
Optimistic Best-First Search with
Goal-Preferred Actions in Fast

Downward
Bachelor’s thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Remo Christen

Lisette Maureira

lisette.maureiradominguez@stud.unibas.ch

2020-709-937

10.10.2025

Abstract

Planning in Artificial Intelligence is the search for a sequence of actions applicable on the

initial state to reach a given goal. The reliance on delete-relaxation graphs that ignore

delete-effects of actions for the cost estimation for nodes in this search could potentially

threaten the preservation of goal components achieved along the search. One such heuristic

is the FF-heuristic. A novel approach to guide the search towards actions that don’t delete

goal components can be found in the concept of goal-preferred actions defined by Vidal [10].

Furthermore, the consideration of actions that are not deemed helpful by the FF-heuristic

and yet are applicable, could avoid the labeling of a solveable problem as unsolveable, thus

preserving completeness. We have implemented an Optimistic Best-first search algorithm

with goal-preferred actions and rescue actions acting complementary to the helpful actions

in an attempt to preserve completeness. We have found that a solution is reached in far

fewer expansions with our implementation for some problems in comparison to Optimistic

Best-First Searches utilizing the FF-heuristic without our added notions.

Table of Contents

Abstract ii

1 Introduction 1

2 Background 2

2.1 STRIPS . 2

2.2 SAS+ . 3

2.3 Heuristic . 4

2.4 Perfect heuristic . 4

2.5 Properties of Heuristics . 4

2.6 Best-First Search . 4

2.6.1 Evaluation Functions . 5

2.6.2 Properties . 5

2.7 Delete-relaxation . 5

2.8 Relaxed Planning graphs . 5

3 Running example 7

3.1 Gripper . 7

3.2 Gripper in STRIPS . 7

3.3 Gripper in SAS+ . 8

4 Delete-relaxation heuristics 10

4.1 hadd heuristic . 10

4.2 FF-heuristic . 12

4.3 FF Planner . 13

4.4 Goal-preferred actions . 13

4.5 Helpful Actions & Nodes . 15

4.6 Rescue Actions & Nodes . 16

4.7 Lookahead states, Nodes & Paths . 16

5 Implementation 18

5.1 Algorithm Explanation . 18

5.1.1 Goal-preferred Actions . 18

5.1.2 Expansion Criteria . 18

Table of Contents iv

5.2 Algorithm Adaptation . 19

6 Experimental evaluation 21

6.1 Setup . 21

6.2 Results . 21

6.2.1 Metrics . 22

6.2.2 Coverage . 22

6.2.3 Expansions . 23

6.2.4 Search Time . 26

6.2.5 Cost . 28

6.2.6 Number of Goal-preferred Actions . 30

6.3 Discussion . 30

7 Conclusion 31

Bibliography 32

Appendix A Appendix 33

1
Introduction

In Chapter 2, the background knowledge necessary for the understanding of the paper will

be explained. In the following Chapter 3 and 4, this will be continued with the introduc-

tion of a running example for the concept of delete-relaxation and concepts introduced by

Vidal. Then, in Chapter 5 the implementation in Fast Downward [4] will be discussed, of

whose configurations were utilized for the experiments of which results are analyzed in the

subsequent Chapter 6. We conclude the paper in Chapter 7, summarizing and formulating

open questions.

2
Background

In Artificial Intelligence, planning is to determine a sequence of actions that will reach a

predetermined goal. Planning formalisms are models that provide the language to formalize

the structure in which planning takes place.

2.1 STRIPS
STRIPS is a planning formalism developed by Nils Nilsson and Richard Fikes [2].

Definition A STRIPS planning task is defined as a 4-tuple:

Π = ⟨V, I,G,A⟩ (2.1)

Where V is the finite set of state variables, I ⊆ V the initial state, G ⊆ V the goal set

containing goal state variables and A the finite set of actions.

Definition In STRIPS, an action a ∈ A is further defined with:

− pre(a) ⊆ V , the preconditions of a

− add(a) ⊆ V , the add effects of a

− del(a) ⊆ V , the delete effects of a

− cost(a) ∈ N0, the cost of a

In the original definition of STRIPS by Nilsson and Fikes [2], action costs are not involved,

and thus neither by Vidal in his paper [10]. But for the algorithm implementation in Fast

Downward [4] non-uniform action costs will be assumed and therefore, the definition above

for actions is used.

An action a is applicable on a state s iff all of its preconditions are satisfied in s, in

other words, if pre(a) ⊆ s. Applying the action a would then deliver the new state

s′ = s ↑ ⟨a⟩ = (s \ del(a)) ∪ add(a).

Background 3

Definition A given STRIPS planning task induces the state space:

S(Π) = ⟨S,A, cost, T, sI , SG⟩ (2.2)

Where A and cost remain as in Π and:

− S is the set of states P(V)1

− T is the set of transitions, where a given transition t = s
a−→ s′ with s, s′ ∈ S and

a ∈ A is in T iff a is applicable on s and s′ = s ↑ ⟨a⟩

− sI = I is the initial state

− SG is the set of goal states where s ∈ SG iff G ⊆ s

Paths are a sequence of actions. A path P = ⟨a1, a2, ..., an⟩ is valid for a state s if a1 is

applicable in state s and leads to a state s1, and if actions a2, ..., an are applicable consecu-

tively and lead to the states s2,...,n respectively after each application. If such a path exists

for a given s and sn, sn is reachable from s. Furthermore, if G ⊆ sn, P is a plan, and a

solution for s.

Definition An optimal solution for the state s has minimal cost when compared to

other solutions in the set of all solution plans.

Let P1 = ⟨a1, a2, ..., an⟩ and P2 = ⟨b1, b2, ..., bn⟩ be paths. Their concatenation P1 ⊕ P2

delivers the path P ′ = ⟨a1, a2, ..., an, b1, b2, ..., bn⟩. Accordingly, for a given action an+1, the

concatenation P1 ⊕ ⟨an+1⟩ delivers the path P ′
1 = ⟨a1, a2, ..., an, an+1⟩.

2.2 SAS+

A SAS+ planning task is a 5-tuple defined as:

Π = ⟨V, dom, I,G,A⟩ (2.3)

Where V is the finite set of variables, dom is a function dom(v) mapping each variable

v ∈ V to a non-empty finite domain, I the initial state, G the goal set and A the finite set

of actions. A state s according to the SAS+ planning formalism, is a total assignment of

the variables v ∈ V , which means all variables are assigned a value. The initial state I is

one such state. The goal is a partial assignment, defining the assignment of some, or all

variables.

Definition In SAS+, an action a ∈ A is further defined with:

− pre(a), the preconditions of a

1 The powerset of V

Background 4

− eff (a), the effects of a

− cost(a) ∈ N0, the cost of a

Where the effects and preconditions constitute of partial assignments of the variables ∈ V .

SAS+ induces a state space as STRIPS, yet its definition will be omitted for this paper.

2.3 Heuristic
Definition Let ζ be a state space with states S. A heuristic function or heuristic for

ζ is a function:

h : S → R+
0 ∪ {∞} (2.4)

Which maps each state to a non-negative number, or ∞. Heuristic functions provide esti-

mates of the cost to reach a goal from a given state.

2.4 Perfect heuristic
Definition The perfect heuristic h∗ for a given state space ζ, maps each state s ∈ S:

− to the cost of an optimal solution for s, or

− to ∞ if no solution exists

2.5 Properties of Heuristics
A heuristic h for the state space ζ is called:

− safe if h∗(s) =∞ for all s ∈ S with h(s) =∞

− goal-aware if h(s) = 0 for all goal states s ∈ Sg

− admissible if h(s) ≤ h∗(s) for all states s ∈ S

− consistent if h(s) ≤ cost(a)+ h(s′) for all transitions s
a−→ s′

Admissible heuristics are often referred to as optimistic, while inadmissible heuristics are

referred to as pessimistic.

2.6 Best-First Search
Search algorithms explore paths in a space to find a goal from an initial state, by expanding

nodes, applying actions to acquire successor nodes. Graph searches keep track of visited

nodes with a closed list, and potential candidates among its successors for expansion in an

open list as opposed to tree searches, that only keep track of the latter. Best-First Search

can be implemented as a graph or tree search, evaluating search nodes with an evaluation

function f , and always expands a node N with minimal f(N) value. For this paper, we will

assume a graph search implementation.

Background 5

2.6.1 Evaluation Functions
Heuristic search algorithms use heuristic functions to partially, or fully, determine node

expansion order.

− In the case of Greedy Best-First Search, the evaluation function f(N) = h(N).

− For A* [3], f(N) = h(N) + g(N), where g(N) refers to path costs.

− Weighted A* [7] possesses a parameter w ∈ R+
0 in the evaluation function f(N) =

w ∗ h(N) + g(N) that affects the influence of the h(N) on f , and thus calibrates the

resemblance to greedy best-first search and A*. This means, the higher the w value,

the more the search regards h(N) much like in Greedy Best-First Search.

2.6.2 Properties
Optimality If a search algorithm always delivers the optimal plan if a plan exists, then

the search algorithm is defined to be optimal. Greedy Best-First Search is not optimal. A*

is optimal when utilized with an admissible heuristic.

Completeness A search algorithm is complete if it is guaranteed to find a solution if

one exists. A Best-First search is complete if h is safe.

2.7 Delete-relaxation
In delete-relaxation, delete effects of a given action or planning task are disregarded.

Definition The delete-relaxation a+ of a STRIPS action a is the action:

− pre(a+) = pre(a)

− add(a+) = add(a)

− del(a+) = ∅

− cost(a+) = cost(a)

And thus, the relaxed planning task Π+ of a STRIPS planning task Π = ⟨V, I,G,A⟩ is the
task ⟨V, I,G, {a+ | a ∈ A}⟩. Furthermore, plans of relaxed planning tasks are relaxed plans

of Π.

2.8 Relaxed Planning graphs
Definition Relaxed planning graphs represent how and which state variables are reached

in Π+. It consists of variable layers V i and action layers Ai. Variable vertex v0 ∈ V 0 for all

v ∈ I

goal vertex g if vn ∈ V n for all v ∈ G, where n is the last layer.

Directed layers:

Background 6

− Precondition edges: from vi to ai+1 if v ∈ pre(a)

− Effect edges: from ai to vi if v ∈ add(a)

− No-op edges: from vi to vi+1

− Goal edges: from vn to g if v ∈ G

3
Running example

In this chapter we introduce a small example of a planning task that will be referred to in

the next chapters to illustrate central concepts of the paper.

3.1 Gripper
The original gripper [6] planning task’s setting is that of a robot with two arms that is able

to move a ball in each arm at most between two rooms that contain an arbitrary amount of

balls. In our restricted running example, there is one ball, a robot with one arm, and two

rooms A and B, the initial state illustrated in Figure 3.1. Our goal to achieve is for the ball’s

location to be room B, and additionally for the robot to also be in room B. These changes

to the domain were done to best illustrate concepts introduced in the following chapter,

Chapter 4.

Figure 3.1: Gripper running example initial state.

3.2 Gripper in STRIPS
V = {at1A, at1B , atgA, atgB , in, free}
I = {at1A, atgA, free}
G = {at1B , atgB}
A = {moveAB ,moveBA, pickA1, pickB1, dropA1, dropB1}

Running example 8

pre(moveAB) = {atgA}
add(moveAB) = {atgB}
del(moveAB) = {atgA}
cost(moveAB) = 2

pre(moveBA) = {atgB}
add(moveBA) = {atgA}
del(moveBA) = {atgB}
cost(moveBA) = 2

pre(pickA1) = {atgA, at1A, free}
add(pickA1) = {in}
del(pickA1) = {at1A, free}
cost(pickA1) = 3

pre(pickB1) = {atgB , at1B , free}
add(pickB1) = {in}
del(pickB1) = {at1B , free}
cost(pickB1) = 3

pre(dropA1) = {in, atgA}
add(dropA1) = {at1A, free}
del(dropA1) = {in}
cost(dropA1) = 1

pre(dropB1) = {in, atgB}
add(dropB1) = {at1B , free}
del(dropB1) = {in}
cost(dropB1) = 1

3.3 Gripper in SAS+
V = {robby, arm, ball}
dom(robby) = {atA, atB}, dom(arm) = {free, hold}, dom(ball) = {atA, atB , in}
I = {robby 7→ atA, ball 7→ atA, arm 7→ free}
G = {ball 7→ atB , robby 7→ atB}
A = {moveAB ,moveBA, pickA1, pickB1, dropA1, dropB1}

pre(moveAB) = {robby 7→ atA}
eff (moveAB) = {robby 7→ atB}
cost(moveAB) = 2

Running example 9

pre(moveBA) = {robby 7→ atB}
eff (moveBA) = {robby 7→ atA}
cost(moveBA) = 2

pre(pickA1) = {robby 7→ atA, ball 7→ at1A, arm 7→ free}
eff (pickA1) = {ball 7→ in, arm 7→ hold}
cost(pickA1) = 3

pre(pickB1) = {robby 7→ atB , ball 7→ at1B , arm 7→ free}
eff (pickB1) = {ball 7→ in, arm 7→ hold}
cost(pickB1) = 3

pre(dropA1) = {ball 7→ in, robby 7→ atA}
eff (dropA1) = {ball 7→ atA, arm 7→ free}
cost(dropA1) = 1

pre(dropB1) = {ball 7→ in, robby 7→ atB}
eff (dropB1) = {ball 7→ atB , arm 7→ free}
cost(dropB1) = 1

4
Delete-relaxation heuristics

Delete-relaxation heuristics utilize delete-relaxation graphs to acquire a sense on the reacha-

bility of states, and thus the goal. This because the omission of delete effects allows for more

actions to be applied, rather than fewer. Once a relaxed plan is found, the estimation on

possible path costs to reach the goal can be extracted in different ways, with a drive to avoid

the downsides of ignoring the information that delete effects of actions provide and thus gain

accuracy. Vidal [10] defined a new way in which the loss of that information through the

use of delete-relaxation heuristics could be reincorporated, which will be introduced in this

chapter.

4.1 hadd heuristic
hadd [1] is a pessimistic heuristic that assumes all precondition state variables are to be

reached independently from each other. As a result, it fails to recognize positive synergies

between subgoals and overestimates the actual costs. It is safe, goal-aware, but neither

admissible nor consistent. Its lack of admissibility makes it unsuitable for optimal planning.

• Variable vertex costs:

− Layer 0: 0

− Otherwise: minimum of the costs of predecessor vertices

• Action/goal vertex costs:

− Goal vertices: Sum of predecessor vertex costs

− Action vertices ai: cost(a) added to sum of predecessor vertex costs

• Termination criterion:

Terminate if V i = V i−1 and costs of all vertices equal V i equal corresponding vertex

costs in V i−1

• Heuristic value:

Value of goal vertex

Delete-relaxation heuristics 11

We can look at the relaxed graph of our running example from the previous section to

illustrate hadd.

Figure 4.1: Relaxed graph for Gripper running example.

The heuristic value in hadd when looking at the costs is visible in Figure 4.2:

Figure 4.2: Calculation of hadd value for the Gripper running example.

Delete-relaxation heuristics 12

4.2 FF-heuristic
The FF-heuristic [5] is identical to hadd, except with the following additional steps at the

end:

• Marking rules:

− Mark goal vertex

− If marked action/goal vertex: mark all predecessors

− If marked variable vertex vi in layer i ≤ 1: mark one predecessor with minimal

hadd value. To tie-break, prefer variable vertices and otherwise choose arbitrarily

• Heuristic value:

The actions that correspond to the marked action vertices build a relaxed plan, the

cost of said plan is the heuristic value.

It is safe and goal-aware, but neither admissible nor consistent. It is guaranteed that it is

at least as good as hadd.

Figure 4.3: FF-heuristic marking rules for the Gripper running example.

Where hadd previously overestimated the heuristic value to be 8, the marking rules in the

FF-heuristic allowed for the recognition that the cost of arriving to the state atgB was not

required to be counted twice, as that state variable can be achieved simultaneously as the

robot is moved from room A to room B when carrying the ball. The latter goal state variable

aids already in achieving the other goal state variable.

Let s be a state in the STRIPS planning task ⟨V, I,G,A⟩. Then, hFF (s) ≤ hadd(s)

Delete-relaxation heuristics 13

4.3 FF Planner
Planners rely on search algorithms and heuristic functions to acquire a plan for a given

problem comprised of an initial state, a goal state and actions. The FF planner [5] works

in two phases. In the first phase, the FF-heuristic is utilized to prune applicable actions

not deemed helpful in finding the goal state, namely by labeling actions helpful if they are

present in the relaxed plan computed from a given state s as defined by the FF-heuristic and

are applicable. The failure to consider all applicable actions caused by this pruning leads

to the incompleteness of this first phase of the FF planner. The information gained by the

helpful actions in that first phase is scrapped if a solution is not found, and the search is

started anew in the second phase, that utilizes a complete best-first search algorithm. The

FF planner is a satisficing planner, which means it is designed to find any solution that

satisfies the goal condition, regardless of optimality. Satisficing planners forfeit optimatlity

for the sake of finding any solution within time or resource constraints.

4.4 Goal-preferred actions
Goal-preferred actions are those that do not delete a state variable needed for the goal that

was not in the initial state. In SAS+, such delete effects can be defined as setting a goal

variable a different value than the ones that are required for the goal. Goal-preferred actions

in Fast Downward [4], that works under the SAS+ finite domain representation formalism,

were implemented under this assumption.

For the explanation of the two algorithms for detection of goal-preferred actions, SAS+

variable assignments will be referred to as variable value pairs. Such variable value pairs

are found in the sets defining effects, preconditions, and in states. Our first algorithm, we’ll

define as the naive goal-preferred algorithm, the pseudocode shown in Algorithm1.

Our naive approach to implement goal-preferred actions in Fast Downward with an algorithm

that would discard actions not eligible to be considered goal-preferred, the following checks

could be made:

First, in line 3, we check that the variable and value pairs present in the effects of the action

are not to be found in the initial state, as any that do affect the initial state Next, in

line 7 we check whether we are affecting a goal variable or not. If we are, we check in line 10

whether we are setting the variable to a value unlike that in the goal. In this case, we assume

a delete-action has ocurred, and we flag the action with this effect as not goal-preferred.

Delete-relaxation heuristics 14

Algorithm 1 Naive goal-preferred action algorithm

1: let goal preferred = True
2: for all eff ∈ operator.effects do
3: if eff ∈ init then
4: continue
5: endif
6: for all goal ∈ goals do
7: if eff .variable ̸= goal.variable then
8: continue
9: endif

10: if eff .value ̸= goal.value then
11: goal preferred = False
12: break
13: endif
14: endfor
15: if goal preferred = False then
16: break
17: endif
18: endfor
19: if goal preferred = True then
20: gp ids.insert(operator.id)

21: endif

Algorithm 1 fails to recognize that delete-effects of a goal variable value pair couldn’t have

ocurred if before the application of the action the goal value for the goal variable was not

set. A possible option to acquire information on the previous state is by taking precondi-

tions into consideration, as we know from the definition of applicable actions that they are

only applicable if the preconditions are satisfied. In the case of taking preconditions into

consideration, the following checks are made:

In what was formerly our last check, before we discard an action as not being goal-preferred

based on the fact that it sets a goal variable to a value different than that present in the

goal, we check in line 11 whether the goal variable we are looking at is anywhere to be found

in the preconditions. If it isn’t, then we are conservative and assume that the goal value

could’ve been possibly formerly set. Otherwise, if the goal variable and goal value pair was

in the preconditions, then we can be certain that a delete-effect has indeed ocurred, and

label the action as not goal-preferred after this check in line 15.

Delete-relaxation heuristics 15

Algorithm 2 Goal-preferred action algorithm

1: let goal preferred = True
2: for all eff ∈ operator.effects do
3: if eff ∈ init then
4: continue
5: endif
6: for all goal ∈ goals do
7: if eff .variable ̸= goal.variable then
8: continue
9: endif

10: if eff .value ̸= goal.value then
11: if goal.variable /∈ preconditions then
12: goal preferred = False
13: break
14: endif
15: if ⟨goal.variable, goal.value⟩ ∈ preconditions then
16: goal preferred = False
17: break
18: endif
19: endif
20: endfor
21: if goal preferred = False then
22: break
23: endif
24: endfor
25: if goal preferred = True then
26: gp ids.insert(operator.id)

27: endif

In our running example, the goal-preferred actions would beGA = {moveAB ,moveBA, dropA1, dropB1}
without consideration of preconditions, andGA = {moveAB ,moveBA, dropA1, dropB1, pickA1}
with consideration of preconditions. In the case of the action pickA1, the detrimental strict-

ness of not taking preconditions into consideration is illustrated; an action that would’ve

aided in setting the goal variable value pair ball 7→ atB by concatenating said action with the

path ⟨moveAB , dropA1⟩ was considered not goal-preferred. This is because, as delete-effects

in SAS+ were defined previously, it set a variable present in the goal, namely ball, to a

different value than that of the goal with its effect {ball 7→ in}. However, in this case the

precondition is able to inform that the action is only applicable in cases where the precon-

dition is unlike our goal state, so to define it as not goal-preferred would be erroneous, as no

deletion of a goal variable value pair is executed by the action. The following solution of us-

ing preconditions as aid in acquiring information on the previous state to infer delete-effects

does not cover all cases. In our solution, effect conditions for singular effects for example

are ignored.

4.5 Helpful Actions & Nodes
The actions of the relaxed plan delivered by the FF-heuristic that are applicable in a given

state s are considered helpful. In the Figure 4.3 of the Gripper running example, in the

Delete-relaxation heuristics 16

initial state I = {at1a, atga, free} of the actions in the relaxed graph actions pickA1 and

moveAB in action layer A0 are applicable, and thus considered helpful for that state. Nodes

labeled helpful by Vidal’s algorithm due to their successful achievement of a relaxed plan

through the sole use of goal-preferred actions are labeled helpful, and inserted into the open

list alongside their helpful actions.

4.6 Rescue Actions & Nodes
Rescue actions are actions that are not helpful; They are applicable on the state s but not in

the relaxed plan delivered by the FF-heuristic. Their consideration allows for completeness

lost in the comparable first phase of the FF planner to be regained, as the union of helpful

actions and rescue actions equals to the set of all actions that can be applied to the current

state s. In the event that a relaxed plan can be found through the sole use of goal-preferred

actions, a helpful node is created, and simultaneously, a search node labeled rescue alongside

the state’s rescue actions is inserted into the open list. If such a relaxed plan is failed to be

found, all actions output by the relaxed plan computed utilizing all actions is stored in a

node labeled rescue. Helpful Nodes are always preferred over Rescue Nodes, without regard

for their heuristic value.

4.7 Lookahead states, Nodes & Paths
A state s′ reachable from state s by a valid lookahead path P , whose node is treated like

a direct descendant from the S node in the search graph, are called lookahead states. This

would lead to two different types of arcs in the search graph, created by either a sole action,

or a path. In the case that a goal state is found, the solution would be comprised of paths

and single actions respectively for the two different kinds of arcs.

Lookahead paths are acquired in polynomial time with the FF-heuristic, as it creates a

relaxed planning graph for each encountered state.

Figure 4.4: Node development.

Delete-relaxation heuristics 17

Figure 4.5: Lookahead node.

5
Implementation

The concepts 4.4 through 4.6 introduced in the previous Chapter as defined by Vidal [10]

were implemented in the Fast Downward planning system [4]. Namely Goal-preferred Ac-

tions, Helpful Actions/Nodes and Rescue Actions/Nodes. For Goal-preferred actions two

different configurations were implemented based on the Algorithms 1 and 2 defined in Sec-

tion 4.4. As the Fast Downward planning system works with the SAS+ planning formalism,

a translation of certain concepts from the STRIPS planning formalism assumed in Vidal’s

paper had to be undertaken. The structure of Fast Downward too required reworking of the

algorithms that utilized these concepts.

5.1 Algorithm Explanation
Our implementation utilizes the FF-heuristic to acquire a relaxed plan and thus actions

labeled helpful as opposed to rescue.

5.1.1 Goal-preferred Actions
The first relaxed plan built for the state is comprised of solely Goal-preferred Actions as

defined in our Algorithms 1 and 2 for the respective two configurations. In Vidal’s paper, at

this point a Lookahead Node is computed as well, but our implementation omits this step.

In the case that the creation of the relaxed plan using Goal-preferred Actions succeeds,

that means that it deems the goal reachable through the disregard of delete-actions, we

create a helpful node for the helpful actions for that state and create a Rescue Node for all

other applicable actions, and store both nodes in the open list. If this relaxed plan fails, all

applicable actions for the construction of a second relaxed plan, and both helpful actions

and the rescue actions are stored in a rescue node.

5.1.2 Expansion Criteria
To decide on what successor node from the open list to expand next of the search, Helpful

Nodes are preferred over Rescue Nodes. To tie-break, next the heuristic value is regarded. In

Vidal’s paper, the heuristic value is calculated as in WA* with W=3, but we used solely the

Implementation 19

heuristic value provided by the FF-heuristic. Vidal too utilizes a third tie-breaker, namely

the length of the relaxed plan computed by the FF-heuristic, that we did not implement.

5.2 Algorithm Adaptation
The following pseudocode, Algorithm 3, is as defined by Vidal [10]:

Algorithm 3 LOBFS() and compute node() as per Vidal’s paper [10]

1: let Π = ⟨A, I,G⟩
2: let GA = {a ∈ A|∀f ∈ Del (a) , f /∈ (G \ I)}
3: let open = ∅
4: let close = ∅
5:

6: function LOBFS()
7: compute node(I, ⟨⟩)
8: while open ̸= ∅ do
9: let ⟨S, P, actions, h, flag⟩ = pop best node()

10: for all a ∈ actions do
11: compute node(S ↑ ⟨a⟩, P ⊕ ⟨a⟩)
12: endfor
13: endwhile
14: end
15:

16: function compute node(S, P)
17: if S /∈ close then
18: if G ⊆ S then
19: output and exit(P)

20: endif
21: close← close ∪ {S}
22: let ⟨RP,H,R⟩ = compute heuristic(S,GA)
23: if RP ̸= fail then
24: open← open ∪ {⟨S, P,H, length(RP), helpful⟩, ⟨S, P,R, length(RP), rescue⟩}
25: let ⟨S′, P ′⟩ = lookahead(S,RP)
26: if length(P ′) ≥ 2 then
27: compute node(S′, P ⊕ P ′)

28: endif
29: else
30: let ⟨RP,H,R⟩ = compute heuristic(S,A)
31: if RP ̸= fail then
32: open← open ∪ {⟨S, P, length(RP), H ∪R, rescue⟩}
33: endif
34: endif
35: endif
36: end

The reworking of the algorithm was prompted by two reasons. The first reason are the

lines of code 17-20 seen in the pseudocode of Algorithm 3 that conflicted with the structure

of Fast Downward, where those steps are usually found in the search algorithm code. The

second reason is that since we are assuming non-uniform action costs, we choose to utilize the

heuristic value calculated by the FF-heuristic as opposed to the length of the relaxed plan

Implementation 20

in our reworked algorithm. These changes are reflected then in the following pseudocode,

Algorithm 4:

Algorithm 4 OBFS with goal-preferred actions() and compute node()

1: let Π = ⟨A, I,G⟩
2: let GA = {a ∈ A|∀f ∈ Del (a) , f /∈ (G \ I)}
3: let open = ∅
4: let close = ∅
5:

6: function OBFS()
7: compute node(I, ⟨⟩)
8: while open ̸= ∅ do
9: let ⟨S, P, actions, h, flag⟩ = pop best node()

10: if S /∈ close then
11: if G ⊆ S then
12: output and exit(P)

13: endif
14: close← close ∪ {S}
15: for all a ∈ actions do
16: compute node(S ↑ ⟨a⟩, P ⊕ ⟨a⟩)
17: endfor
18: endif
19: endwhile
20: end
21:

22: function compute node(S, P)
23: let ⟨RP,H,R⟩ = compute heuristic(S,GA)
24: if RP ̸= fail then
25: open← open ∪ {⟨S, P,H, hff val, helpful⟩, ⟨S, P,R, hff val, rescue⟩}
26: else
27: let ⟨RP,H,R⟩ = compute heuristic(S,A)
28: if RP ̸= fail then
29: open← open ∪ {⟨S, P,H ∪R, hff val, rescue⟩}
30: endif
31: endif
32: end

6
Experimental evaluation

We devised experiments for our implementation that allows conclusions to be drawn on how

well it fares when compared with implementations that utilize related concepts, heuristics

and search algorithms.

6.1 Setup
As the algorithm was implemented in Fast Downward [4], the python package Downward

Lab by Seipp et al. [9] was utilized to run experiments on the SciCORE scientific computing

centre at the University of Basel. The experiments were run on 64 Core AMD EPYC 7742

2.25GHz processors. The time limit for each run was set to 30 minutes, and the memory limit

to 3.5 GiB. The implementation was tested on a collection of IPC benchmark instances2.

For analysis and comparison, the Eager Greedy Best-First Search with the FF-heuristic

(with and without preferred actions), and the first component of the Lama planning system

introduced by Richter and Westphal [8] were chosen. The planning tasks were ran too

for our 2 configurations, namely the naive goal-preferred action definition, and the goal-

preferred action definition considering preconditions mentioned in Section 4.5, totaling to 5

configurations. In tables and graphs, they will be referred to as Eager Greedy FF, Greedy

FF pref, LAMA first, Naive Goalpref and Goalpref.

6.2 Results
As our implementation is in the realm of suboptimal planning, what we are looking for is

to arrive to a solution fast, without running out of memory, and less so to achieve low costs

for plans. However, if said costs were to be comparable to other similar algorithms, this

too could inform us on the behavior of the algorithm, so this metric will be considered as

well. We also want to verify the completeness defined in the theoretical grounds of our

implementation in Section 4.6 on Rescue Actions, by confirming that solveable problems are

not marked unsolveable.

2 https://github.com/aibasel/downward-benchmarks

Experimental evaluation 22

6.2.1 Metrics
The metrics looked at in this section are defined as follows:

Coverage The number of problems for which a solution was found within given time

and memory constraints.

Out of memory The number of times an out of memory error ocurred for the given

configuration, comprised of translator out of memory errors and search out of memory errors.

Out of time The number of times the search passed the time limit and thus raised an

out of time error.

Expansions The number of expanded states for solved problems.

Search Time The time taken by the search to solve each problem.

Cost The cost of the plan found by the search algorithm.

Operator count The number of operators of the given problem.

Goal-pref count The number of operators marked goal-preferred by the implementa-

tion out of the operators.

Goal-pref ratio The percentage of goal-preferred operators compared to all operators.

6.2.2 Coverage
In the first run of the experiments, it became apparent that both variations of the imple-

mentation were incomplete, as they erroneously flagged solveable problems as unsolveable

for certain domains. Said domains have been omitted from the following results to avoid

skewing the expansions and search time metric, as finding that a problem is unsolveable is

considered as having come to a solution, and therefore said early aborted searches as having

arrived fast to a solution with few expansions. The omission of said domains allow for those

two metrics to remain comparable among all configurations. The reduction in domains left

the problem instances to a total of 1715 across 65 domains. In Table 6.1, the coverage for

the 1715 instances can be seen for the configurations, as well as the causes for non-coverage.

Table 6.1: Coverage vs. errors

Sum Eager Greedy FF Greedy FF pref LAMA first Goalpref Naive Goalpref

Out of memory 87 70 109 760 829
Out of time 506 393 89 0 0
Other errors 5 6 3 9 4
Coverage 1117 1246 1514 946 882

Coverage % 65.13% 72.65% 88.28% 55.16% 51.4%

Experimental evaluation 23

The implementations for goal-preferred operators differ in coverage, the reworked version

allows for more solutions to problems to be found. This implies that our hypothesis on the

possible detrimental aspects of the naive goal-preferred algorithm on our running example

in Section 4.6 was likely indicative of a larger trend.

The frequency of the search out of memory error can be attributed to the fact that we

store helpful actions, but also rescue actions explicitly for each state. The latter could

potentially be acquired dynamically when regarding the current applicable actions without

storing them. The frequency of this error also explains the lack of out of time errors for our

implementations, as the search ran out of memory before it ran out of time.

6.2.3 Expansions
The following Table 6.2 shows that the reduced number of expansions for both our imple-

mentations compared to Eager Greedy FF, Greedy FF with preferred operators and Lama

first is consistent across all problems, as the use of the geometric mean avoids bias towards

extreme values present in the data set. Here too, the reworked algorithm shows improvement

in comparison to the initial naive approach.

Table 6.2: Geometric mean of expansions

Geometric Mean Eager Greedy FF Greedy FF pref LAMA first Goalpref Naive Goalpref

Expansions 439.97 250.34 227.57 152.15 190.84

We can verify the tendency to a low number of expansions of our implementation in more

detail through the use of a scatter plot. The reworked version of the Optimistic Best-First

Search with goal-preferred actions’ number of expansions for a given problem instance is

present in both following plots 6.1 6.1 on the y-axis. The comparison is the eager greedy FF

configuration, with its number of expansions for a given problem is reflected on the x-axis.

The diagonal indicates where the number of expansions is identical. In the case that the dot

representing the problem instance is underneath the diagonal, the number of expansions is

lower for our implementation compared to eager greedy FF. Vice versa, if the dot is above

the diagonal, then eager greedy FF required fewer expansions than our implementation.

This notion is reflected too in the ”lower for x tasks” label in both configurations. From

those values, and the cluster of problem instances visible around the middle underneath the

diagonal, we can say that our implementation had fewer expansions more often than eager

greedy FF. This could be due to the guidance of goal-preferred actions avoiding the deletion

of goal variable value pairs and thus avoiding the need to reinstate a goal variable value pair

after deletion.

Experimental evaluation 24

100 101 102 103 104 105 106 107 108

100

101

102

103

104

105

106

107

108

eager greedy ff (lower for 92 tasks)

O
B
F
S
w
it
h
go
al
-p
re
fe
rr
ed

ac
ti
o
n
s
(l
ow

er
fo
r
4
9
7
ta
sk
s)

expansions

Figure 6.1: Expansions unlabeled

To find out for which domains the expansions of our implementation are lower for, we can

take a look at a labeled scatter plot. On Figure 6.2 we can see some of the specific domains

for which fewer expansions were needed for our implementation to find a solution. Namely

for elevators-sat08-strips, tpp, mprime, rovers, barman-sat14-strips, logistics98, quantum-

layout-sat23-strips. Mixed results were achieved for the pipesworld-notankage, driverlog

and the freecell domain. Curiously, for gripper the number of expansions was reduced by

seemingly a fixed amount, as a line parallel to the diagonal is visible underneath. This

domain also has among the lowest ratio of goal-preferred actions found of the domains.

Where the majority range from 90% - 100%, the gripper problem possessed an arithmetic

mean of 75% on the goal-preferred ratio. Though no correlation could be found on the

difference in goal-pref ratio for different domains and their coverage, implying the difference

lies in the nature of the domains themselves.

Experimental evaluation 25

100 101 102 103 104 105 106 107 108

100

101

102

103

104

105

106

107

108

eager greedy ff (lower for 92 tasks)

O
B
F
S
w
it
h
go
al
-p
re
fe
rr
ed

a
ct
io
n
s
(l
ow

er
fo
r
4
97

ta
sk
s)

expansions

agricola-sat18-strips airport barman-sat11-strips
barman-sat14-strips blocks childsnack-sat14-strips
data-network-sat18-strips depot driverlog
elevators-sat08-strips elevators-sat11-strips floortile-sat11-strips
floortile-sat14-strips freecell ged-sat14-strips
grid gripper hiking-sat14-strips
logistics00 logistics98 miconic
movie mprime mystery

nomystery-sat11-strips openstacks-sat08-strips openstacks-sat11-strips
openstacks-sat14-strips openstacks-strips organic-synthesis-sat18-strips
organic-synthesis-split-sat18-strips parcprinter-08-strips parcprinter-sat11-strips

parking-sat11-strips parking-sat14-strips pathways
pegsol-08-strips pegsol-sat11-strips pipesworld-notankage
pipesworld-tankage psr-small quantum-layout-sat23-strips
rovers satellite scanalyzer-08-strips
scanalyzer-sat11-strips snake-sat18-strips sokoban-sat08-strips
sokoban-sat11-strips spider-sat18-strips storage

termes-sat18-strips tetris-sat14-strips thoughtful-sat14-strips
tidybot-sat11-strips tpp transport-sat08-strips
transport-sat11-strips transport-sat14-strips trucks-strips
visitall-sat11-strips visitall-sat14-strips woodworking-sat08-strips
woodworking-sat11-strips zenotravel

Figure 6.2: Expansions labeled

Experimental evaluation 26

6.2.4 Search Time
For the search time, no significant difference was expected, as our implementation didn’t

make use of the caching structure contained in Fast Downward that other algorithms were

able to uzilize. However, at first glance on this table the geometric mean on the search time

indicates comparable search times for the goal-preferred algorithm to the eager greedy FF

configuration and the greedy FF with preferred operators configuration. It is also visible

that the reworking of the goal-preferred algorithm from its naive version made a positive

difference on the search time.

Table 6.3: Geometric mean of search time

Geometric Mean Eager Greedy FF Greedy FF pref LAMA first Goalpref Naive Goalpref

Search time 0.18 0.14 0.05 0.16 0.26

As was the case for the expansions, on the labeled scatter plot 6.3 we want to see a mini-

mization of the values for our implementation, and thus problem instances being reflected

below the diagonal is desirable. On the labeled plot, the fixed difference in the search time

because of the use of caching of search algorithms other than our implementation is visible

by the parallel clusters built above the diagonal. Regarding search time, we can see that

our implementation was lower for less planning tasks than for the eager greedy ff implemen-

tation. Here we see elevators-sat08-strips, mprime, tpp, quantum-layout-sat23-strips and

barman-sat14-strips represented again as domains for which our implementation does well

for, but also newly parcprinter-08-strips.

Experimental evaluation 27

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

eager greedy ff (lower for 434 tasks)

O
B
F
S
w
it
h
go
al
-p
re
fe
rr
ed

a
ct
io
n
s
(l
ow

er
fo
r
2
60

ta
sk
s)

search-time

agricola-sat18-strips airport barman-sat11-strips
barman-sat14-strips blocks childsnack-sat14-strips
data-network-sat18-strips depot driverlog
elevators-sat08-strips elevators-sat11-strips floortile-sat11-strips
floortile-sat14-strips freecell ged-sat14-strips
grid gripper hiking-sat14-strips
logistics00 logistics98 miconic
movie mprime mystery

nomystery-sat11-strips openstacks-sat08-strips openstacks-sat11-strips
openstacks-sat14-strips openstacks-strips organic-synthesis-sat18-strips
organic-synthesis-split-sat18-strips parcprinter-08-strips parcprinter-sat11-strips

parking-sat11-strips parking-sat14-strips pathways
pegsol-08-strips pegsol-sat11-strips pipesworld-notankage
pipesworld-tankage psr-small quantum-layout-sat23-strips
rovers satellite scanalyzer-08-strips
scanalyzer-sat11-strips snake-sat18-strips sokoban-sat08-strips
sokoban-sat11-strips spider-sat18-strips storage

termes-sat18-strips tetris-sat14-strips thoughtful-sat14-strips
tidybot-sat11-strips tpp transport-sat08-strips
transport-sat11-strips transport-sat14-strips trucks-strips
visitall-sat11-strips visitall-sat14-strips woodworking-sat08-strips
woodworking-sat11-strips zenotravel

Figure 6.3: Search time labeled

Experimental evaluation 28

6.2.5 Cost
For the scatter plot 6.4 we too want to minimize costs if possible, or at least remain compara-

ble to other suboptimal search algorithms, and thus have our implementation show problem

instances appearing underneath the diagonal. Here, no significant difference is shown be-

tween both configurations for the domains, except for the blocks planning task, for which

our implementation found plans of lower cost. With the majority of the problem instances

remaining close on the diagonal, and the number for which the costs were lower for both

configurations not differing greatly compared to plots of other metrics, we can say that the

achievement to acquire plans with comparable costs was reached.

Experimental evaluation 29

100 101 102 103

100

101

102

103

eager greedy ff (lower for 156 tasks)

O
B
F
S
w
it
h
g
oa
l-
p
re
fe
rr
ed

ac
ti
on

s
(l
ow

er
fo
r
19
7
ta
sk
s)

cost

agricola-sat18-strips airport barman-sat11-strips
barman-sat14-strips blocks childsnack-sat14-strips
data-network-sat18-strips depot driverlog
elevators-sat08-strips elevators-sat11-strips floortile-sat11-strips
floortile-sat14-strips freecell ged-sat14-strips
grid gripper hiking-sat14-strips
logistics00 logistics98 miconic
movie mprime mystery

nomystery-sat11-strips openstacks-sat08-strips openstacks-sat11-strips
openstacks-sat14-strips openstacks-strips organic-synthesis-sat18-strips
organic-synthesis-split-sat18-strips parking-sat11-strips parking-sat14-strips
pathways pegsol-08-strips pegsol-sat11-strips
pipesworld-notankage pipesworld-tankage psr-small
quantum-layout-sat23-strips rovers satellite
scanalyzer-08-strips scanalyzer-sat11-strips snake-sat18-strips
sokoban-sat08-strips sokoban-sat11-strips spider-sat18-strips
storage termes-sat18-strips tetris-sat14-strips
thoughtful-sat14-strips tidybot-sat11-strips tpp

transport-sat08-strips transport-sat11-strips transport-sat14-strips
trucks-strips visitall-sat11-strips visitall-sat14-strips
woodworking-sat08-strips woodworking-sat11-strips zenotravel

Figure 6.4: Costs labeled

Experimental evaluation 30

6.2.6 Number of Goal-preferred Actions
The total amount of actions amounted to 36’917’800, out of which the following Table 6.4

specifies how many of them were recognized to be goal-preferred by the two different con-

figurations of our implementation.

Table 6.4: Goal-preferred actions

Sum Metric Goalpref Naive Goalpref

Goal-preferred actions 35’433’194 22’143’251

Goal-preferred ratio arithmetic average % 92% 64%

Like we hypothesized in Section 4.6 on our running example, the reduced coverage for the

configuration utilizing the naive goal-preferred algorithm could be due to the strictness

in discarding an action as a goal-preferred candidate without regarding the information

preconditions are able to provide on the previous state reflecting itself negatively on the

ability to find a solution.

6.3 Discussion
The storing of Helpful and Rescue Nodes explicitly for each state in our implementation

caused the search to run out of memory in many instances, which goes against the point

of using suboptimal algorithms. The incompleteness of the implementation diverges with

the theoretical aspects as seen in previous chapters, indicating the presence of a logic error.

Despite this, it was discovered that for some problems far fewer expansions were needed by

both goal-pref configurations to arrive to plans in comparable time with comparable costs.

7
Conclusion

We implemented a partial version of the LOBFS algorithm described by Vidal [10], imple-

menting the notion of goal-preferred actions, helpful actions/nodes and rescue actions/nodes,

taking into consideration action costs, disregarding some tie-breaking aspects for the open

list and excluding the lookahead algorithm.

As a future project, more aspects mentioned in Vidal’s paper could be implemented. For

example, in the pop best node() algorithm the heuristic value was calculated as in WA∗

(f(s)= W ∗ h + length(P)), with W= 3, so the effect of the weight on the algorithm could

be investigated, and the choice of W= 3 justified. Within the confines of this project, the

lookahead algorithm was omitted, but can be implemented and incorporated into the ex-

isting solution. Our implementation is incomplete, and is memory-inefficient, yet showed

comparable search times and plan costs to other planners. Regarding Vidal’s work, there

too are further variations of the lookahead algorithm YAHSP2 [11] and YAHSP3 [12], that

could possibly contain significant optimizations if implemented in Fast Downward [4].

Bibliography

[1] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,

129:5–33, 2001.

[2] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

[3] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4:100–107, 1968.

[4] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[5] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[6] Drew M. McDermott. The 1998 AI planning systems competition. AI magazine, 21:

35–35, 2000.

[7] Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1:

193–204, 1970.

[8] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime

planning with landmarks. Journal of Artificial Intelligence Research, 39:127–177, 2010.

[9] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.399255, 2017.

[10] Vincent Vidal. A Lookahead Strategy for Heuristic Search Planning. 2004.

[11] Vincent Vidal. YAHSP2: Keep it simple, stupid. Proceedings of the 7th International

Planning Competition (IPC-2011), pages 83–90, 2011.

[12] Vincent Vidal. YAHSP3 and YAHSP3-MT in the 8th international planning compe-

tition. Proceedings of the 8th International Planning Competition (IPC-2014), pages

64–65, 2014.

https://doi.org/10.5281/zenodo.399255

