
Optimistic Best-First
Search with

Goal-preferred Actions
in Fast Downward

Bachelor’s Thesis by Lisette Maureira -- Supervisor: Remo Christen

UNIBAS AI Group HS2025

1

Content

1. Background
1. Running Example

2. Delete-Relaxation

3. Heuristics

4. Vidal’s concepts

2. Implementation

3. Experiments & Results

4. Conclusion

2

Searching…
Planning in Artificial Intelligence is the search for a sequence of applicable
actions to reach a given goal from the initial state.

3

STRIPS Gripper: Initial state

4

State Variables:

Robot at room A: at_gA

Ball at room A: at_1A

Robot arm free: free

STRIPS Gripper: Goal state

5

State Variables:

Robot at room B: at_gB

Ball at room B: at_1B

STRIPS Gripper: Actions

6

Move Pick Drop

Action move_AB move_BA pick_1A pick1B drop_1A drop_1B

Preconditions at_gA at_gB at_gA,

at_1A,

free

at_gB,

at_1B,

free

at_gA,

at_1A,

in

at_gB,

at_1B,

in

Add effects at_gB at_gA in in at_1A at_1B

Delete effects at_gA at_gB at_1A,

free

at_1B,

free

in in

Cost 2 3 1

Delete-relaxation: Initial state

7

Delete-relaxation: Vertices

8

• No delete effects:
vertices stay

Delete-relaxation: Action Layer

9

• Preconditions to pick the ball
from Room A fulfilled

• Preconditions to move the
robot from room A to room B
fulfilled

Delete-relaxation

10

Delete-relaxation: Termination

11

Delete-relaxation: Goal

12

Heuristics
How do we estimate how far we are from the goal from a given node from
the delete-relaxation graph?

13

hadd Heuristic

14

FF-heuristic: Helpful Actions & Nodes

15

Relaxed plan

Rescue Actions & Nodes

• Not helpful applicable actions

• Helpful Actions U Rescue Actions
= All applicable actions

• Completeness

• Node stores state, Rescue Actions,
heuristic value

16

RESCUE NODE

State

Rescue Actions

FF-heuristic value

Goal-preferred Actions

«Actions that do not delete a state variable that belongs to the
goal and do not belong in the initial state» -Vincent Vidal

• Goal-preferred actions….
▪ Are free to delete any state variables present in the initial state,

regardless of whether they too are in the goal

▪ Otherwise cannot delete state variables present in the goal

17

Delete-Effects: STRIPS vs. SAS+

• Delete effects, Add effects vs. Effects

• Reassignment of variables, erasure of value

18

at_gA
{gripper ↦ at_A,

gripper ↦ at_B}
VS.

at_gB

Goal-preferred Actions Algorithm

19

Naive Algorithm:

• Effect variable, value pair not
in initial state

• Effect variable in the goal

• Effect value not the goal value

-> Not goal-preferred action

Goal-preferred Actions Algorithm

20

Reworked Algorithm:

• Effect variable, value pair not
in initial state

• Effect variable in the goal

• Effect value not the goal value

• Goal variable not in
preconditions
or goal variable, value pair in
preconditions

-> Not goal-preferred action

Naive Algorithm:

• Effect variable, value pair not
in initial state

• Effect variable in the goal

• Effect value not the goal value

-> Not goal-preferred action

What does OBFS with goal-pref do?

Store expansion candidates:

1. Build a relaxed plan with only Goal-preferred Actions

2. If it succeeds, store Helpful Node & Rescue Node

3. If it fails, build relaxed plan and store as Rescue Node

Search Expansion Criteria:

1. Helpful Nodes preferred over Rescue Nodes

2. Low FF-heuristic value preferred

21

Results
Comparison of performance against related benchmarks

22

Results: What are we looking for?

• For suboptimal algorithms, if possible:
▪ Few expansions

▪ Memory efficiency

▪ Fast search

• Further analysis:
• Completeness

• % of goal-preferred actions

23

Results: What are we comparing?

• Related planners:
▪ Eager greedy FF

▪ Greedy FF with preferred actions

• Our implementation:
• Naive goal-preferred algorithm

• Reworked goal-preferred algorithm

24

Results: Implementation differences

25

Sum Naive Goalpref Goalpref

Goal-preferred actions 22’143’251 35’433’194

Goal-preferred ratio arithmetic average % 64% 92%

What does this mean for the behavior of the search?

• Possibility that goal-preferred actions only relaxed plan fails

less with more goal-preferred actions

• Thus FF-heuristic value tie-breaker comes less into play

Results: Completeness

26

Sum Eager Greedy

FF

Greedy FF with

pref

Naive Goalpref Goalpref

Error: Search

unsolveable

4 4 119 97

Implementation is incomplete

Results: Coverage, 1st run

27

Sum Eager Greedy FF Greedy FF with

pref

Naive Goal-pref Goal-pref

Out of memory 87 70 829 760

Out of time 506 393 0 0

Other errors 5 6 4 9

Coverage 1117 1246 882 946

Coverage % 65.13% 72.65% 51.4% 55.16%

Implementation is memory inefficient

Can we be more memory efficient?

Store expansion candidates:

1. Build a relaxed plan with only Goal-preferred Actions

2. If it succeeds, store Helpful Node & Rescue Node

3. If it fails, build relaxed plan and store all as Rescue Node

Search Expansion Criteria:

1. Helpful Nodes preferred over Rescue Nodes

2. Low FF-heuristic value preferred

28, originally slide 21

Results: Coverage, Take 2

29

Sum Eager Greedy FF Greedy FF with

pref

Naive Goal-pref Goal-pref

Out of memory 85 68 661 301

Out of time 513 399 67 363

Other errors 7 4 8 8

Coverage 1227 1361 981 1067

Unsolveable 4 4 119 97

Implementation is less memory inefficient

Results: Expansions (Eager Greedy FF)

30

Results: Expansions (Greedy FF with pref)

31

Conclusion

• Results:
▪ Incomplete
▪ Memory inefficient
▪ Few expansions
▪ Reworked version more faithful & better

• Possible additions:
• Achieve completeness
• Lookahead algorithm
• 3rd expansion tiebreaker
• YAHSP2 & 3

lookahead-node development, YAHSP Vincent Vidal

32

Backup

33

STRIPS Gripper: Goal-preferred Actions

34, originally slide 6

Move Pick Drop

Action move_AB move_BA pick_A1 pickB1 drop_A1 drop_B1

Preconditions at_gA at_gB at_gA,

at_1A,

Free

at_gB,

at_1B,

free

at_gA,

at_1A,

in

at_gB,

at_1B,

in

Add effects at_gB at_gA in in at_1A at_1B

Delete effects at_gA at_gB at_1A,

free

at_1B,

free

in in

Cost 2 3 1

SAS+ Gripper: Goal-preferred Actions

35

Action pick_A1

Preconditions Gripper ↦at_A,

Ball ↦ at_A,

Arm ↦ Free

Effects Ball ↦in

Initial state: Gripper ↦at_A,

Arm ↦ Free, Ball ↦ at_A

Goal: Gripper ↦at_B,

Ball ↦ at_B

Naive Algorithm:

• Effect variable, value pair not
in initial state

• Effect variable in the goal

• Effect value not the goal value

-> Not goal-preferred action

SAS+ Gripper: Goal-preferred Actions

36

Action pick_A1

Preconditions Gripper ↦at_A,

Ball ↦ at_A,

Arm ↦ Free

Effects Ball ↦in

Initial state: Gripper ↦at_A,,

Arm ↦ Free, Ball ↦ at_A

Goal: Gripper ↦at_B,

Ball ↦ at_B

Reworked Algorithm:

• Effect variable, value pair not
in initial state

• Effect variable in the goal

• Effect value not the goal value

• Goal variable not in
preconditions
or goal variable value pair in
preconditions

-> Not goal-preferred action

Results: Search Time (Eager Greedy FF)

37

Results: Cost (Eager Greedy FF)

38

21.10.2025

39

	Slide 1: Optimistic Best-First Search with Goal-preferred Actions in Fast Downward
	Slide 2: Content
	Slide 3: Searching…
	Slide 4: STRIPS Gripper: Initial state
	Slide 5: STRIPS Gripper: Goal state
	Slide 6: STRIPS Gripper: Actions
	Slide 7: Delete-relaxation: Initial state
	Slide 8: Delete-relaxation: Vertices
	Slide 9: Delete-relaxation: Action Layer
	Slide 10: Delete-relaxation
	Slide 11: Delete-relaxation: Termination
	Slide 12: Delete-relaxation: Goal
	Slide 13: Heuristics
	Slide 14: hadd Heuristic
	Slide 15: FF-heuristic: Helpful Actions & Nodes
	Slide 16: Rescue Actions & Nodes
	Slide 17: Goal-preferred Actions
	Slide 18: Delete-Effects: STRIPS vs. SAS+
	Slide 19: Goal-preferred Actions Algorithm
	Slide 20: Goal-preferred Actions Algorithm
	Slide 21: What does OBFS with goal-pref do?
	Slide 22: Results
	Slide 23: Results: What are we looking for?
	Slide 24: Results: What are we comparing?
	Slide 25: Results: Implementation differences
	Slide 26: Results: Completeness
	Slide 27: Results: Coverage, 1st run
	Slide 28: Can we be more memory efficient?
	Slide 29: Results: Coverage, Take 2
	Slide 30: Results: Expansions (Eager Greedy FF)
	Slide 31: Results: Expansions (Greedy FF with pref)
	Slide 32: Conclusion
	Slide 33: Backup
	Slide 34: STRIPS Gripper: Goal-preferred Actions
	Slide 35: SAS+ Gripper: Goal-preferred Actions
	Slide 36: SAS+ Gripper: Goal-preferred Actions
	Slide 37: Results: Search Time (Eager Greedy FF)
	Slide 38: Results: Cost (Eager Greedy FF)
	Slide 39

