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Searching…
Planning in Artificial Intelligence is the search for a sequence of applicable 
actions to reach a given goal from the initial state.
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STRIPS Gripper: Initial state
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State Variables:

Robot at room A: at_gA

Ball at room A: at_1A

Robot arm free: free



STRIPS Gripper: Goal state
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State Variables:

Robot at room B: at_gB

Ball at room B: at_1B



STRIPS Gripper: Actions
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Move Pick Drop

Action move_AB move_BA pick_1A pick1B drop_1A drop_1B

Preconditions at_gA at_gB at_gA,

at_1A,

free

at_gB,

at_1B,

free

at_gA,

at_1A,

in

at_gB,

at_1B,

in

Add effects at_gB at_gA in in at_1A at_1B

Delete effects at_gA at_gB at_1A, 

free

at_1B, 

free

in in

Cost 2 3 1



Delete-relaxation: Initial state
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Delete-relaxation: Vertices
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• No delete effects:
vertices stay



Delete-relaxation: Action Layer
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• Preconditions to pick the ball 
from Room A fulfilled

• Preconditions to move the
robot from room A to room B 
fulfilled



Delete-relaxation
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Delete-relaxation: Termination
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Delete-relaxation: Goal
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Heuristics
How do we estimate how far we are from the goal from a given node from 
the delete-relaxation graph?
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hadd Heuristic
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FF-heuristic: Helpful Actions & Nodes
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Relaxed plan



Rescue Actions & Nodes

• Not helpful applicable actions

• Helpful Actions U Rescue Actions
= All applicable actions

• Completeness

• Node stores state, Rescue Actions,
heuristic value
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RESCUE NODE

State

Rescue Actions

FF-heuristic value



Goal-preferred Actions

«Actions that do not delete a state variable that belongs to the
goal and do not belong in the initial state» -Vincent Vidal

• Goal-preferred actions….
▪ Are free to delete any state variables present in the initial state, 

regardless of whether they too are in the goal

▪ Otherwise cannot delete state variables present in the goal
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Delete-Effects: STRIPS vs. SAS+

• Delete effects, Add effects vs. Effects

• Reassignment of variables, erasure of value
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at_gA
{gripper ↦ at_A,

gripper ↦ at_B}
VS.

at_gB



Goal-preferred Actions Algorithm
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Naive Algorithm:

• Effect variable, value pair not 
in initial state

• Effect variable in the goal

• Effect value not the goal value

-> Not goal-preferred action



Goal-preferred Actions Algorithm
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Reworked Algorithm:

• Effect variable, value pair not 
in initial state

• Effect variable in the goal

• Effect value not the goal value

• Goal variable not in 
preconditions
or goal variable, value pair in 
preconditions

-> Not goal-preferred action

Naive Algorithm:

• Effect variable, value pair not 
in initial state

• Effect variable in the goal

• Effect value not the goal value

-> Not goal-preferred action



What does OBFS with goal-pref do?

Store expansion candidates:

1. Build a relaxed plan with only Goal-preferred Actions

2. If it succeeds, store Helpful Node & Rescue Node

3. If it fails, build relaxed plan and store as Rescue Node 

Search Expansion Criteria:

1. Helpful Nodes preferred over Rescue Nodes

2. Low FF-heuristic value preferred
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Results
Comparison of performance against related benchmarks
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Results: What are we looking for?

• For suboptimal algorithms, if possible:
▪ Few expansions

▪ Memory efficiency

▪ Fast search

• Further analysis:
• Completeness

• % of goal-preferred actions
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Results: What are we comparing?

• Related planners:
▪ Eager greedy FF

▪ Greedy FF with preferred actions

• Our implementation:
• Naive goal-preferred algorithm

• Reworked goal-preferred algorithm
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Results: Implementation differences
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Sum Naive Goalpref Goalpref

Goal-preferred actions 22’143’251 35’433’194

Goal-preferred ratio arithmetic average % 64% 92%

What does this mean for the behavior of the search?

• Possibility that goal-preferred actions only relaxed plan fails

less with more goal-preferred actions

• Thus FF-heuristic value tie-breaker comes less into play



Results: Completeness
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Sum Eager Greedy

FF

Greedy FF with

pref

Naive Goalpref Goalpref

Error: Search 

unsolveable

4 4 119 97

Implementation is incomplete



Results: Coverage, 1st run

27

Sum Eager Greedy FF Greedy FF with

pref

Naive Goal-pref Goal-pref

Out of memory 87 70 829 760

Out of time 506 393 0 0

Other errors 5 6 4 9

Coverage 1117 1246 882 946

Coverage % 65.13% 72.65% 51.4% 55.16%

Implementation is memory inefficient



Can we be more memory efficient?

Store expansion candidates:

1. Build a relaxed plan with only Goal-preferred Actions

2. If it succeeds, store Helpful Node & Rescue Node

3. If it fails, build relaxed plan and store all as Rescue Node

Search Expansion Criteria:

1. Helpful Nodes preferred over Rescue Nodes

2. Low FF-heuristic value preferred
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Results: Coverage, Take 2
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Sum Eager Greedy FF Greedy FF with

pref

Naive Goal-pref Goal-pref

Out of memory 85 68 661 301

Out of time 513 399 67 363

Other errors 7 4 8 8

Coverage 1227 1361 981 1067

Unsolveable 4 4 119 97

Implementation is less memory inefficient



Results: Expansions (Eager Greedy FF)
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Results: Expansions (Greedy FF with pref)
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Conclusion

• Results:
▪ Incomplete
▪ Memory inefficient
▪ Few expansions
▪ Reworked version more faithful & better

• Possible additions:
• Achieve completeness
• Lookahead algorithm
• 3rd expansion tiebreaker
• YAHSP2 & 3

lookahead-node development, YAHSP Vincent Vidal 

32



Backup
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STRIPS Gripper: Goal-preferred Actions
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Move Pick Drop

Action move_AB move_BA pick_A1 pickB1 drop_A1 drop_B1

Preconditions at_gA at_gB at_gA,

at_1A,

Free

at_gB,

at_1B,

free

at_gA,

at_1A,

in

at_gB,

at_1B,

in

Add effects at_gB at_gA in in at_1A at_1B

Delete effects at_gA at_gB at_1A, 

free

at_1B, 

free

in in

Cost 2 3 1



SAS+ Gripper: Goal-preferred Actions
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Action pick_A1

Preconditions Gripper ↦at_A,

Ball ↦ at_A,

Arm ↦ Free

Effects Ball ↦in

Initial state: Gripper ↦at_A, 

Arm ↦ Free, Ball ↦ at_A

Goal: Gripper ↦at_B, 

Ball ↦ at_B

Naive Algorithm:

• Effect variable, value pair not 
in initial state

• Effect variable in the goal

• Effect value not the goal value

-> Not goal-preferred action



SAS+ Gripper: Goal-preferred Actions
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Action pick_A1

Preconditions Gripper ↦at_A,

Ball ↦ at_A,

Arm ↦ Free

Effects Ball ↦in

Initial state: Gripper ↦at_A,, 

Arm ↦ Free, Ball ↦ at_A

Goal: Gripper ↦at_B, 

Ball ↦ at_B

Reworked Algorithm:

• Effect variable, value pair not 
in initial state

• Effect variable in the goal

• Effect value not the goal value

• Goal variable not in 
preconditions
or goal variable value pair in 
preconditions

-> Not goal-preferred action



Results: Search Time (Eager Greedy FF)
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Results: Cost (Eager Greedy FF)
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