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Abstract

In action planning, greedy best-first search (GBFS) is one of the standard techniques if

suboptimal plans are accepted. GBFS uses a heuristic function to guide the search towards

a goal state. To achieve generality, in domain-independant planning the heuristic function

is generated automatically. A well-known problem of GBFS are search plateaus, i. e., regions

in the search space where all states have equal heuristic values. In such regions, heuristic

search can degenerate to uninformed search. Hence, techniques to escape from such plateaus

are desired to improve the efficiency of the search. A recent approach to avoid plateaus is

based on diverse best-first search (DBFS) proposed by Imai and Kishimoto. However, this

approach relies on several parameters. This thesis presents an implementation of DBFS into

the Fast Downward planner. Furthermore, this thesis presents a systematic evaluation of

DBFS for several parameter settings, leading to a better understanding of the impact of the

parameter choices to the search performance.
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1
Introduction

The objective of planning is to allow an agent to automatically achieve a desired situation of

the world. More precisely, starting in an initial state of the world, the objective of planning

is to automatically select a set of actions such that applying these actions is possible and

leads to a state that satisfies a certain goal condition.

For illustration, let us look at a common route planning task in public transportation:

Assume that an agent has to find a routing from one station to another. To simplify our

world, let us assume that there are just train and bus lines. Further, there are two possible

actions: If the traveler is in one of these, he can get off at any following station. Elsewise he

can get in any train or bus which crosses the current station. The task for the agent is to

find a sequence of actions (get on or off a vehicle) that leads the traveler from a given initial

station to a given target station.

Problems like these are often modeled as search problems. A search problem contains of a

set of states (in our example the vehicles or stations on which the traveler can be arranged),

a successor function which maps a set of successor states to each state (in our example

determined by the actions: get on and off a vehicle) as well as a start state and a set of goal

states.

In practice, a successful approach to tackle these kind of search problems is based on heuristic

search [1]. Therefore a heuristic function is defined, which estimates the distance from a

given state to a goal state. The heuristic function is then used to find a sequence of actions

that leads from the initial state to a goal state.

A very common heuristic search method is greedy best-first search (GBFS). The idea behind

GBFS is very intuitive: The search always goes into the direction of a state with lowest

heuristic value. By searching in direction of states with shortest estimated distance to the

goal, the algorithm tends not to explore unpromising areas of the state space.

It is clear that the performance of GBFS is highly dependent of the accuracy of the heuristic

function. An effect caused by inaccurate estimates of the heuristic function in called search

plateau. Thereby the heuristic value of all available states for exploration are equal (or higher

than the heuristic value of the current state). In such a situation, greedy best-first search can

not determine a promising search direction, which forces the algorithm to go into arbitrary

a direction that is not more promising than any other. It is often the case that this has to
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be done several times until a promising direction is found. Therefore, this fashion can cause

many unsuccessful tries in order to escape from a search plateau and consequently causes a

degradation of performance. Hence, techniques to escape from plateaus are desirable.

Recently, Imai and Kishimoto propose a novel technique for avoiding plateaus [2]. They

come up with a search method called diverse best-first search (DBFS). In a nutshell, their

approach is to diversify the search direction by randomly choosing an node which might have

a heuristic value that is higher than the best heuristic value from time to time and performing

local searches up to a certain depth starting from this node. Overall, this algorithm relies

on various parameters that can be instantiated in various ways. For example, the frequency

of choosing an unpromising node is controlled by such a parameter.

The contribution of this bachelor thesis is an implementation and systematic evaluation of

DBFS as proposed by Imai and Kishimoto [2] into the Fast Downward planner [3]. In par-

ticular, we investigate different parameter configurations and their impact to the algorithm.

The remainder of this thesis is organized as follows. In Chapter 2 we give a formal intro-

duction of planning as well as heuristic search. In that chapter, we also explain the DBFS

algorithm. Chapter 3 presents some details about the implementation of the algorithm as

well as some comments on the usage of DBFS in Fast Downward. In Chapter 4 the results

of our evaluation are presented and discussed. Finally, we give a brief conclusion on the

experiments and their discussion in Chapter 5.



2
Preliminaries

In this chapter, planning problems will be introduced. Then, heuristic search as one popular

method to tackle these kind of problems is explained.

2.1 Planning

In the literature, several formalisms of planning problems are in use. The following defini-

tions rely on the SAS+ formalism introduced by Bäcktröm and Nebel [4].

Definition (Planning problem):

A SAS+ planning problem is a 4-tuple Π = 〈V,O, s0, s?〉 with:

• V = {v1, . . . , vm} denotes a set of state variables.

For each v ∈ V there exists a domain Dv. With u as undefined value, DV+ = DV ∪{u}
denotes the extended domain.

SV = Dv1 × · · · × Dvm is called the total state space of Π, where each s ∈ SV is called

a state. In addition, SV+ = Dv1
+ × · · · × Dvm

+ denotes the partial state space of Π,

where s+ ∈ SV+ is called a partial state. For each s+ ∈ SV+, s+[v] denotes the state

value of v in a state s (where s[v] = u is possible).

• O = {o1, . . . , on} denotes a set of operators of the form o = 〈pre, post〉, where pre

denotes the precondition, and post denotes the effect of o.

• s0 ∈ SV is called the initial state.

• s? ∈ SV+ is called the partial goal state.

An operator o is applicable in a state s if the precondition of o is satisfied in s. In this case,

applying o in s leads to the successor state o(s), which is determined by setting the values

of the effect variables of o accordingly.
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Definition (Plan):

Let Π = 〈V,O, s0, s?〉 be a planning problem. A plan for Π is a sequence of operators

ᾱ = 〈o1, . . . , on〉 with ok ∈ O for 1 ≤ k ≤ n such that ᾱ is applicable in sequence from s0

and leads to a state that satisfies s?. |ᾱ| is called the length of a plan ᾱ.

A plan ᾱ is called optimal if no other plan from s to t has fewer operators (if unit cost for

each operator are assumed). Otherwise ᾱ is called a suboptimal plan.

2.2 Heuristic Search

In practice, a planning task as described in the previous section, is usually tackled as a

tree-search problem. Each node of the corresponding search tree is mapped to a state of the

planning task. An edge from a node to a child node denotes an action that can be applied to

the state identified with the parent node in order to reach the one identified with the child

node. The root node is mapped to the initial state of the planning problem.

A trivial search strategy is to go through the whole search tree systematically. That is how

breadth-first search or depth-first search try to find a node that corresponds to a goal state

or proof that there is no such node in the tree. In contrast to these so-called uninformed

search strategies, there exist informed search strategies, which try to use problem-specific

knowledge beyond the definition of the problem itself. [5, p. 81]

An instance of informed search is best-first search. Algorithm 1 shows pseudocode thereof.

Two data structures are used: OpenList (open list) which is a priority queue ordered by a

function f() as well as ClosedList which is a set of nodes. At the beginning, ClosedList is

empty and OpenList contains only the root node.

Then the actual search starts. The following is done, until a goal node is found or OpenList

becomes empty: The minimum node in OpenList is popped from the min-heap and stored in

n until the fetched node is not in ClosedList. If n is a goal node the search was successful and

the algorithm stops and returns a plan. Otherwise n is added to ClosedList. All child nodes

(successors) of n are determined (we will call that expansion) and inserted into OpenList.

If the algorithm finds a goal node, a set of actions determined by the path to the root node

is returned. Otherwise the open list will become empty at some point which means, that no

solution exists.

Now we will have a closer look at lines 1 and 5 of algorithm 1. The evaluation function f()

determines which node is popped from OpenList and hence, in which direction the search

algorithm explores. It is obvious that the choice of the evaluation function is critical for the

search effort. If f() leads the algorithm onto a path to a goal node its faster as if unpromising

areas of the state space were explored before.

Most best-first search algorithms include as a component of f(n) a function h(n), which is

called heuristic function [5, p. 92]:

Definition: Let S be a set of state variables. A heuristic function over S is a function of the

following form:

h : S → R+
0
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Algorithm 1 Best-First Search

1: OpenList = new priority queue ordered by f()
2: ClosedList = {}
3: insert the root node into OpenList;
4: while OpenList is not empty do
5: n := fetch minimum node from OpenList;
6: if n /∈ ClosedList then
7: if n is a goal then
8: return plan to n from the root;
9: end if

10: save n in the ClosedList;
11: expand n;
12: save successors of n in OpenList;
13: end if
14: end while
15: return no solution;

Russell and Norvig state that “Heuristic functions are the most common form in which

additional knowledge of the problem is imparted to the search algorithm.” [5, p. 92] In our

setting of planning with heuristic search, “additional knowledge” means, that h(n) gives an

estimate of the distance from n to a goal state s?. The heuristic estimates are computed

automatically for a given planning problem.

A very common specialization of best-first search is greedy best-first search (GBFS). GBFS

simply uses a heuristic function as evaluation function: f(n) = h(n). Hence, the additional

knowledge given from the heuristic function is used to expand the node from OpenList that

is expected to lie on the closest path to a goal node.



3
Diverse Best-First Search

The approach of diverse best-first search (DBFS) to escape from search plateaus is to di-

versify the search direction. From time to time, DBFS selects another node as if greedy

best-first search would chose and performs a local search rooted at this node up to a certain

depth. Algorithm 2 and 3 show the pseudocode of diverse best-first search as provided by

Imai and Kishimoto [2] with some addings.

Algorithm 2 Diverse Best-First Search (Parameter: D)

1: insert the root node into OpenList;
2: while OpenList is not empty do
3: n := fetch a node from OpenList;
4: LocOL := {n};
5: /* Local search: Perform GBFS rooted at n */
6: for i := 1 to h(n) ∗D do
7: select node m with smallest h(m) from LocOL;
8: if m is a goal then
9: return plan to m from the root;

10: end if
11: save m in the global closed list;
12: expand m;
13: save successors of m in LocOL;
14: end for
15: OpenList := LocOL ∪ OpenList;
16: end while
17: return no solution;

The actual search is performed in Algorithm 2. The framework is similar to best-first search.

When the search process starts, the data structure OpenList contains solely the root node

of the search tree. Then a loop is executed until OpenList becomes empty (that means that

there is no solution) or DBFS finds a solution. In that loop, best-first search would fetch

a node n, expand it and save the successors to the open list. However, diverse best-first

search performs a local search rooted at n. For each local search, a data structure called

LocOL (set of nodes) is needed. At the begin of each local search, LocOL contains just

the node n. The local search is then peformed by executing h(n) steps (we will call that

the depth of the local search) or terminate if a solution is found. In each step of the local
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search, the node m with the smallest h(m) is selected and (if it is no goal node) expanded.

The successors of m are then inserted into LocOL. If the local search does not find a goal

node, thereafter all nodes from LocOL are moved to OpenList. Additionally, we introduce a

parameter D ∈ {1, 2, 3, . . . } which is not incorporated in the algorithm of DBFS as proposed

by Imai and Kishimoto [2]. The parameter D is a scaling factor for the depth of the local

search in Algorithm 2.

Thus, DBDS uses two data structures: The LocOL (local open list) and OpenList (global

open list). Fetching a node from the local open list works as fetching a node from the open

list in greedy best-first search. It is simply taken the node n with the lowest heuristic value

h(n). A node that is fetched from the global open list is calculated by Algorithm 3.

Algorithm 3 Fetching one node (Parameter: P , T )

1: ptotal := 0;
2: (hmin, hmax) := minimum and maximum h-values in OL;
3: (gmin, gmax) := minimum and maximum g-values in OL;
4: if with probability of P then
5: G := select at random from gmin, . . . , gmax;
6: else
7: G := gmax;
8: end if
9: for all h ∈ {hmin, . . . , hmax} do

10: for all g ∈ {gmin, . . . , hmax} do
11: if g > G or OL has no node whose h-value and g-value are h and g, respectively

then
12: p[h][g] := 0;
13: else
14: p[h][g] := Th−hmin ;
15: end if
16: ptotal := ptotal + p[h][g]
17: end for
18: end for
19: select a pair of h and g with probability of p[h][g]/ptotal;
20: dequeue a node n with h(n) = h and g(n) = g in OL;
21: return n;

Algorithm 3 deals with an h and g value corresponding to each node. The h-value is equal

to the heuristic value of the node while g denotes the sum of the costs of the edges to the

root node. The algorithm calculates for each occurrent combination of h and g a probability

that a node with these values could be fetched. According to this probability distribution a

combination of h and g is selected randomly and a node with these h and g values is returned.

If there are multiple possibilities, one of them is selected randomly. The calculation of the

random distribution is dependent on the parameters P ∈ [0, 1] and T ∈ [0, 1].

With probability of P the probabilities of all nodes with a g-value (distance to root node)

greater than a randomly chosen threshold is set to zero. This forces the algorithm to fetch

a node as starting point for the local search which does not exceed a certain distance to

the root node. The probability of a pair of h and g (except the ones excluded by P ) to be

chosen, is determined by parameter T and by h. The smaller the difference between h and

the lowest h value, the higher is the probability. Hence, nodes with lower heuristic values
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are preferred. The grad of preference is controlled by T . The lower T , the higher is the

probability of a node with a low h value to be chosen.

With this framework it is possible to fetch an unpromising node from the global open list in

a ”controlled manner”.



4
Implementation

We implemented diverse best-first search (DBFS) as described in the previous chapter into

the Fast Downward planner by Helmert [3]. This chapter gives an overview of Fast Downward

(FD) and the implementation of DBFS.

4.1 Fast Downward

Fast Downward is a heuristic search planner implemented in C++ and Python. It can

deal with general planning problems as defined in Section 2.1. The input is encoded in

the planning domain definition language (PDDL2.2) [6] as well as some fragments of newer

versions. Fast Downward implements different search algorithms and heuristic functions.

4.2 Implementation

Diverse best-first search is implemented as a new search engine dbfs search inherited from

eager greedy. The last-mentioned search engine implements greedy best-first search and

modifications thereof.

For the global open list we implemented a new open list called dbfs open list. The code

thereof relies on the standard scalar open list, which is also used as the local open list.

For all other tasks Fast Downward is used as a framework. DBFS can be combined with all

available heuristic functions.

4.3 Usage

As the implementation of DBFS is done into the Fast Downward planner, the call is the

same as with any other search algorithm1.

The Fast Downward planner runs in three steps. [3, p. 202-203] The first two steps, trans-

lating and preprocessing, are not explained here. The actual search process starts in the

1 http://www.fast-downward.org/PlannerUsage



Implementation 10

third step, where the search method is performed.

After processing the first two steps, a file named output is generated. Then, DBFS is called

like this:

./downward --search "dbfs(ff())" < output

In this example, DBFS uses the FF heuristic. More information about the available heuris-

tics can be found on the web page of the Fast Downward project2.

If no additional parameters are provided, DBFS uses a standard configuration: P = 0.1,

T = 0.5 and D = 1. In the following example DBFS is called with specified parameters:

./downward --search "dbfs(ff(),p=0.2,t=0.4,d=2)" < output

As defined in all previous chapter, p and t accept float-values in [0, 1]. d as a scaling factor

of the depth of the local search accepts positive int-values.

To turn off the local search, the planner can be called like:

./downward --search "dbfs(ff(),d=0)" < output

In that case, DBFS behaves like greedy best-first search just with fetching the next node by

using algorithm 2.3 instead of taking that one with the lowest heuristic value.

Because the DBFS algorithm works with random values, different runs with the same con-

figuration usually produce different outputs. To get reproducible results, Fast Downward

can be random seeded:

./downward --search "dbfs(ff())" --random-seed 123622312 < output

2 http://www.fast-downward.org/HeuristicSpecification



5
Evaluation

This chapter contains the results of our evaluations and a discussion of these.

5.1 Experimental Setup

We did experiments with all benchmarks of the International Planning Competition until

the IPC11 which contains 2252 problems in 58 domains. Each domain include at least 5 and

at most 80 problems.

All tests ran on Intel Xeon E5-2660 CPUs (2.2 GHz) with a memory and time limit of 2 GB

and 30 minutes. Both, the memory and time limit exceeded in some runs.

Diverse best-first search incorporated random numbers. Thus, different outputs can be pro-

duced for the same parameters on the same instance. That is why we performed several

passages. If averages thereof are computed, the result is rounded to the nearest integer. For

comparison the non-rounded values are used.

To get reproducible results, we ran all experiments with random seeds. A random seed

determines the calculation of the pseudo random numbers used by DBFS and therefore also

the search result. All random seeds we used for our experiments are listed in Appendix.

We used the experiment framework lab1 to conduct and analyze the experiments.

1 http://lab.readthedocs.org
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5.2 Results

In this section, we present the results of our evaluations.

5.2.1 Variation of a Single Parameter

We started the evaluation with the standard configuration provided by Imai and Kishimoto

[2]. They set P = 0.1 and T = 0.5. Since the parameter D as a scaling factor of the local

search is not introduced in their algorithm, we set D = 1 as standard.

First, we varied a single parameter, while the others were fixed on the standard configu-

ration. P took all values in {0.1, 0.2, 0.3}, T all values in {0.4, 0.5, 0.6} while D varied in

{0, 1, 2, 3, 5} where D = 0 means that there is no local search performed. If the best results

performed with a parameter on a bound of the range, we extended the range with some

additional values.

We ran each test with five different random seeds. All experiments were performed with

three different heuristic functions. We used the FF heuristic [7], the context-enhanced ad-

ditive (CEA) heuristic [8] and the causal graph (CG) heuristic [9]. All of them are already

implemented in Fast Downward.

Table 5.1 shows the coverage of FF, Table 5.2 the coverage of CEA and Table 5.3 the cover-

age of CG. The configurations marked with ? have the best average of solved instances over

all seeds in the particular range.

Configuration seed1 seed2 seed3 seed4 seed5 Min. Max. Avg

GBFS 1576 1576 1576 1576

DBFS (P=0.1) 1769 1777 1770 1776 1773 1769 1777 1773
DBFS (P=0.2) 1773 1779 1779 1777 1776 1773 1779 1777
DBFS (P=0.3) ? 1773 1780 1780 1778 1775 1773 1780 1777
DBFS (P=0.4) 1763 1779 1766 1754 1765 1754 1779 1765
DBFS (P=0.5) 1768 1764 1762 1760 1772 1760 1772 1765

DBFS (T=0.4) 1771 1759 1762 1769 1772 1759 1772 1767
DBFS (T=0.5) 1768 1777 1769 1776 1773 1768 1777 1773
DBFS (T=0.6) ? 1786 1780 1772 1768 1774 1768 1786 1776
DBFS (T=0.7) 1780 1769 1771 1767 1773 1767 1780 1772
DBFS (T=0.8) 1750 1747 1752 1750 1746 1746 1752 1749

DBFS (D=1) 1769 1776 1769 1776 1773 1769 1776 1773
DBFS (D=2) 1798 1813 1800 1805 1784 1784 1813 1800
DBFS (D=3) 1801 1801 1793 1789 1792 1789 1801 1795
DBFS (D=4) 1799 1802 1804 1805 1808 1799 1808 1804
DBFS (D=5) 1800 1803 1812 1801 1801 1800 1812 1803
DBFS (D=6) ? 1810 1806 1806 1807 1805 1805 1810 1807
DBFS (D=7) 1799 1806 1810 1811 1799 1799 1811 1805

DBFS (D=0) 1579 1575 1587 1571 1583 1571 1587 1579

Table 5.1: Coverage of DBFS and FF heuristic with different configurations and random seeds.
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Configuration seed1 seed2 seed3 seed4 seed5 Min. Max. Avg

GBFS 1595 1595 1595 1595

DBFS (P=0.1) ? 1812 1799 1793 1806 1790 1790 1812 1800
DBFS (P=0.2) 1786 1787 1793 1785 1784 1784 1793 1787
DBFS (P=0.3) 1786 1772 1768 1769 1771 1768 1786 1773

DBFS (T=0.4) 1789 1790 1804 1791 1786 1786 1804 1792
DBFS (T=0.5) ? 1812 1800 1793 1809 1790 1790 1812 1801
DBFS (T=0.6) 1803 1797 1799 1802 1795 1795 1803 1799

DBFS (D=1) ? 1811 1800 1794 1806 1791 1791 1811 1800
DBFS (D=2) 1798 1787 1786 1790 1788 1786 1798 1790
DBFS (D=3) 1780 1786 1790 1787 1783 1780 1790 1785
DBFS (D=5) 1765 1767 1766 1771 1767 1765 1771 1767

DBFS (D=0) 1563 1560 1565 1560 1549 1549 1563 1559

Table 5.2: Coverage of DBFS and CEA heuristic with different configurations and random seeds.

Configuration seed1 seed2 seed3 seed4 seed5 Min. Max. Avg

GBFS 1592 1592 1592 1592

DBFS (P=0.1) 1667 1654 1664 1674 1671 1654 1674 1666
DBFS (P=0.2) ? 1665 1678 1663 1661 1669 1661 1678 1667
DBFS (P=0.3) 1662 1660 1658 1668 1665 1658 1668 1663

DBFS (T=0.4) 1652 1671 1678 1659 1668 1652 1678 1666
DBFS (T=0.5) ? 1667 1655 1664 1674 1672 1655 1674 1666
DBFS (T=0.6) 1661 1661 1668 1657 1660 1657 1668 1661

DBFS (D=1) 1668 1654 1664 1674 1672 1654 1674 1666
DBFS (D=2) 1698 1688 1683 1678 1680 1678 1698 1685
DBFS (D=3) 1686 1697 1677 1693 1691 1677 1697 1689
DBFS (D=4) 1690 1694 1692 1695 1689 1689 1695 1692
DBFS (D=5) 1703 1688 1700 1707 1705 1688 1707 1701
DBFS (D=6) 1692 1701 1696 1710 1694 1692 1710 1699
DBFS (D=7) ? 1705 1707 1700 1708 1696 1696 1708 1703
DBFS (D=8) 1702 1696 1695 1698 1704 1695 1704 1699
DBFS (D=9) 1703 1710 1696 1698 1696 1696 1710 1701

DBFS (D=0) 1475 1484 1469 1469 1470 1469 1484 1473

Table 5.3: Coverage of DBFS and CG heuristic with different configurations and random seeds.

5.2.2 Combination of Best Results

After we have evaluated the best configuration by varying only one parameter while the

others were fixed, we combined the P , T and D on which the experiments performed best.

Configuration seed1 seed2 seed3 seed4 seed5 Min. Max. Avg

GBFS 1576 1576 1576 1576

DBFS (P=0.3) 1773 1780 1780 1778 1775 1773 1780 1777
DBFS (T=0.6) 1786 1780 1772 1768 1774 1768 1786 1776
DBFS (D=6) 1810 1806 1806 1807 1805 1805 1810 1807

DBFS (Combination) 1798 1793 1796 1804 1800 1793 1804 1798

Table 5.4: Coverage of DBFS and FF heuristic with a combination of the best parameters.
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Configuration seed1 seed2 seed3 seed4 seed5 Min. Max. Avg

GBFS 1595 1595 1595 1595

DBFS (P=0.1) 1812 1799 1793 1806 1790 1790 1812 1800
DBFS (T=0.5) 1812 1800 1793 1809 1790 1790 1812 1801
DBFS (D=1) 1811 1800 1794 1806 1791 1791 1811 1800

DBFS (Combination) 1814 1801 1793 1808 1792 1792 1814 1802

Table 5.5: Coverage of DBFS and CEA heuristic with a combination of the best parameters.

Configuration seed1 seed2 seed3 seed4 seed5 Min. Max. Avg

GBFS 1592 1592 1592 1592

DBFS (P=0.2) 1665 1678 1663 1661 1669 1661 1678 1667
DBFS (T=0.5) 1667 1655 1664 1674 1672 1655 1674 1666
DBFS (D=7) 1705 1707 1700 1708 1696 1696 1708 1703

DBFS (Combination) 1696 1700 1701 1701 1692 1692 1702 1698

Table 5.6: Coverage of DBFS and CG heuristic with a combination of the best parameters.

5.2.3 Coverage on Domain Level

Table 5.7 lists the parameter configurations we observed in all previous experiments for each

heuristic function which solved most instances on average.

Heuristic P T D Avg

FF 0.1 0.5 6 1807
CEA 0.1 0.5 1 1802
CG 0.1 0.5 7 1703

Table 5.7: Best observed parameter configurations for each heuristic function.

Table 5.8 shows the coverage on domain level of the best parameter configuration for DBFS

with the FF heuristics. Because experiments with the same configuration and different seeds

gives slightly different results, we list the values of the run with the median coverage.
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Domain DBFS with FF GBFS with FF

airport (50) 36 34

assembly (30) 30 20

barman-sat11-strips (20) 16 2

blocks (35) 35 35

depot (22) 17 15

driverlog (20) 20 18

elevators-sat08-strips (30) 13 11

elevators-sat11-strips (20) 0 0

floortile-sat11-strips (20) 8 7

freecell (80) 80 79

grid (5) 4 4

gripper (20) 20 20

logistics00 (28) 28 28

logistics98 (35) 26 30

miconic (150) 150 150

miconic-fulladl (150) 139 136

miconic-simpleadl (150) 150 150

movie (30) 30 30

mprime (35) 34 31

mystery (30) 19 17

nomystery-sat11-strips (20) 15 10

openstacks (30) 30 30

openstacks-sat08-adl (30) 5 6

openstacks-sat08-strips (30) 5 6

openstacks-sat11-strips (20) 0 0

openstacks-strips (30) 30 30

optical-telegraphs (48) 14 4

parcprinter-08-strips (30) 22 22

parcprinter-sat11-strips (20) 5 5

parking-sat11-strips (20) 20 20

pathways (30) 25 10

pathways-noneg (30) 26 11

pegsol-08-strips (30) 30 30

pegsol-sat11-strips (20) 20 20

philosophers (48) 48 48

pipesworld-notankage (50) 42 33

pipesworld-tankage (50) 29 21

psr-large (50) 18 13

psr-middle (50) 45 38

psr-small (50) 50 50

rovers (40) 32 23

satellite (36) 28 27

scanalyzer-08-strips (30) 30 28

scanalyzer-sat11-strips (20) 20 18
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schedule (150) 121 37

sokoban-sat08-strips (30) 28 28

sokoban-sat11-strips (20) 18 18

storage (30) 24 18

tidybot-sat11-strips (20) 18 15

tpp (30) 25 23

transport-sat08-strips (30) 14 11

transport-sat11-strips (20) 0 0

trucks (30) 21 17

trucks-strips (30) 22 17

visitall-sat11-strips (20) 3 3

woodworking-sat08-strips (30) 30 27

woodworking-sat11-strips (20) 18 12

zenotravel (20) 20 20

Sum 2252 1806 1576

Table 5.8: Coverage on domain level of DBFS and the FF heuristic with the best observed config-
uration compared to GBFS with FF.

5.2.4 Search Time

We compared the search time of GBFS and DBFS with the parameter configurations listed

in Table 5.7. Figure 5.1, 5.2 and 5.3 illustrate the results for FF, CEA and CG. The

search time measures only the time it takes to perform the actual search. Other tasks (e.g.

preprocessing) are not included.
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Figure 5.1: Comparison of the search time of DBFS and GBFS with the FF heuristic.
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Figure 5.2: Comparison of the search time of DBFS and GBFS with the CEA heuristic.
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Figure 5.3: Comparison of the search time of DBFS and GBFS with the CG heuristic.
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5.2.5 Plan Cost

Figure 5.4, 5.5 and 5.6 compare the cost of the plans that GBFS and DBFS found with the

parameter configurations as listed in Table 5.7.
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Figure 5.4: Comparison of the plan cost of DBFS and GBFS with the FF heuristic.
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Figure 5.5: Comparison of the plan cost of DBFS and GBFS with the CEA heuristic.
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Figure 5.6: Comparison of the plan cost of DBFS and GBFS with the CG heuristic.

5.3 Discussion

In the first experiments we varied a single parameter, while the others were fixed. Diverse

best-first search solves with each parameter configuration (except when the local search was

turned off) more instances than greedy best-first search. While GBFS with the FF and the

CEA heuristic solves fewer that 1600 of 2252 problems, no configuration of DBFS with these

heuristic functions results in a coverage under 1749 instances. That is an improvement of at

least 150 instances. On average, the performance improvement with CG is lower. However,

even with the poorest configuration, DBFS solves 69 instances more than GBFS.

For all heuristic functions the impact of the parameters P and T seem not to be very strong.

Running DBFS in combination with the FF and the CG heuristic, the parameter D has

a substantial impact: Using the FF heuristic, the coverage improves by 34 instances while

using the CG heuristic the coverage increases by 37 instances. With the CEA heuristic the

best coverage performs without any scaling of the depth of the local search.

The experiments show that the coverage can not be improved, if the local search makes only

one step (D = 0). With the FF heuristic, DBFS solves 3 instances more than GBFS. With

the CEA and CG heuristics, DBFS covers even less problems.

Imai and Kishimoto evaluated P = 0.1 and T = 0.5 as the parameter configuration with the

best coverage. Our results mainly confirm that: For all heuristic functions, these parameters

solve most instances or lie very close to the coverage of the best configuration.

Imai and Kishimoto state that DBFS “solves either an equal or larger number of instances

in all the domains”. We evaluated the coverage on domain level for the best configuration

we observed with the FF heuristic. In contrary to the evaluations of Imai and Kishimoto,

GBFS solves more instances than DBFS in the domain Logistics 1998. In the domains

openstacks-sat08-strips and openstacks-sat11-strips which were not evaluated by
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Imai and Kishimoto, GBFS performs also better than DBFS. In all other 55 domains GBFS

do not cover more instances than DBFS.

The scatter plots who compare the search time of DBFS and GBFS look for all heuristic

functions very similar. Most points lie close to the diagonal which means that the search

time of all instances solved by both methods does not vary greatly. By trend, the search

time with DBFS is longer.

The scatter plots who compare the plan cost of DBFS and GBFS look for all heuristic

functions very similar as well. The points are clustered around the diagonal without much

outliers. The cluster tend to lie more on the side of DBFS which means that plans of GBFS

have fewer cost in general. However, the influence on the plan cost are not high.



6
Conclusion

In this thesis, we have addressed diverse best-first search (DBFS), a recently proposed al-

gorithm for escaping from plateaus in the context of planning as heuristic search. We have

implemented DBFS in the Fast Downward planner, and provided an empirical evaluation of

DBFS on benchmarks from the international planning competitions. In particular, we have

investigated different parameter configurations of DBFS and how these parameter configu-

rations influence the search performance.

Our experiments show that DBFS outperforms greedy best first search in most of the plan-

ning domains for several well-known planning heuristics. The parameter choices appear to

influence the search performance only marginally. Moreover, our experiments show that the

local searches performed by GBFS seem to be more important for the performance than the

randomness component. Overall, DBFS appears to be an effective and efficient algorithm

for satisficing planning.
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Appendix

Random Seeds

seed1 123622312
seed2 943721659
seed3 578590589
seed4 899239028
seed5 462307820
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