change.

In response to this and in hopes of reproducing the composition illustrated in Haslum

[7], we implemented an option for the compositor to be “soft”. When the compositor is

soft, if a c violates the safe sequencing condition, instead of discarding the entire vari-

able pair, only that specific c is rejected. Meaning that no composite operators are gen-

erated using the sets of operators A and B associated with that c. In the case above,

c = ⟨p 7→ in-truck, cargo 7→ contains-p⟩ fulfils all the conditions and is passed on, whereas

c = ⟨p 7→ at-B, cargo 7→ empty⟩ does not and is rejected. After this step, if at least one c

was passed on, the operator sequences are generated and checked as described in Section 4.2

and, if they remove causal coupling due to simultaneous change, the compositor replaces

all operators from the A ∪ B associated with the c that were passed on, with the set of

composite operators oc. Otherwise, we move on to the next variable pair.

With soft composition, we create new pick -up → drop composite operators, replacing the

current operators and the variables p and cargo become safe for abstraction. The final out-

put of soft composition is the same as shown in Fig. 3.5.

Finally, let us have a look at the refiner.

4.3 Refiner
The refiner is called after either the problem was fully solved by safe abstraction or a plan

was found by a search algorithm. The refiner takes as input the simplified plan and the

simplification hierarchy, in our case a list of pairs ⟨αi, βj⟩. It will iteratively work backwards

through the simplification hierarchy. In each step, it first decomposes the composition by

applying, β−1
j then it refines the plan by applying α−1

i .

To decompose the problem, the refiner loops through the composite operators of βj and

replaces them with the chain of operators that made them up. Since the composite operator

and the chain of operators making it up are identical, decomposing a composite operator in

the plan does not change its validity and requires no further changes.

To refine the problem, the refiner reinserts the safe variables of αi into the problem. Since

variable abstraction changes the way operators can be applied with respect to each other,

refinement may make the simplified plan not valid in the more concrete problem. We can

see this when considering an simplified plan with just two operators π = ⟨oαi , oαj ⟩. To apply
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oαj to the partial state created by oαi , the effects of oαi must either be disjoint from the

preconditions of oαj (assuming the preconditions of oαj hold in the initial state) or at least be

consistent with the preconditions of oαj . If we now refine the problem by applying, α−1 we

will reinsert variables into the preconditions and effects of the operators of the problem. We

are now no longer guaranteed that the effects of oi are disjoint or consistent with the pre-

conditions of, oj and the plan may no longer be valid. If the variable abstraction α removed

a variable v from the problem and the effects of oi now contains v 7→ 1 and the precondition

of oj now contains v 7→ 2, we must now find an applicable sequence of operators O who’s

overall effect is to change the assignment of v from v 7→ 1 to v 7→ 2 without violating some

other precondition of oj .

As already discussed in Section 3.1, since v is a safe variable, we can find this sequence

by searching the free DTG of v. We perform a simple breath first search, which takes as

arguments the source value (v 7→ 1 this case) and the target value (v 7→ 2). Once such a

path has been found, it can be inserted between oi and oj to resolve this conflict. Once all

such conflicts have been resolved and the plan expanded to be fully valid again, the refiner

continues with the next refinement step.



5
Experimental Evaluation

To compare the theory and implementation presented in this paper against the baseline with

no such simplifications, we have conducted a series of experiments. We will briefly introduce

the setup we used for our experiments, then talk about the challenges and results of the

experiments.

5.1 Setup
As stated in previous chapters, we implemented our safe abstraction algorithm in the Fast

Downward system. We use the Python package Downward Lab by Seipp et al. [12] to run

our experiments on the SciCORE scientific computing centre at the University of Basel. The

experiments were run on Core Intel Xeon Silver 4114 2.2 GHz processors. We set the time

limit for each run to 30 minutes, and the memory limit to 3.5 GiB. We tested the imple-

mentation on a collection of IPC benchmark instances.6 It total we consider 1836 problems

across 65 domains.

As our search algorithms, we used the first component of the Lama planning system in-

troduced by Richter and Westphal [11], a greedy best first search algorithms using the FF

heuristic and a simple breadth first search. We will call these algorithms Lama-First, FF

and Blind. Since we are not interested in generating optimal plans, our search algorithms

assume each operator to have a cost of one.

We ran all planning tasks for four configurations of Fast Downward; first, we ran it while not

doing any simplifications. We use this as the baseline to compare our changes to. Then we

ran it with just variable abstraction, performing no operator composition. Finally, we ran

it with both variable abstraction and operator composition. Once as the normal “harsh”

version and once in the “soft” version mentioned in Section 4.2.2. We will call these versions

none when no safe abstraction was made, abstraction if only variable abstraction was

performed, all for full safe abstraction with harsh operator composition and all soft for

full safe abstraction with soft operator composition.

6 https://github.com/aibasel/downward-benchmarks



Experimental Evaluation 27

none abstraction all all soft

Atoms Abstracted 0.0% 6.58% 6.58% 6.58%
Abstraction Steps 0 570 570 570
# Abstracted Variables 0 3141 3141 3141
# Composite Operators 0 0 0 0

Table 5.1: Abstraction result of experiments. The atoms abstracted is calculated by an
arithmetic mean over all problems, while the abstraction steps and the number of
abstracted variables and composite operators is the sum over all problems.

5.2 Results
Since the choice of search algorithm will not influence the success of safe abstraction, we

have split the results of the experiments into two parts: the abstraction results and the

search results.

The abstraction results show to what degree the benchmark problems could be simplified.

The search results show the impact these simplifications had on the time and memory re-

quirements of the search.

5.2.1 Abstraction Results
Let’s start with the abstraction results. Here, we will be primarily looking at the following

metrics:

Atoms Abstracted:7 The percentage of atoms that were abstracted.

Abstraction Steps: The number of ⟨αs, βc⟩ pairs that were generated.

Num. abstracted variables: The number of variables that were abstracted.

Num. composite operators: The number of composite operators that were created.

From the abstraction results in Table 5.1 we can see that on average, across all benchmark

problems, a relatively small number of atoms is abstracted. The operator compositions pro-

vide no benefit. In fact, neither harsh nor soft operator composition creates even a single

composite operator across all problem domains.

As discussed in Section 4.2.2 we know the soft operator composition works in our trucks

toy example. The benchmark encodings of similar problems are different. Since operator

composition is quite sensitive8 to the encoding of a problem, those differences might explain

why we don’t see any operator composition in the benchmark problems. We can examine

7 We can’t abstract individual atoms. Instead, whenever a variable is abstracted, we known we abstracted
a number of atoms equal to that variable’s domain size.

8 meaning that slight changes in the encoding of a problem can greatly affect how many composite operators
can be generated.
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one simple problem from the gripper domain, for which Haslum [7] has managed to produce

operator compositions. The problem is similar to the trucks problem but here we have two

rooms, two balls and a robot that can move between the rooms. The robot has two arms,

each of which can pick up a ball if it isn’t holding one or drop the ball it is holding it. Just

like Fig. 3.3, the location of the robot has already been abstracted away. Now we would

like to create the operator sequences ⟨pick-ball-roomA-arm, drop-ball-roomB-arm⟩. Look-
ing at a concrete operator: pick-ball1-roomA-armLeft we find its effects to be {ball1 7→
carried-by-armLeft , armLeft 7→ not-free}. So for it to be in A to start the composite opera-

tor, our c has to be c = {ball1 7→ carried-by-armLeft , armLeft 7→ not-free}. If we now look

at the preconditions of drop-ball1-roomB-armLeft we find {ball1 7→ carried-by-armLeft}.
So we can’t include it in B. In fact, there are no other operators whose preconditions con-

tain c. Because our B is empty, we are unable to produce any operator sequences and no

operator composition can be done for this c. The same goes for all other related operators

over a different ball.

Of course, ball1 7→ carried-by-armLeft implies that armLeft 7→ not-free. We can change

our encoding to capture this implication explicitly by adding armLeft 7→ not-free as a pre-

condition to the operators drop-ball-room-arm. This doesn’t change the semantics of the

problem but allows the drop operators to be included in B. If we continue where we left

off above, for our c = {ball1 7→ carried-by-armLeft , armLeft 7→ not-free} we now have

pick-ball1-roomA-armLeft in A and drop-ball1-roomB-armLeft in our B. We can now

check the conditions of Theorem 2. We see that Condition 2 is being violated. The operator

pick-ball2-roomA-armLeft has the following effects: {ball2 7→ carried-by-armLeft , armLeft 7→
not-free}. This means, since its effect do not contain c, it is not in A, but because of

armLeft 7→ not-free its effects are not disjoint nor inconsistent with c. This issue is mirrored

with the other operators over ball2 and the operators using armRight. So this simple re-

formulation is not enough and the encoding would have to be changed further to allow for

composition in this problem.

The encoding of a problem is not the only relevant property that determines the success of

variable abstraction and operator composition. The domain of a problem too greatly affects

how much of the problem can be simplified. Table 5.2 shows, how some domains allowed

for no simplification with our implementation while others like the logistics domain could

be fully solved by safe abstraction. We chose these domains to match a table of results

included in Haslum [7]. We compare our results against their results in Table 5.3. In that

table, We show the range of simplification achieved per domain, instead of the arithmetic

mean. We can see that Haslum generally achieve better ranges of simplification for most

domains listed. In particular, Haslum manages to fully solve the gripper, movie, and satel-

lite domains, whereas our implementation is only able to achieve very minor to moderate

simplification degrees in those domains. We achieve similar results to Haslum in the depot,

driverlogs and logistics domains. Particularly interesting is the logistics domain, which is

fully solvable with just variable abstraction.
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none abstraction all all soft

gripper(20) 0% 2.43% 2.43% 2.43%
logistics00(28) 0.0% 100% 100% 100%
logistics98(24) 0.0% 100% 100% 100%
movie(30) 0% 0% 0% 0%
mystery(27) 0% 0% 0% 0%
mprime(28) 0% 0% 0% 0%
grid(5) 0% 0% 0% 0%
freecell(80) 0% 0% 0% 0%
depot(21) 0.0% 4.47% 4.47% 4.47%
driverlog(19) 0.0% 9.4% 9.4% 9.4%
rovers(35) 0% 60.57% 60.57% 60.57%
satellite(27) 0.0% 55.32% 55.32% 55.32%
airport(27) 0% 0% 0% 0%

Table 5.2: Percentage (arithmetic mean) of atoms abstracted from a problem domain. The
number in parentheses denotes the number of problem instances in the domain.

Haslum [7] Our results
gripper(20) 100% 1–8%
logistics(28+24) 100% 100%
movie(30) 100% 0%
mystery(27) 0% 0%
mprime(28) 0% 0%
grid(5) ∼50% 0%
freecell(80) 0% 0%
depot(21) 1–10% 1–12%
driverlog(19) 0–25% 0–35%
rovers(35) 60–90% 37–78%
satellite(27) 100% 32–83%
airport(27) 40–60% 0%

Table 5.3: The range of atoms abstracted from the problems of a domain achieved by
Haslum [7] and our implementation. The number in parentheses denotes the number of
problem instances in the domain that our implementation ran in. We don’t know how
many problems Haslum ran their implementation on.

There are several ways to explain this discrepancy. Firstly, as already mentioned in Sec-

tion 4.2.2, we might not have the same domain and problem encodings as them. In general,

the same planning task can be encoded in very different ways and safe variable abstraction

and in particular safe operator composition are highly sensitive to the problem’s encoding.

On top of this, we have Fast Downward’s translator module, mentioned at the start of Chap-

ter 4, which takes the problems encoded in PDDL[5][6] and transforms them into a finite

domain representation[9]. During this transformation, the translator is already performing

some simplifications to produce an encoding that is as simple as possible. It is possible

that even if the problem could be well abstracted with safe abstraction, the output of the

translator is either already as simplified as it can be or that the new encoding doesn’t al-

low safe abstraction. Finally, also mentioned in Section 4.2.2, we had to make a number

of assumptions while implementing safe abstractions. Some of these assumptions might be

wrong, or we have made other logical errors in the process. Unfortunately, it is also possible
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none abstraction all all soft

Blind 482 560 557 541
FF 1219 1306 1255 1101
Lama-First 1624 1648 1553 1347

Table 5.4: Coverage achieved by the search algorithms in the different configurations. The
best results are highlighted in bold.

that undiscovered bugs are changing the behaviour of our implementation in unintended

ways.

Let’s now look at how our simplifications influence the time and memory behaviour of the

search algorithms.

5.2.2 Search Results
In this section, we will mainly look at the following metrics and how they change as the

degree of simplification changes:

Coverage: The number of problems for which a solution was found within the time

and memory limits.

Search time: The time the search algorithm took to find a solution to the potentially

simplified task.

Abstraction time: The time the abstractor took to perform the safe variable ab-

stractions.

Composition time: The time the compositor took to perform the operator compo-

sitions.

Refinement time: The time the refiner took to refine the simplified plan.

Total time: The total time the planner took to solve the problem (including search

and safe abstraction but excluding the translator).

Memory: The peak amount of memory used by the planner to solve the problem

(including search, safe abstraction and the translator).

The easiest way to see if the search has benefitted from simplification is to look at the

coverage. The coverage counts the number of problems each search algorithm was able to

successfully solve. Excluding unsolvable cases, there are two reasons why a problem was not

solved, either it ran out of memory or it ran out of time. Therefore, if we see an improve-

ment in the number of problems solved, then we can expect our simplifications to have saved

time or memory or both during the search. Table 5.4 shows the coverage of our experiments.

We see that when using Blind, Abstraction gives us significantly more coverage than in

none. When we compare the more sophisticated search algorithms, the gap in coverages
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between the unmodified problems and the problems simplified with safe variable abstrac-

tion begin to narrow. In the most sophisticated search algorithm tested, Lama-First, the

unmodified problems are almost as well covered as those on which variable abstraction was

performed.

One explanation of why variable abstraction offers a greater runtime benefit in Blind than

in a more sophisticated search like FF or Lama-First could be that FF and Lama-First are

already exploring much less of the state space of the problem. Since they use heuristics

to guide them to a goal, they need only need to consider operators that lead towards the

goal. If we abstract a variable and it reduces the size of the state space, Blind will benefit

more from that reduction than algorithms like FF and Lama-First because they will have

to explore less of the state space to begin with. We can compare the search time in the

simplified and unmodified problems directly.

Fig. 5.1 shows a comparison of the search times of Lama-First in the none and abstrac-

tion configuration. In such scatter plots, if a data point lies on the upper or right bound

of the plot, it means that that problem could not be solved within the time limit by the re-

spective configuration or search algorithm. We can see that while some problems are solved

significantly faster when safe variable abstraction is used, a large portion of the problems

seem to gain very little or no benefit from the simplification. Fig. 5.2 shows the same fig-

ure but includes only those domains for which at least one variable was abstracted. We

see that rovers and satellite gain no significant benefit from variable abstraction despite

having a majority of their atoms abstracted (See Table 5.1), while with other domains like

transport-sat08-strips (24.42% of atoms abstracted) and transport-sat11-strips (21.28% of

atoms abstracted) we observe a significant reduction in the search time. When we compare

this to, Fig. 5.3 which shows the same domains but with a search using Blind, we see that the

search of both rovers and satellite is much faster in the abstraction configuration than

none. The search over transport-sat08-strips too is running faster than in none, while

transport-sat11-strips can’t be shown because the planner exceeds the memory constraints

for both configurations in all runs.

As previously discussed, Lama-First uses heuristics to guide them to the goal and has to

explore much less of the state space than Blind. One explanation for the results above is

that domains like satellite and rovers are more easily navigable. Meaning that the heuristics

give strong guidance and only a minimal amount of that problem’s state space has to be

explored, while domains like transport-sat08-strips and transport-sat11-strips are less nav-

igable, meaning more of the problem’s state space has to be explored. If Lama-First has

to explore more of the state spaces of the problems in the transport-sat domains, we would

expect a greater benefit there than in satellite and rover. Blind of course has no heuristics

and is not guided and benefits in all cases. This however only really explains the problems

for which we see no benefit nor any detriment to the search time. One explanation of why

some problems, like some satellite problems, were solved slower in Abstraction than in

none when using Lama-First is that the abstracted variables happened to be variables that
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were important to some heuristic, and without that variable the heuristic becomes much less

informative. In this case, even though the simplified problem has a smaller state space, the

heuristics in the unmodified problem are so much better informed that the benefit of these

better heuristics to the search outweigh the benefit of having to search a smaller smaller

state space.
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Figure 5.1: Comparison of the search time of Lama-First when run on problems simplified
with variable abstraction versus problems with no simplifications performed.

Going back to our discussion on coverage, we see that safe abstraction with soft operator

composition performs significantly worse than with harsh operator composition, especially

when more sophisticated algorithms are used. We saw in Table 5.1 that All Soft does not

produce a higher level of simplification than All, nor does All compared to abstraction.

Despite this, All Soft requires significantly more effort. We can see that in Fig. 5.4. We

see that in almost all problems solved, All Soft required more time to perform operator

composition and generate the composite operators.

The difference between the time required by the compositions can be explained by the differ-

ent conditions to abort operator composition in a variable pair. As discussed in Section 3.2,

the harsh operator composition used in All aborts operator composition for a specific vari-

able pair if any of the conditions in Theorem 2 do not hold for any valid9 c. The soft

operator composition used in All Soft has to try each valid c before moving on with the

next variable pair. We can see the significance of this by imagining some variable pair where

none of their c hold in all conditions of Theorem 2. All only has to try the first c. Once

that c violated one of the conditions, All moves on with the next variable pair. All Soft

9 c that violate condition 1 are not generated
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Figure 5.2: Comparison of the search time of Lama-First when run on problems simplified
with variable abstraction versus problems with no simplifications performed. Depicted are
only those domains for which at least one variable was abstracted.
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Figure 5.3: Comparison of the search time of Blind when run on problems simplified with
variable abstraction versus problems with no simplifications performed. Depicted are only
those domains for which at least one variable was abstracted.
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abstraction all all soft

abstraction time 0.05s 0.05s 0.05s
composition time 0s 38.73s 240.52s
combined time 0.05s 38.78s 240.57s

Table 5.5: Abstraction and composition time (arithmetic mean) of the different
configurations.

however, has to try every c of the variable pair before being able to move on to the next

one.
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Figure 5.4: Comparison of the composition time of All Soft againstAll.

Not only is the overhead of All Soft much greater than All, but both harsh and soft

operator compositions are much more expensive than variable abstractions. Table 5.5 com-

pares the overhead of variable abstraction and operator composition in the configurations.

We see that composition is orders of magnitude more expensive to compute than variable

abstraction. Since, as we’ve seen in Table 5.1 All and All Soft, achieve no greater level

of simplification than Abstraction, we expect these configurations to do worse than Ab-

straction and None in the overall time.

The final overhead of safe abstraction is the refinement time. Compared to the overhead of

variable abstraction, plan refinement time is almost negligible. For an example, we look at

a problem within the logistics98 domain. The abstractor took 2.64787 seconds to abstract

all 116 variables from the problem, solving it entirely. Since the problem was solved, we

skipped the search. Then, the refiner extended an empty plan to a valid plan in the concrete

problem in just 0.0128406 seconds. For other problems with fewer safe variables found, the

refinement was even faster.
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none abstraction all all soft

Blind 0.68s 0.41s 0.60s 1.02s
FF 0.04s 0.04s 0.11s 0.35s
Lama-First 0.04s 0.04s 0.11s 0.33s

Table 5.6: Total time (geometric mean) of the search algorithms in the different
configurations. The best results are highlighted in bold.

Now that we have discussed all the overhead of the different components, let us look at how

the different configurations of safe abstraction change the total time required.

In Table 5.6 we show the geometric mean of the total time the planner took. Since it in-

cludes both the search and the abstraction and composition times, it is a useful measure to

weight the benefit of a configuration against its overhead. We see that variable abstraction

can significantly reduce the total time of the planner when a breadth first search algorithm

is used, but when more sophisticated search algorithms are used, abstraction no longer

offers a benefit over none, but is able to keep pace with it. As discussed with Fig. 5.4 and

Table 5.5, All and All soft suffer from the overhead of operator composition, without

benefiting the search more than abstraction, which results in significantly worse runtime.

Now that we have discussed the time requirements of the planner with various configurations

and search algorithms, let us have a look at its memory usage.

Shown in Table 5.7 is the total amount of memory the planner required for each config-

uration. We see that, all configurations of safe abstraction have a comparable memory

footprint. For Blind, abstraction reduces the memory required to solve the problems.

With the more sophisticated search algorithms, Abstraction requires marginally more

memory than None.

An intuitive explanation may be that, as a search algorithm has to explore more of a prob-

lem’s state space, it needs to track more information about what states have already been

explored and which can be explored next. Since, as discussed above, Blind has to explore a

greater fraction of the state space of a problem, the simplifications created by safe abstrac-

tion help to significantly cut down on the number of states it has to explore and thus how

much memory it uses. In the cases of FF and Lama-First, since they already explore much

less of the state space, the simplifications of safe abstraction do not reduce the memory load

of the search enough to compensate for the memory usage of keeping track of the simplifi-

cation steps.

Finally, though we aren’t interested in finding optimal paths, we can have a look at the final

plan length found by the search algorithms with abstraction and none.

Fig. 5.5 and Fig. 5.6 show the length of the plan for a problem in the two configurations.
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none abstraction all all soft

Blind 75.81 MB 60.01 MB 60.11 MB 60.11 MB
FF 22.64 MB 23.47 MB 23.49 MB 23.50 MB
Lama-First 22.56 MB 23.18 MB 23.19 MB 23.19 MB

Table 5.7: Memory (geometric mean) needed by the search algorithms and planner. The
best results are highlighted in bold.

In the case of none this is just the normal plan length as of course no variable abstraction

nor refinement takes place. In the case of abstraction it is the length of the plan after

it has been fully refined. We can see from Fig. 5.5 that the plans found by Blind in ab-

straction are at best as good as those it found in Fig. 5.6 but in many cases slightly worse.

This makes sense because, since Blind is a breath first search, it will always find the shortest

path in a problem. Since a simplified plan can never become shorter during refinement, the

best case scenario in the problems simplified by abstraction is that Blind finds a plan with

the same length, and it is not extended during refinement. We do not have that guarantee

however and as we can see, the plans can be worse because the shortest simplified plan isn’t

necessarily the simplified plan that is the shortest after it was refined.
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Figure 5.5: Comparison of length of the plan found by Blind. In the case of abstraction,
after refinement took place. Depicted are only those domains for which at least one
variable was abstracted.

We see in Fig. 5.6 that the same argument does not hold when Lama-First is used as the

search algorithm. In this case, we see that Lama-First may find shorter plans in the sim-
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plified problems, though in many of the problems, the plans found are longer than when no

variable abstraction is performed.

Lama-First, unlike Blind, doesn’t necessarily find the shortest plan possible. One possible

explanation is that, as mentioned before, variable abstraction messes with the heuristics

used by Lama-First. In this case, the heuristics might guide the search algorithm differently

and might find a plan that, even when refined, is shorter than the plan found by Lama-First

in none.
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Figure 5.6: Comparison of length of the plan found by Lama-First after refinement took
place. In the case of abstraction, after refinement took place. Depicted are only those
domains for which at least one variable was abstracted.
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Conclusion

We have implemented the safe abstraction as described by Haslum [7] in the Fast Downward

planner[9]. We have developed separate components to handle safe variable abstraction, op-

erator composition and problem refinement. We have shown that safe variable abstraction

can significantly reduce the accidental complexity of a problem and in some cases outright

solve them. Unfortunately, we were unable to reproduce the operator compositions described

in Haslum [7] with our implementation.

Our experiments have shown that even with just safe variable abstraction, we can make

significant improvements in the time and memory requirements of finding a plan, especially

when less sophisticated search algorithms are used. We have also seen that some problems

and encodings are better suited to be simplified by safe abstraction, while in others, no

simplification can be achieved by applying safe abstraction.

An interesting direction for a future project is to investigate the differences in our results

between our implementation and the implementation of Haslum [7]. There are several expla-

nations that could at least partially explain this. Are the problem encodings different, and if

so, what properties do our encodings have that makes operator composition so hard? Alter-

natively, our implementation of operator composition could be wrong or too harsh. In this

case, it would be interesting to see how Haslum handled the case discussed in Section 4.2.2.

Finally, Haslum mentioned some other techniques and restrictions in their implementation

section. Another interesting project is to look at these techniques and restrictions and

analyse their interplay with safe abstraction to see how beneficial they are and if they can

explain the difference in results. A final interesting observation that might warrant further

exploration is the search time and plan length of problems in the satellite and rover domain.

With safe abstraction we would expect our search time to be reduced or at worst stay the

same while the plan length grow longer or at best remain the same length. However, when

Lama-First was used on those domains, we saw the inverse happen. We saw an increase

in the search time and a decrease in the plan length when compared to the unsimplified

problems. It would be interesting to see what properties of those domains or of Lama-First

cause or enable this inversion of our expectation.
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