
Analysis of Variable Orders for
Symbolic Search

Bachelor thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

https://ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. David Jakob Speck

Mátyás Bartha

m.bartha@stud.unibas.ch

2021-050-075

03.10.2024

https://ai.dmi.unibas.ch

Acknowledgments

I want to thank Prof. Dr. Malte Helmert for giving me the opportunity to write my

Bachelor’s thesis in the Artificial Intelligence Research Group.

A very special thank you also goes to my supervisor, Dr. David Jakob Speck, who was

always available to answer any questions I had and supported me throughout my work.

Abstract

This thesis investigates the impact of variable ordering on the efficiency of symbolic search

in classical planning, with focus on Binary Decision Diagrams (BDDs). The efficiency of

symbolic search is significantly affected by the structure of BDDs, which is determined

by the order of variables. The study evaluates the efficiency of existing variable orders,

including Forward Ordering and Gamer Ordering, across a range of planning domains. A new

variable ordering, the Blocks Ordering is introduced and specifically designed to optimize the

performance of the symbolic search in the Blocks World domain. The experimental results

show that the Blocks Ordering noticeably reduces the number of BDD nodes generated for

the Blocks World problem, leading to improved performance compared to the other variable

orders. It can be concluded that while no single variable ordering is universally optimal

for all domains, domain-specific orderings like Blocks Ordering can provide performance

benefits in symbolic search.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 2

2.1 Classical Planning . 2

2.1.1 Planning Task . 2

2.1.2 Plan . 2

2.1.3 Blocks World . 2

2.2 Symbolic Search . 3

2.3 Binary Decision Diagrams . 4

2.3.1 Ordered Binary Decision Diagrams . 4

2.3.2 Reduced Order Binary Decision Diagrams 4

2.3.3 Variable Ordering . 4

3 Blocks Ordering 6

3.1 Existing Variable Orders . 6

3.2 Idea . 6

3.3 Computing the Blocks Ordering . 7

4 Experimental Results 8

5 Discussion 19

6 Conclusion 20

Bibliography 21

1
Introduction

The field of classical planning represents a central area of research within the domain of ar-

tificial intelligence (AI). The objective is to develop algorithms that can identify a sequence

of actions that will effectively transform an initial state into a goal state. Planning is a

fundamental component of many AI applications, such as robotics, automated scheduling,

game playing, and logistics.

Symbolic search has become a well-established methodology for solving planning tasks.

The most appropriate data structures are selected, for example, binary decision diagrams

(BDDs)[3], which directly represent entire sets of states. The appropriate data structure

permits the manipulation of the entire set of states in an efficient manner throughout the

search process. However, the efficiency of the process is dependent upon the internal rep-

resentation of the problem. Binary decision diagrams are composed of binary variables.

The order of the variables in a BDD is of great consequence with regard to the size and

complexity of the BDD. An appropriate variable order results in a compact BDD, which

enables the symbolic search algorithm to operate more efficiently.

The objective of this thesis is to investigate the effectiveness of different variable orders in

the symbolic search based on analysis for selected domains1 A new ordering, the Blocks

Ordering is introduced with the aim of enhancing the efficiency of the symbolic search for

the Blocks World problem.

1 The domains that are used are part of the unofficial collection of (sequential) IPC benchmark instances.
https://github.com/aibasel/downward-benchmarks

https://github.com/aibasel/downward-benchmarks

2
Background

2.1 Classical Planning
Classical planning domains and tasks in this thesis are defined by the SAS+ formalism[1]:

2.1.1 Planning Task
A planning task is a 4-tuple Π = ⟨ V, A, I, G⟩ , where:

• V is a finite set of state variables v, each with a finite-domain dom(V). A fact is

an assignment of a state variable (vi → di) with di ∈ dom(vi). A partial state is a

consistent set of facts. If every state variable vi ∈ V is assigned a value of its domain

dom(vi) we call it a state. We denote the set of all possible states S.

• A is a finite set of actions a, each with a precondition pre(a) and effect eff(a), where

both are partial states, and a cost value cost(a)∈ R+
0 . We say that action a is applicable

in state s if s ⊆ pre(a).

• I is a state called the initial state.

• G is a partial state called the goal.

2.1.2 Plan
A Plan π = ⟨ a1, ..., an⟩ for a planning task Π is a sequence of actions which takes us from

the initial state I to the goal state G. The cost of π is defined as cost(π) =
∑n

i=1 cost(ai).

The search for a plan with minimal cost is called optimal planning.

2.1.3 Blocks World
Blocks world is a classical problem in AI. The following rules apply[4]:

• There is a finite number of blocks

• Each block is either on another block or on the table

Background 3

• A block can be clear or another block is on top of it

• The actions are:

– pick-up: Pick up a block from the table if it’s clear

– put-down: Put down the block on the table

– stack: Put the block on top of a clear block

– unstack: Pick up the block from another block if it’s clear

The Blocks World planning problem is to get from a start configuration, the initial state 2.1(a)

to the goal configuration, the goal state 2.1(b) by applying the actions one after each other.

The optimal Blocks World planning problem is to do so with a minimal number of moves[11].

In this thesis we consider the case where every action has the same cost and we are looking

for an optimal plan.

(a) Initial State. (b) Goal State.

Figure 2.1: Example of an initial and goal state of the Blocks World problem.

2.2 Symbolic Search
Symbolic search is a state space exploration technique that was initially proposed in the

field of model checking[9]. In contrast to explicit state search, the symbolic search performs

operations on the whole set of states instead of individual states. A set of states S is defined

by its characteristic function fS , that maps a state s ∈ S to Boolean values ⊤, denoting

True if a given state s belongs to S, and ⊥, denoting False if a given state s does not belong

to S. Using the characteristic function fS it is possible to directly perform set operations,

such as the union (∪), intersection (∩) and complement (S).

Using Transition Relations (TRs), a set of operators O can be represented by a Boolean

function ft, that maps every pair ⟨s1, s2⟩ with s1, s2 ∈ S to ⊤ if s2 can be reached from s1

by applying an operator o ∈ O. In other words the function returns True if s2 is a successor

of s1 and False if not. Given a set of states S and a Transition Relation ft, the set of all

successor and predecessor states can be computed using the image and pre-image operator,

respectively[13].

Background 4

2.3 Binary Decision Diagrams
A Binary Decision Diagram (BDD)[2] is a data structure used for the representation of a

Boolean function.

Such a Boolean function is represented as a rooted, directed, acyclic graph with two terminal

nodes. The terminal nodes have the Boolean values 0 (False) or 1 (True). The inner nodes

correspond to binary variables with two successors, where one edge represents that the

variable is False and the other is True. Following a path from the root to a terminal node,

the value of the terminal node labels the result of the corresponding variable assignment.

2.3.1 Ordered Binary Decision Diagrams
Ordered Binary Decision Diagrams are just like BDDs but with a defined variable ordering.

In an Ordered Binary Decision Diagram (OBDD), the variables are arranged in a specific

fixed order, and on all paths from the root to a terminal node the variables appear in that

same order.

2.3.2 Reduced Order Binary Decision Diagrams
A Reduced Order Binary Decision Diagram (ROBDD) takes an OBDD and applies two

additional optimizations:

• Eliminate Redundant Nodes: If two nodes in the OBDD have the same children, they

are merged into one node.

• Eliminate Redundant Edges: If both edges from a node point to the same child, that

node is removed and all incoming edges are redirected to its child.

Since from now on we will only consider ROBDDs, we will use BDD as a synonym for it.

2.3.3 Variable Ordering
As can be seen in 2.2, the variable ordering completely determines the size of a BDD that

represents a specific function[13]. In the first BDD (2.2 (a)), the variables are ordered as

x1,y1,x2,y2,x3,y3, resulting in a compact, polynomial-size diagram. This ordering keeps the

conjunctions (x1 ∧ y1), (x2 ∧ y2), (x3 ∧ y3) together, which simplifies the decision structure.

Each path through the diagram evaluates one conjunction at a time, allowing the diagram

to share nodes efficiently and reduce the total number of nodes and edges significantly. In

contrast, the second BDD (2.2 (b)) orders the variables as x1,y1,x2,y2,x3,y3, which results

in an exponentially larger diagram. In this ordering, variables from different conjunction

terms (x1 ∧ y1), (x2 ∧ y2), (x3 ∧ y3) are mixed in the variable ordering. As a result decisions

about the y-variables are deferred until all decisions about the x-variables have been made.

Assuming that the number of generated BDD nodes during Symbolic Search correlates with

the time the algorithm takes to find a plan, the variable order seems to play a major role in

Background 5

the duration of the search. It is therefore a central task to optimise the variable order2 in

order to reduce the BDD size. However, the problem of finding an optimal variable order

for Binary Decision Diagrams (BDDs) has been proven to be NP-hard.[6].

Figure 2.2: Two BDDs for the function f = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3) with
different variable orderings.[13]

2 Each finite domain variable v ∈ V can be represented by ⌈log2|Dv |⌉ binary variables. As a consequence
of this transformation, all variables in this thesis can be regarded as binary variables.[13]

3
Blocks Ordering

In this chapter, the Blocks Ordering is introduced, a BDD variable ordering specifically

created to optimize the performance of symbolic search for the Blocks World domain. The

aim is to outperform the existing the existing variable orders of the SymK Planner[12] for

this specific domain.

3.1 Existing Variable Orders
• Forward Ordering: The Forward Ordering describes a total variable order that is

defined by the causal graph. The variable order is defined in such a way that the

removal of all edges v → v′ with v > v′ induces an acyclic subgraph of the causal

graph. This is consistent with the pruning process in The Fast Downward Planning

System paper[5].

• Gamer Ordering: The Gamer Ordering describes a BDD variable order, where the

variables are selected through domain analysis. Optimization is achieved by minimiz-

ing the distance of variable dependencies in the causal graph[6, 8].

3.2 Idea
Kissmann and Hoffmann[8] examined the potential for deriving optimal variable orderings

on the basis of the causal graph. The findings indicated that this approach is not feasible

in almost all cases. In practice, however, the Gamer Ordering, which is based on the causal

graph, has proved to be highly effective, despite the results of the theoretical study [7, 8].

Nevertheless, as Kissmann and Hoffmann[8] demonstrated, there is potential for improve-

ment over the gamer ordering through empirical evaluation of different ordering strategies,

including random ones. Here, we employ a modern symbolic search planner to conduct a

similar analysis and examine selected domains in greater detail with targeted orderings.

The Blocks Ordering is a domain-specific variable ordering, that follows the strategy to

create a variable ordering based on the goal state of the Blocks World planning problem.

The objective is to identifying an ordering that groups variables, that are clearly related to

Blocks Ordering 7

each other in the goal configuration, close to each other in the variable ordering.

3.3 Computing the Blocks Ordering
The structure for the variables is the same for all instances:

• For every block, a variable represents, whether the block is clear or not.

• For every block, a variable represents, whether it is currently being held, which other

block is on it and whether the block is on the table.

• One variable representing whether the hand is empty or not.

Following this structure, every block can directly be associated with two variables. There is

one variable that does not belong to any block.

The Blocks Ordering computes the variable ordering based on the goal configuration:

By mapping each block to the one that is on top of it in the goal configuration, a simple

vector with the order of the blocks can be computed. That vector stores the order of each

stack from bottom to top.

Now every element of this ordered vector, containing the names of the blocks, is replaced

with the two corresponding variables (as described above). This results in an order, where

variables that are closely linked to each other in the goal configuration are also closely linked

in the variable order. As the variable representing whether the hand is empty or not is not

directly belonging to any other variable, it is by choice inserted first in the order.

4
Experimental Results

In this chapter the results gathered are presented. For the experiments the following tools

were used:

• An unofficial collection of (sequential) IPC benchmark instances3.

• SymK Planner[12], a classical optimal and top-k planner based on symbolic search

that extends Fast Downward[5].

• Downward Lab[10], a Python package for running the experiments for the Fast Down-

ward planning system.

• sciCore’s INFAI environment on the partition infai2. The limit was set to 5 minutes

for time, 6144MB for memory.

To get insight into the domain sizes, an experiment was run for all domains in the benchmark

dataset.

As can be seen in table 4, three domains: blocks, hiking-opt14-strips and transport-opt14-

strips are highlighted. The following experiments are run on these domains as the number

of variables is smaller by a lot compared to the other domains. As a result, many runs can

be made, and a solution can be found for most of the instances in the given time.

Instances Min. # Variables Max. # Variables Avg. # Variables Median # Variables
airport 31 27 948 266 136
assembly 30 107 490 286 297
blocks 35 9 35 20 19
hiking-opt14-strips 20 7 14 11 12
satellite 30 6 173 70 59
transport-opt14-strips 20 8 13 10 11

Table 4.1: Selection of domains with the corresponding statistics on the number of
instances and number of variables per instance. The yellow marking indicates the domains
on which the experiments will be run.

3 Artificial Intelligence Group - University of Basel, https://github.com/aibasel/downward-benchmarks

https://github.com/aibasel/downward-benchmarks

Experimental Results 9

For all experiments, the number of BDD nodes is used as a measure for the search time for

a planning problem.

The correlation plot shown in figure 4.1 provides a clear illustration of the relationship

between the number of BDD nodes and the search time. For this experiment, the data from

1,000 searches for all instances of the domains blocks, hiking-opt14-strips and transport-

opt14-strips were used.

With a correlation coefficient of 0.92, the relationship is both strong and positive, indicating

that as the number of BDD nodes increases, the search time increases in a corresponding

manner. The result confirms the hypothesis and allows for the use of the number of BDD

nodes as a measure for the search time.

Figure 4.1: Correlation between the number of BDD nodes and the actual search time
from 1’000 random runs for all instances of the domains: blocks, hiking-opt14-strips,
transport-opt14-strips with time limit of 5 minutes.

Experimental Results 10

Figure 4.2 shows the number of generated BDD nodes for two instances of the Blocks World

domain. The thick blue graphs show the number of generated BDD nodes for 10’000 random

orderings, with the x-axis being sorted by ascending values y values. The constant graphs

show the number of BDD nodes for the four orderings: Blocks Ordering, Forward Ordering,

Forward Ordering reversed and Gamer Ordering.

In figure 4.2(a), the results for the smallest instance of the Blocks World domain, probBLOCKS-

4-0.pddl with 9 variables, can be seen. It can be noticed that all orderings are close to each

other, except the Forward Ordering reversed. While the Forward Ordering reversed performs

approximately like an average random ordering, the other three, including Blocks Ordering,

perform much better than average.

Figure 4.2(b) shows the results for a bigger instance, probBLOCKS-9-2.pddl with 19 vari-

ables. It becomes evident that the Gamer and Blocks Ordering outperform the other two for

this instance. The Forward ordering performing even worse than average random ordering.

It can also be noticed that the Blocks Ordering is the best possible ordering for this instance.

Experimental Results 11

(a) blocks:probBLOCKS-4-0.pddl

(b) blocks:probBLOCKS-9-2.pddl

Figure 4.2: Comparison between Blocks, Gamer, Forward and Reversed Forward ordering
in terms of the number of BDD nodes for two instances of the Blocks World problem. The
thick blue line shows in ascending order on the x-axis the number of BDD nodes for 10’000
random variable orderings as a comparative value.

Experimental Results 12

In figure 4.3 the number of generated BDD nodes for two instances of the domain hiking-

opt-14 can be seen. As the Blocks Ordering is really domain specific for the Blocks World

problem, it is not considered in the following figures.

A direct observation of the figures allows the conclusion to be drawn that all three orders

are superior to the average random variable order. As an exemplar, consider the ptesting-1-

2-3.pddl instance with seven variables (Figure 4.3(a)). In this case, the number of generated

BDD nodes is approximately the same, with the Gamer Ordering resulting in the fewest.

In contrast, the larger instance with 14 variables demonstrates a lower performance for the

gamer ordering, exhibiting only a slight improvement over the average random ordering.

The search with the other two orderings result in a comparable number of generated nodes,

with the Reversed Forward Ordering showing a slight advantage. (Figure 4.3(b)

Experimental Results 13

(a) hiking-opt14-strips:ptesting-1-2-3.pddl

(b) hiking-opt14-strips:ptesting-2-4-4.pddl

Figure 4.3: Comparison between Blocks, Gamer, Forward and Reversed Forward ordering
in terms of the number of BDD nodes for two instances of the hiking-opt14-strips problem.
The thick blue line shows in ascending order on the x-axis the number of BDD nodes for
10’000 random variable orderings as a comparative value.

Experimental Results 14

Different from the other domains, for the transport-opt14-strips problem there are significant

differences in performance when different orderings are used for the search, as can be seen

in figure 4.4.

Both instances show the same pattern. Forward Ordering leads to the least number of

generated BDD nodes, the Reversed Forward Ordering to the most and the Gamer ordering

is around average, compared to the 10’000 random orderings. Although this result is already

pronounced in the small instance with eight variables (Figure 4.4(a)), the discrepancy is even

more significant when considering the larger instance(Figure 4.4(b)). In this case, Forward

Ordering leads close to the optimal, while the Reversed Forward Ordering leads close to the

least optimal random ordering result.

Experimental Results 15

(a) transport-opt14-strips:p01.pddl

(b) transport-opt14-strips:p13.pddl

Figure 4.4: Comparison between Blocks, Gamer, Forward and Reversed Forward Ordering
in terms of the number of BDD nodes for two instances of the transport-opt14-strips
problem. The thick blue line shows in ascending order on the x-axis the number of BDD
nodes for 10’000 random variable orderings as a comparative value.

Experimental Results 16

Table 4 shows the number of BDD nodes for all instances of the Blocks World domain. The

orderings: Forward (fd), Reversed Forward (fd reversed), Gamer, Blocks, Random Min.,

Random Avg. and Random Max. For all instances 1’000 Random Orderings were run. It

can be seen that the best out of the 1’000 random orderings is better than all the other

orderings for almost every instance. However, that there is one exception. Namely for

the instance probBlocks-6-0.pddl, where the search with the Blocks Ordering terminates

with even less BDD nodes. In general, the Blocks Ordering outperforms the Gamer Order-

ing for most of the instances. It is also of interest to note that the search for the instances

probBlocks-10-0.pddl, probBlocks-10-1.pddl and probBlocks-10-1.pddl with Forward Order-

ing does not terminate within the specified time, whereas all other orderings terminate. For

all the larger instances, none of the tested orderings are able to find a plan within the given

time. Therefore, they are not included in the table.

No. generated BDD nodes for each ordering and domain: blocks
probBLOCKS- fd fd reversed gamer blocks random min random avg random max
4-0.pddl 2’729 2’914 2’779 2’760 2’687 2’906 3’269
4-1.pddl 2’744 2’759 2’706 2’698 2’622 2’828 3’110
4-2.pddl 2’688 2’752 2’637 2’705 2’584 2’795 3’085
5-0.pddl 7’740 7’766 7’462 6’906 6’825 7’625 8’640
5-1.pddl 7’525 7’505 7’438 6’888 6’685 7’852 8’584
5-2.pddl 7’903 7’956 7’762 7’402 7’197 8’070 9’168
6-0.pddl 21’663 20’098 19’318 16’419 16’928 19’795 22’470
6-1.pddl 20’477 21’442 20’625 19’326 18’602 21’959 25’567
6-2.pddl 25’019 23’861 24’035 20’999 20’709 24’746 29’137
7-0.pddl 78’372 77’591 79’703 62’214 57’173 76’685 96’278
7-1.pddl 96’693 89’485 96’170 76’346 69’098 92’903 116’492
7-2.pddl 96’493 90’65 94’383 71’321 66’755 91’521 114’297
8-0.pddl 376’149 513’936 410’304 378’555 337’136 503’215 713’504
8-1.pddl 447’400 495’100 429’105 386’315 342’432 507’102 709’573
8-2.pddl 314’670 412’661 366’677 328’139 269’284 403’238 600’806
9-0.pddl 1’761’462 1’633’487 1’398’548 1’576’599 1’049’560 2’056’195 3’204’175
9-1.pddl 1’7670044 1’941’773 2’002’606 1’593’867 958’791 1’998’799 3’498’922
9-2.pddl 2’147’168 1’906’061 1’349’475 1’254’512 975’943 2’001’918 3’014’648
10-0.pddl 7’559’152 10’142’085 5’515’395 4’575’285 9’838’566 14’650’466
10-1.pddl 8’930’919 11’690’140 10’449’805 7’412’743 11’955’211 16’984’492
10-2.pddl 6’727’287 7’084’823 7’768’799 4’211’680 9’855’783 14’523’085
11-0.pddl
11-1.pddl
11-2.pddl

Table 4.2: Number of BDD nodes for all instances of the Blocks World domain for
Forward, Reversed Forward, Gamer, Blocks and the minimum/maximum/average of 1’000
random variable orderings. The best performing ordering, with the smallest number of
BDD nodes, is highlighted in green.

Experimental Results 17

The table 4 presents a comparison of all orderings for the domain ”hiking.” It should be

noted that the blocks ordering is not included, as it was created to optimize search for the

Blocks World problem. As already seen in table 4, the best results are obtained when by

using the best out of the 1’00 random orderings. It is clearly noticeable that the Reversed

Forward Ordering is the optimal ordering for this domain, even solving an instance within

the given time that none of the other orders can solve. The Gamer Ordering” has the poor-

est results. For some instances, it is even less effective than the average Random Ordering.

No. generated BDD nodes for each ordering and domain: hiking-opt14-strips
ptesting- fd fd reversed gamer random min random avg random max
1-2-3.pddl 1’581 1’557 1’467 1’288 1’966 2’873
1-2-4.pddl 3’025 2’924 2’891 2’302 3’950 6’151
1-2-5.pddl 8’989 8’611 8’348 6’061 11’924 19’471
1-2-7.pddl 23’080 23’134 22’215 15’142 32’359 56’832
1-2-8.pddl 34’004 34’336 33’016 21’933 48’549 87’847
2-2-3.pddl 16’556 12’396 22’027 10’786 24’506 37’732
2-2-4.pddl 125’673 69’066 154’471 65’339 191’205 318’853
2-2-5.pddl 1’132’249 498’681 1’279’251 439’233 1’594’378 2’916’351
2-2-6.pddl 1’894’049 5’657’965 1’765’435 4’513’811 7’800’984
2-2-7.pddl 5’504’408
2-2-8.pddl
2-3-4.pddl 267’919 242’045 376’394 99’734 362’712 625’982
2-3-5.pddl 2’930’678 2’319’895 4’250’647 791’328 3’210’558 5’831’557
2-3-6.pddl
2-3-7.pddl
2-4-3.pddl 27’202 27’324 38’176 18’171 46’953 74’204
2-4-4.pddl 276’540 241’256 426’525 134’612 536’626 895’814
2-4-5.pddl 3’352’070 2’453’229 1’239’217 2’957’221 5’033’305
2-4-6.pddl
2-4-7.pddl

Table 4.3: Number of BDD nodes for all instances of the hiking-opt14-strips domain for
Forward, Reversed Forward, Gamer and the minimum/maximum/average of 1’000 random
variable orderings. The best performing ordering, with the smallest number of BDD nodes,
is highlighted in green.

Experimental Results 18

The results for the domain transport-opt14-strips are shown in table 4. The ”Gamer Or-

dering” was excluded once more as it is only meaningful when considered in the context of

the Blocks World domain. It is apparent that only a small number of instances are solved

at all. Also in this case, the best random ordering is the most effective ordering, solving

the search with the fewest BDD nodes. The results demonstrate that the Gamer Ordering

is approximately average, while the Reversed Forward Ordering is notably inferior. In com-

parison, the Forward Ordering performs remarkably well, solving instances that the other

orderings don’t.

No. generated BDD nodes for each ordering and domain: transport-opt14-strips
fd fd reversed gamer random min random avg random max

p01.pddl 42’252 74’698 61’976 27’282 68’140 104’870
p02.pddl 770’582 1’545’442 1’025’546 500’843 1’135’348 1’894’820
p03.pddl 10’057’689 8’132’250 13’847’062 22’065’092
p04.pddl
p05.pddl
p06.pddl
p07.pddl 222’552 649’062 407’951 201’023 543’245 998’361
p08.pddl
p09.pddl
p10.pddl
p11.pddl
p12.pddl
p13.pddl 228’002 851’982 546’626 174’286 541’351 939’113
p14.pddl 7’691’581 4’695’803 9’053’570 12’223’319
p15.pddl
p16.pddl
p17.pddl
p18.pddl
p19.pddl
p20.pddl

Table 4.4: Number of BDD nodes for all instances of the transport-opt14-strips domain for
Forward, Reversed Forward, Gamer and the minimum/maximum/average of 1’000 random
variable orderings. The best performing ordering, with the smallest number of BDD nodes,
is highlighted in green.

5
Discussion

In this section the results from chapter 4 are discussed regarding the impact of different

variable orderings on the performance of symbolic search in classical planning, particularly

focusing on the new Blocks Ordering for the Blocks World domain.

The Blocks Ordering demonstrated superior performance compared to other existing order-

ings, like Gamer, Forward and Reversed Forward Ordering in the Blocks World problem,

where the Blocks Ordering resulted in a notable reduction in the number of BDD nodes gen-

erated. This reduction in the number of BDD nodes correlates with a reduction in search

time and therefore in an increase of computational efficiency.

This improvement can be explained by the fact that the other orderings are designed to be

used for general problems, even though the Gamer Ordering works in a comparable way

by analyzing the domain. In contrast, the Blocks Ordering is designed to focus only on

the Blocks World domain and optimize the performance of Symbolic Search only for that

problem. The Blocks Ordering method optimises the sequence of variables in a way that is

closely aligned with the structure of the problem. Variables that are related are placed as

close as possible together. As the experiments have shown, this results in a more compact

BDD and a more efficient search.

The comparison of the other variable orderings such as the Gamer, Forward and the Re-

versed Forward ordering across different planning domains does not lead to a clear result

as to which is best. The Gamer Ordering, which aims to group variables that are closely

related together based on an analysis of the domain’s causal graph is, did not outperform

the other orderings for all domains.

These results demonstrate that there is no general solution for the variable ordering in sym-

bolic search which always provides the best results. Each domain has unique characteristics

that influence which ordering will be most effective.

6
Conclusion

The experimental analysis presented in this thesis shows that the variable ordering plays an

important role in the performance of symbolic search in classical planning. The new Blocks

Ordering has shown to be effective in the Blocks World domain, outperforming other variable

orders like Forward, Reversed Forward and Gamer Ordering in terms of the number of BDD

nodes generated and consequently in search time. The results suggest that domain-specific

optimizations can lead to improvements in search performance. However, the performance

improvement by the Blocks Ordering is achieved by focusing on a single domain. No ordering

strategy was optimal across all tested domains.

Bibliography

[1] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-

putational Intelligence, 11(4):625–655, 1995.

[2] Randal E. Bryant. Symbolic manipulation of Boolean functions using a graphical rep-

resentation. In Hillel Ofek and Lawrence A. O’Neill, editors, Proceedings of the 22nd

ACM/IEEE Conference on Design Automation (DAC 1985), pages 688–694, 1985.

[3] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

[4] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning. Artificial

Intelligence, 56(2–3):223–254, 1992.

[5] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[6] Peter Kissmann and Stefan Edelkamp. Improving cost-optimal domain-independent

symbolic planning. In Wolfram Burgard and Dan Roth, editors, Proceedings of the

Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2011), pages 992–997.

AAAI Press, 2011.

[7] Peter Kissmann and Jörg Hoffmann. What’s in it for my BDD? on causal graphs and

variable orders in planning. In Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi,

and Simone Fratini, editors, Proceedings of the Twenty-Third International Conference

on Automated Planning and Scheduling (ICAPS 2013), pages 327–331. AAAI Press,

2013.

[8] Peter Kissmann and Jörg Hoffmann. BDD ordering heuristics for classical planning.

Journal of Artificial Intelligence Research, 51:779–8046, 2014.

[9] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[10] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.790461, 2017.

[11] John Slaney and Sylvie Thiébaux. Blocks World revisited. Artificial Intelligence, 125

(1–2):119–153, 2001.

[12] David Speck, Robert Mattmüller, and Bernhard Nebel. Symbolic top-k planning. In

Vincent Conitzer and Fei Sha, editors, Proceedings of the Thirty-Fourth AAAI Confer-

ence on Artificial Intelligence (AAAI 2020), pages 9967–9974. AAAI Press, 2020.

https://doi.org/10.5281/zenodo.790461

Bibliography 22

[13] Álvaro Torralba. Symbolic Search and Abstraction Heuristics for Cost-Optimal Plan-

ning. PhD thesis, Universidad Carlos III de Madrid, 2015.

