
Compressed Pattern Databases for
Classical Planning

Bachelor thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence Research group
https://ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert
Supervisor: Dr. Silvan Sievers

Pascal Mafli
pascal.mafli@unibas.ch

06-065-965

November 24th 2020

Acknowledgments

I want to thank my supervisor Silvan Sievers for the time and effort helping me to finish this thesis.
He was always very helpful and patient when problems occurred. Another thank you goes out to
Malte Helmert for giving me the opportunity to do my bachelor thesis in the artificial intelligence
research group. Last but not least my girlfriend Béatrice Gauvain for her moral support when the
bugs kept me working for hours longer than anticipated.

Abstract

Pattern Databases are admissible abstraction heuristics for classical planning. In this thesis we are
introducing the Boosting processes, which consists of enlarging the pattern of a Pattern Database
P , calculating a more informed Pattern Database P ′ and then min-compress P ′ to the size of P
resulting in a compressed and still admissible Pattern Database P ′′ . We design and implement two
boosting algorithms, Hillclimbing and Randomwalk.
We combine pattern database heuristics using five different cost partitioning methods. The experi-
ments compare computing cost partitionings over regular and boosted pattern databases.
The experiments, performed on IPC (optimal track) tasks, show promising results which increased
the coverage (number of solved tasks) by 9 for canonical cost partitioning using our Randomwalk
boosting variant.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 2
2.1 Planning . 2
2.2 Pattern Databases . 3
2.3 Cost Partitioning (CP) . 3

2.3.1 Canonical CP . 3
2.3.2 Greedy Zero-One CP . 4
2.3.3 Saturated CP . 4
2.3.4 Uniform CP . 4
2.3.5 Opportunistic Uniform CP . 5

3 Combining PDB Compression and Cost Partitioning 6
3.1 Boosting . 6

3.1.1 Hillclimbing algorithm . 8
3.1.2 Randomwalk algorithm . 9

3.2 Cost Partitionings . 10

4 Experiments 12
4.1 Setup . 12
4.2 Results . 13

5 Conclusion 17

Bibliography 18

1
Introduction

In Artificial Intelligence, Automated Planning is one of the major research areas. The main goal
of Automated Planning is to find sequences of actions (plans) in a state space which is described
by a planning formalism. In the planner Fast Downward by Helmert [5], the used input planning
formalism is the Planning Domain Definition Language (PDDL), which needs to be translated into a
Simplified Action Structures (SAS+) task. This translation step could be skipped by directly providing
a SAS+ task.
To perform a search in such a state space we need an admissible heuristic. For this thesis we are
looking at abstraction heuristics, called Pattern Databases. This approach was introduced into au-
tomated planning by Edelkamp [2]. Pattern Databases abstract the original planning task by using
projections. To perform the projection only a subset of the variables of the planning task are used
and form an abstract planning task. To get better heuristics, the pattern database heuristics are com-
bined using cost partitioning methods, first introduced by Katz and Domshlak [7]. Another existing
concept is Pattern Database compression, which is used to compress a larger PDB of size M into a
smaller PDB of size N. The min-compression described by Helmert et al. [6] is used in this thesis. It
is a lossy compression method, which combines several entries of the larger PDB into a single value
in the smaller PDB.
The new concept introduced in this thesis is the process of Boosting. This process combines several
steps, like increasing the pattern of a given Pattern Database to calculate a related, but bigger Pattern
Database and then min-compress it to the original size.
One goal of this thesis is to design and evaluate such boosting algorithms. We implement several
boosting variants in the Fast Downward planner. The boosting is then interleaved with already
implemented and to-be-implemented cost partitioning methods. All implementations are compared
using the A∗ search algorithm and a large collection of planning competition benchmarks (IPC
Optimal Tracks).

2
Background

In this section, we define the concepts and notation used throughout this thesis.

2.1 Planning
The definitions in this section follow the notation used in the Foundations of Artificial Intelligence
lecture1.

Definition 1. A state space is a transition system, which is defined by a 6-tuple:

S = 〈S,L, c, T, s0, S∗〉

where S is a finite set of states, L is a finite set of labels, c : L 7→ R+
0 a cost function, T ⊆ S×L×S

a set of transitions, s0 ∈ S is the start state and S∗ ⊆ S is the set of goal states. A transition is a

triple t = 〈s, a, s′〉, where s, s′ ∈ S and a ∈ L.

A Simplified Action Structures (SAS+ task) is a common planning formalism introduced by Bäck-
ström and Nebel [1] in 1995.

Definition 2. A SAS+ planning task is a 5-tuple:

Π = 〈V, dom(v), I, G,A〉

where V is a finite set of state variables, dom(v) is the non-empty and finite domain of each v ∈ V ,

I the initial state (total assignment), G a partial assignments, A a finite set of actions a. An action

a has three components, pre(a) a set of preconditions (partial assignments), eff(a) a set of effects

(partial assignments) and c(a) ∈ N0.

Another concept is the induced state space.

Definition 3. A SAS+ task Π induces the state space S(Π) = 〈S,A, c, T, s0, S∗〉, with:

S total assignments of V according to dom, L the action defined in Π, action costs as defined in Π,

there is at = 〈s, a, s′〉 ∈ T iff pre(a) complies with s, s′ complies with eff(a) for all variables in

eff, s′ complies (two states comply, if they agree on the variables they are defined on) with s for all

other variables. Initial state s0 = I , goal states s ∈ S∗ for state s iff G complies with s.

1 https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-fs20/lecture-foundations-of-artificial-intelligence/

https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-fs20/lecture-foundations-of-artificial-intelligence/

Background 3

2.2 Pattern Databases
The definitions in this section are adapted from Sievers et al. [11].
The goal distance h∗(s) of a state s is the cost of a shortest path from s to any goal state in the
induced state space. If there is no path to the goal from a certain state s then h∗(s) =∞
A pattern is a subset of the variables P ⊆ V , for planning we assume the variables are numbered
(V = {v1, . . . , vk} and their corresponding domain Dvi is abbreviated as Di).
An abstraction of an induced state space considers the states which agree on all variables in P as
equivalent.
A Pattern Database (PDB) is defined by a pattern and based on an abstraction of the induced state
space of the SAS+ task Π. It is a look-up table containing all goal distances for all states in the
abstract task and implemented as a one-dimensional array of size N =

∏k
i=1 |Di|. The loopup is

performed by using a perfect hashing function from states to indices {0, . . . , N − 1} (ranks). This
function is called a ranking function and its inverse is called an unranking function.
The ranking function used is given by rank(s) =

∑k
i=1Nis[vi], where the coefficients are defined

as Ni =
∏i−1
j=1 |Dj |.

In this thesis compression refers to PDB compression, which is needed to reduce the entries of the
goal distances values of a larger PDB. We are using min-compression as described in Helmert et al.
[6]. The following description is based on that paper.
We need to compress a PDB of size M to a PDB of size N , where M ≥ N . Both PDBs have
goal distances arrays TP with corresponding sizes. The compression can be performed by using a
compression function comp : {0, . . . ,M − 1} → {0, . . . , N − 1}. The compressed goal distances
table with N entries can be defined as T compP [i] = minr∈comp−1(i)T [r].

2.3 Cost Partitioning (CP)
So far we have only introduced single PDBs to use as a heuristic. Due to the loss of most of the
information about a task Π, when using a projection, the heuristic is not ideal. This leads to the use
of collections of PDBs used as a combined heuristic. The issue is how to combine heuristics in a
way, such that they remain admissible. Cost Partitioning is a method that can be applied to derive
admissible heuristics for state-space search problems in general [9].

Definition 4 (Seipp et al. [9]). LetH = 〈h1, . . . , hn〉 be a tuple of admissible heuristics for a regular

state space S = 〈S,A, c, T, s0, S∗〉. A cost partitioning over H is a tuple C = 〈c1, . . . , cn〉 of

general cost functions whose sum is bounded by c:
∑n
i=1 ci(a) ≤ c(a) for all a ∈ A. The cost-

partitioned heuristic hc is defined as hc(s) :=
∑n
i=1 h

ci
i (s).

2.3.1 Canonical CP
The canonical heuristic allows to combine several pattern database heuristics. It was first introduced
by Haslum et al. [4].

Definition 5 (Seipp et al. [9]). Let H be a tuple of admissible heuristics for regular state space S ,

and let MIS be a set of all maximal (w.r.t. set inclusion) subsets ofH such that all heuristics in each

Background 4

subset are independent. The canonical heuristic in state s ∈ S is

hCAN (s) = max
σ∈MIS

∑
h∈σ

h(s)

2.3.2 Greedy Zero-One CP
Zero-One cost partitioning (ZOCP) was introduced by Haslum et al. [3]. All of the costs of an action
are assigned to only one of the heuristics in the cost-partitioning and 0 for all other heuristics. The
variation of ZOCP used in Fast Downward is the Greedy Zero-One cost partitioning. For Greedy
Zero-One CP and others we have to define A(h) = {a ∈ A | a affects h} [9].

Definition 6 (Seipp et al. [9]). Given a regular state space S and a set of admissible heuristics

H = {h1, . . . , hn} for S, the set of orders of H (Ω(H)) consists of all permutations of H i.e. all

tuples of heuristics obtained by orderingH in any way. For a given order ω = 〈h1, ..., hn〉 ∈ Ω(H),

the greedy zero-one cost partitioning is the tuple C = 〈c1, . . . , cn〉, where

ci(a) =

c(a) if a ∈ A(hi) and a /∈
⋃i−1
j=1A(hj)

0 otherwise

for all a ∈ A. We write hGZOCPω for the heuristic that is cost-partitioned by greedy zero-one cost

partitioning for order ω.

2.3.3 Saturated CP
In contrast to Greedy Zero-One cost partitioning, Saturated Cost Partitioning (SCP), introduced by
Seipp and Helmert [8], does not assign the full costs to the first heuristic affected by a certain action.
The heuristic using greedy Zero-One cost partitioning may only need a fraction of those costs. SCP
only assigns the costs used by the heuristic and offers the remaining costs to the next heuristic.

Definition 7 (Seipp et al. [9]). Let S be a regular state space andH be a set of admissible heuristics.

Given an order ω = 〈h1, . . . , hn〉 ∈ Ω(H), the saturated cost partitioning C = 〈c1, . . . , cn〉 and the

remaining cost functions 〈c̄1, . . . , c̄n〉 are defined by:

c̄0 = c

ci = saturate(hi, c̄i−1)

c̄i = c̄i−1 − ci

We write hSCPω for the heuristic that is cost-partitioned by saturated cost partitioning by order ω.

The mentioned saturate function takes an abstraction heuristic hi and calculates the saturated costs
for all actions a ∈ A, which is equal to the maximum over all h(s)− h(s′) for all transitions s→ s′

in the abstract state space induced by a.

2.3.4 Uniform CP
Another cost partitioning method is Uniform Cost Partitioning (UCP). The idea is to assure admis-
sibility by uniformly distributing the costs for each action a to all heuristics affected by action a.

Background 5

Definition 8 (Seipp et al. [9]). Given a regular state space S and a tuple of admissible heuristics

H = 〈h1, . . . , hn〉, the uniform cost partitioning is the tuple C = 〈c1, . . . , cn〉, where for all a ∈ A

ci(a) =

c(a)

|{h∈H|a∈A(h)}| if a ∈ A(hi)

0 otherwise

We write hUCP for the heuristic that is cost-partitioned by uniform cost partitioning.

2.3.5 Opportunistic Uniform CP
Similar to ZOCP, UCP has the same issue with heuristics not using the full offered costs. To prevent
this problem the Opportunistic Uniform Cost Partitioning (oUCP) uses the saturate function as used
in SCP.

Definition 9 (Seipp et al. [9]). Let S be a state-space andH be a set of admissible heuristics. Given

an order σ = 〈h1, . . . , hn〉 ∈ Ω(H), the opportunistic uniform cost partitioning C = 〈c1, . . . , cn〉,
the remaining cost functions 〈c̄0, . . . , c̄n〉 and the offered cost functions 〈c̃1, . . . , c̃n〉 are defined by

c̄0 = c

c̃i(a) =

c̄(a)i−1

|{h∈H|a∈A(h)}| if a ∈ A(hi)

0 otherwise

ci = saturate(hi, c̃i)

c̄i = c̄i−1 − ci

We write hOUCPω for the heuristic that is cost-partitioned by opportunistic uniform cost partitioning

for order ω.

3
Combining PDB Compression and Cost

Partitioning

During the work on this bachelor thesis, there were several components to be implemented. For
the implementation we used the Fast Downward planning system by Helmert [5], which combines a
translator and a search component. Pattern Databases are part of heuristics and therefore used in the
search component. This thesis builds on several pre-existing classes and cost-partitioning methods.
We divide this chapter into two main parts. First the boosting of Pattern Databases and second the
different cost partitioning methods.
In Fast Downward the general process of creating a cost partitioned Pattern Database collection is
divided into two phases, the Pattern Generation and the Pattern Database Collection Creation. Our
new boosting approach hooks into the Pattern Database Collection Creation.

3.1 Boosting
This part of the thesis describes the boosting process in detail and the algorithms chosen to perform
the boosting. We define Boosting as a process which first increases the pattern of a given PDB,
calculates a new, larger PDB and min-compress the larger PDB to be the same size as the initial
PDB. Due to the min-compression, the PDB is at least as good or better than the initial PDB and still
admissible.

Problem description: Given a Pattern Database P with the pattern p and the SAS+ task Π with
the state variables V . Boost P to a new PDB P ′ such that the heuristic values for P ′ are increased.
To solve this problem we need several general components.

• Finding variables v ∈ V , where v /∈ p to improve the pattern p. For this task we have used the
causal graph (CG) of Π to determine the causally relevant variables to the current pattern p by
collecting all successors in the CG of the all variables in p. This is visualized in algorithm 1.

• Create a larger Pattern Database P ′ given the same parameters as for the creation of P , but
change the pattern to p′. This step uses the efficient Pattern Database construction algorithm
by Sievers et al. [11]. In Algorithms 4 and 5 this function is called createPDB.

Combining PDB Compression and Cost Partitioning 7

Algorithm 1: findRelevantMissingVariables
Data: Pattern p, Task Π
CG←− getCausalGraph(Π);
relevant_vars←− ∅;
for v ∈ p do

relevant_vars ∪ getSuccessors(CG, v);
end
relevant_vars←− relevant_vars \ p;
return relevant_vars;

• Min-Compression of P ′ given the original PDB P . We can compress P ′ with sizeM to a PDB
P ′′ with size N , where N is equal to the size of the original PDB P . For the implementation
we use a trick to decrease the difficulty of min-compressing the larger PDB P ′′. The PDB goal
distances look-up table is constructed in the variable order provided by the pattern. For this
reason we are prepending the variables for the construction of p′ to the previous pattern p. Now
the entries containing values of the newly added variables are next to each other and form a
block of sizeAddedSize =

∏k
i=1 |Di|, where k = Index of the last additional variable. Then

we can compress all entries linear by determining AddedSize and use it to find the blocks
distance entries which should be min-compressed to a new distance entry in P ′′. The result of
this operation is a compressed Pattern Database P ′′, containing the original information of P
and the compressed goal distance entries from P ′. The pseudo code implementation is shown
in Algorithm 2.

Algorithm 2: minCompress
Data: PatternDatabase P , PatternDatabase P ′, Integer domainSizeDifference
distances_compressed←− vector<integer>;
distances_large←− P ′.getDistances();
for i← 0 to distances_large.size() by domainSizeDifference do

min_distance←−∞;
for j ← 0 to domainSizeDifference by 1 do

if distances_large[i+ j] < min_distance then
min_distance←− distances_large[i+ j];

end
end
distances_compressed.push_back(min_distance);

end
return P ′′ (all properties from P , but distances = distances_compressed);

• Compare P and P ′′. The difference between the two Pattern Databases are only their distance
entries. In this step we are comparing all entries and count the amount of increased values in
P ′′. Due to min-compression, we can guarantee the values would only be greater or equal to
the original value. This results in an indicator improved_entries

total_entries . In other algorithms this function
is called comparePDBS and used as an evaluation function.

Those building blocks are part of the concrete algorithms to boost a given Pattern Database. In the
thesis we have designed two approaches. In this chapter we will introduce the method and in Chapter
4 we will test and discuss the results.

Combining PDB Compression and Cost Partitioning 8

3.1.1 Hillclimbing algorithm
The first idea for a boosting algorithm was to use Hillclimbing for finding an improved Pattern
Database P ′. Hillclimbing is a local search algorithm, which searches in the neighbourhood of a cer-
tain configuration. All neighbours are evaluated and a set of suitable candidates is chosen to proceed
into the next iteration. In our case we evaluate all neighbours with an additional causally relevant
variable added to the pattern and chose only the best one as the new base for the next iteration. In
the implementation we have added command line parameters to limit the iterations (max_iterations)
and a minimum improvement percentage as an early break condition (min_impr_compression). The
Hillclimbing algorithm is shown in Algorithm 4.

Algorithm 3: computeCandidates
Data: Pattern p, Task Π
vars←− findRelevantV ariables(p,Π);
candidates←− ∅;
for v ∈ vars do

candidates←− candidates ∪ (p ∪ {v});
end
return candidates

Algorithm 4: boostHillclimbing
Data: PatternDatabase P , Pattern p, Task Π, operator_costs
min_improvement←− 〈global value〉;
max_iterations←− 〈global value〉;
iteration←− 0;
best_pdb←− P ;
best_pattern←− p;
best_improvement←− 0;
candidates←− computeCandidates(p,Π);
while iteration < max_iterations do

if best_improvement < min_improvement AND iteration > 0 then
return best_pdb;

end
for candidate ∈ candidates do

larger_pdb←− createPDB(Π, candidate, operator_costs);
domain_size←− determineDomainSizeDifference(p, candidate,Π);
compressed_pdb←− minCompress(P, larger_pdb, domain_size);
improvement_score←− comparePDBS(P, compressed_pdb);
if improvement_score > best_improvement then

best_improvement←− improvement_score;
best_pdb←− compressed_pdb;
best_pattern←− candidate;

end
end
candidates←− computeCandidates(best_pattern,Π);
iteration←− iteration+ 1;

end
return best_pdb;

One of the issues with the Hillclimbing approach is the duration of the whole boosting process, even

Combining PDB Compression and Cost Partitioning 9

with a low max_iterations limit. This triggered the need for an additional approach. Which will
be introduced in the next subsection.

3.1.2 Randomwalk algorithm
The main need for this approach was to make the boosting faster. The idea was to define a maximal
amount of states for a single Pattern Database P and randomly add one of the possible variables
to the current pattern p until we reach the defined limit. This limit is passed as a command line
parameter. The intention was to reduce the time needed for the boosting process.
Compared to the Hillclimbing approach, the Randomwalk only calculates one Pattern Database dur-
ing the boosting process instead of several smaller ones during the Hillclimbing. The Randomwalk
is shown in Algorithm 5.

Algorithm 5: boostRandomwalk
Data: PatternDatabase P , Pattern p, Task Π, operator_costs
num_states←− getSize(P);
max_states_options←− 〈global value〉;
relevant_variables←− findRelevantV ariables(p,Π);
new_pattern←− p;
if relevant_variables = ∅ then

return P ;
end
while num_states < max_states_options do

candidate←− pick random v ∈ relevant_variables;
if domainSize(candidate) ∗ num_states < max_states_options then

num_states←− num_states ∗ domainSize(candidate);
new_pattern←− new_pattern ∪ candidate;

end
relevant_variables←− relevant_variables \ {candidate};
if relevant_variables = ∅ then

break;
end

end
larger_pdb←− createPDB(Π, new_pattern, operator_costs);
domain_size←− determineDomainSizeDifference(p, candidate,Π);
compressed_pdb←− minCompress(P, larger_pdb, domain_size);
if comparePDBS(P, compressed_pdb) > 0 then

return compressed_pdb;
else

return P ;
end

Both boosting algorithms are in a combined class and can be chosen by the compr_algo CLI param-
eter with either HILLCLIMBING or RANDOMWALK as values. In the following Cost Partitioning
methods we ommit a concrete implementation and call the function computeBoostedPDB.

Combining PDB Compression and Cost Partitioning 10

3.2 Cost Partitionings
Now we have the ability to boost a given Pattern Database P and get an improved or equal PDB P ′.
As mentioned in Chapter 2, a single PDB is not a really good heuristic and should be interleaved by
using Cost Partitionings (CPs). During the thesis five different CPs were implemented or adapted
to support the usage of compressed PDBs. A crucial implementation detail for all cost partitioning
methods was to calculate the cost functions using the original PDB and not the boosted PDB.
From the five CPs two were already implemented in Fast Downward (Canonical CP and greedy Zero-
One CP), the remaining three had do be implemented from scratch. The five CPs can be divided into
three categories. The first category includes only the Canonical CP. Fast Downward already provides
a collection of PDBs, when using the canonical heuristic. We only have to boost them if we want
to, which is implemented by using the compress_pdbs flag. The straightforward boosting is shown
in Algorithm 6. The PDB returned by the computeBoostedPDB function modifies the previous PDB
in-place.

Algorithm 6: boostCANCollection
Data: PatternCollection pc, PatternDatabaseCollection PDC, Task Π
for p, P ∈ pc, PDC do

p←− computeBoostedPDB(p, P,Π);
end

The next category includes greedy Zero-One CP and Uniform CP. In both cases the computation of
the Pattern Databases can only take place during computing the cost partitioning, because all PDBs
have to be computed on different cost functions. The same cost function of a calculated PDB is then
used during the boosting. Algorithm 7 describes the greedy Zero-One CP. The algorithm for UCP is
not added, due to a lot similarities.

Algorithm 7: ZeroOnePDBs
Data: PatternCollection pc, Task Π, boolean compress_pdbs
remaining_operator_costs = vector<integer>;
pattern_databases = vector<PatternDatabase>;
for a ∈ A (of Π) do

remaining_operator_costs.push_back(a.getCosts());
end
for p ∈ pc do

pdb←− createPDB(Π, p, remaining_operator_costs);
if compress_pdbs then

pdb←− computeBoostedPDB(p, pdb,Π, remaining_operator_costs);
end
for a ∈ A (of Π) do

if pdb.isOperatorRelevant(a) then
remaining_operator_costs[a] = 0;

end
end
pattern_databases.push_back(pdb);

end
return pattern_database

The last category consists of the two Cost Partitioning (SCP and OUCP) using the saturated cost

Combining PDB Compression and Cost Partitioning 11

function. In the thesis we use the calculateUsedCost function (Algorithm 8) as a part of the saturate
function, which calculates the effectively needed costs by the transitions. For showing the CP and
boosting overlap, SCP (Algorithm 9) was chosen for the report. For the saturate function, we need
information about the actions and their transitions in the abstract state space. This transition system
is only calculated on the fly during PDB construction. To implement this functionality, the transition
system had to be calculated and stored for later use. Due to similarities, the oUCP algorithm is not
listed in the thesis.

Algorithm 8: calculateUsedCosts
Data: PatternDatabase P , Task Π, boolean compress_pdbs
used_costs = vector<integer>;
distances←− P.getDistances();
operator_transitions←− P.getTransitions();
for a ∈ A (of Π) do

if P.isOperatorRelevant(a) then
max←− 0;
for Transition s→ s′ ∈ operator_transitions[a] do

value←− distances[s]− distances[s′];
max←− max(value,max);

end
used_costs[a]←− max;

else
continue

end
end
return used_costs;

Algorithm 9: SaturatedPDBs
Data: PatternCollection pc, Task Π, boolean compress_pdbs
remaining_operator_costs = vector<integer>;
for a ∈ A of(Π) do

remaining_operator_costs.push_back(a.getCosts());
end
pattern_databases = vector<PatternDatabase>;
for p ∈ pc do

pdb←− createPDB(Π, p, remaining_operator_costs);
used_costs←− calculateUsedCosts(p,Π);
if compress then

pdb←− computeBoostedPDB(p, pdb,Π, remaining_operator_costs);
end
remaining_operator_costs←− remaining_operator_costs− used_costs;
pattern_databases.push_back(pdb);

end
return pattern_database

We additionally consider limiting the size of pattern databases. Which includes limits for a single
pattern database and for collections. This is not shown in the the algorithms for clarity. General idea:
Whenever a PDB has to be created, we make sure that it is not created if that would violate these
limits. A comparision between a not limited and a limited approach will be discussed in Chapter 4.

4
Experiments

4.1 Setup
For the experimental part of the thesis, we used the Downward Lab testing environment [10] to
define and run several configurations. The benchmark domains2 used are a collection of domains
from the International Planning Competition (optimal track). All tests were performed on the High
Performance Computing cluster of sciCORE, the center of competence for scientific computing at
the University of Basel. The CPU used for the tests was an Intel Xeon Silver 4114 2.2GHz (10
cores/20 threads). The tests had several parameters in common:

• Time limit: 30 minutes

• Memory limit: 3.5 GiB RAM

• Search algorithm: A∗

For all five cost partitioning methods we ran configurations to compare the boosting methods (with
different parameters) and to compare boosting to the not-boosted base case. Additionally for each
cost partition methods we compared different pattern generation algorithms listed in Table 4.1.

Table 4.1: Used pattern generator methods.
Bold, used in experiments and discussed. Brackets, used but not discussed.

Pattern Generator CAN CP gZOCP SCP UCP oUCP
Hillclimbing Yes No Yes Yes Yes
Genetic No Yes No No No
Systematic(2) No No Yes (Yes) (Yes)
Systematic(3) No No (Yes) (Yes) (Yes)

For Canonical CP and Greedy Zero-One CP, the pattern generators were fixed to those commonly
used for them, which is Hillclimbing and Genetic respectively. For the remaining Cost Partitionings,
we reduce the scope to the best of the three initially tested generators.
For the boosting methods we have different parameters to influence the behaviour.

2 https://github.com/aibasel/downward-benchmarks

https://github.com/aibasel/downward-benchmarks

Experiments 13

• Both boosting methods: Limited PDB/PDB collection size. Either unlimited or 2M PDB and
20M PDB collection size. As mentioned in Chapter 3.

• Hillclimbing (Both parameters are introduced in Section 3.1.1):

– minimum improvement: Threshold to proceed with HC, rpossible range 0.0 to 1.0.

– maximum iterations: Iterations for HC used range 1 to 3.

For the tables we use this syntax to abbreviate certain parameter combinations: RND or HC for the
boosting method, if HC the number of max iterations is appended, e.g. HC3 is three iterations. Lim-
ited is indicated by a L, e.g. HC2L is HC 2 iterations and limited. Lastly, the minimum improvement
is indicated by an underscore and the percentage HC1L_0.25 for 25 percent.
The metrics and their abbreviations used for comparisons are the following:

• Coverage (Cov): Number of solved tasks. Larger is better.

• Expansions until last jump (Exp): Expansions during search, exluding last f-layer. Smaller is
better.

• Out Of Memory (OOM): Sum of tasks resulting in a search out of memory error

• Out of Time (OOT): Sum of task resulting in a search out of time error

• Total time (Time): Overall time (geometric mean), includes translation. Smaller is better.

4.2 Results
First we are looking at Canonical CP, the data is shown in Table 4.2. The first indication is, the
baseline (only using Canonical CP, without any boosting) takes less time compared to all boosted
approaches. This implies, the time spent for boosting is not amortized during the search. Another
observation is a reduction in the Expansions until last jump attribute for the experiments using boost-
ing. Figure 4.1 shows a scatter plot for expansions (Baseline versus RNDL). The last observation
should be treated carefully due to different coverages and therefore inherently different expansion
counts. For example, one solved problem in the baseline case could be the primary source of total
expansions and skew the results. When looking at a combination of the coverage and the expan-
sions, the boosted approaches with limited PDB size have lower expansions even with more solved
problems. As an example we compare the baseline (cov 919, exp 1.02 billion) with Randomwalk
(cov 928, exp 801 million).
For Canonical CP we can conclude, limiting the PDB/PDB collection size increases the coverage
and is better than the not limited variants. It reduces the overall time significantly, this reduces
the Search Out of Time as well and improves the coverage. In the limited case, we have a order
(based on coverage) Baseline < HC1L ≤ HC3L < HC2 < RNDL. The iteration count for
the Hillclimbing without limit decrease the coverage due to the time constraint. This effect is also
visible when using the limit of the PDB size, but it is not significant.
For CAN CP and Greedy Zero-One CP we performed an additional experiment to compare the
influence of the threshold (minimum improvement, Section 3.1.1) on the result. Table 4.3 shows the
data for Canonical CP. From our data we can not make a clear statement. One observeration is that a

Experiments 14

Table 4.2: CAN CP - Unlimited PDB Size vs Limited PDB Size

Baseline HC1 HC1L HC2 HC2L HC3 HC3L RND RNDL

Cov 919 910 923 909 924 900 923 928 928
OOM 685 634 683 616 680 635 681 674 675
OOT 204 264 202 283 204 273 204 206 205
Exp 1021M 879M 918M 858M 915M 841M 915M 802M 802M
Time 2.79 4.67 3.37 5.07 3.39 5.22 3.42 5.73 5.60

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

Baseline

R
N

D
L

Figure 4.1: CAN CP - Expansions - x-axis=Baseline, y-axis=RNDL

Table 4.3: Canonical CP - minimum improvement comparison, the value after the underscore is the
used percentage

Baseline HC1L_5 HC1L_10 HC1L_25 HC3L_5 HC3L_10 HC3L_25

Cov 919 923 923 923 923 924 924
OOM 685 679 680 682 680 680 680
OOT 204 206 205 203 205 204 204
Exp 1063M 954M 954M 954M 952M 952M 954M
Time 3.30 4.09 4.05 4.07 4.12 4.08 4.06

higher value results in only performing one iteration of the Hill Climbing. Additionally it seems only
a few tasks profit from more than one iteration of the hill climbing, because it is too time consuming
and results in less coverage. The data for Greedy Zero-One shows the same trend.
Randomwalk is as the name implies based on a random factor, for this reason we have performed
one experiment for the CAN CP to test the consistency of the result. The same configuration was
used as in the RND (limited) setup and performed ten times. The coverage average was 927.9 and a
standard deviation of 0.31, which implies a stable result.
The second cost partitioning method we are looking at is Greedy Zero-One CP. For Greedy Zero-One
CP and the remaining cost partitioning methods (UCP excluded), the order of the heuristics matters.
In the thesis we have used only one order, the one provided by Fast Downward. The results are
shown in Table 4.4. As in CAN CP, we have performed experiments using the algorithms with and
without size restrictions. Like in the canonical case, the limit increased the coverage and decreased
the overall time. The expansions are slightly higher, when comparing for example HC2 with HC2L.
The higher expansions do not have an adverse effect in this case. Like before with CAN CP, the
iterations of the unlimited HC approach decrease the coverage.
For Greedy Zero-One CP, the Hillclimbing boosting algorithm (using only one iteration) is better

Experiments 15

Table 4.4: Greedy Zero-One CP - Unlimited PDB Size vs Limited PDB Size

Baseline HC1 HC1L HC2 HC2L HC3 HC3L RND RNDL

Cov 828 837 837 833 837 829 837 830 830
OOM 982 958 972 911 971 891 972 980 980
OOT 0 14 0 65 1 89 0 0 0
Exp 1915M 1644M 1662M 1595M 1651M 1593M 1651M 1785M 1785M
Time 3.41 5.05 4.60 5.73 4.74 6.25 4.78 5.90 5.87

Table 4.5: UCP- Hillclimbing pattern generation

Baseline HC1L HC2L HC3L RNDL

Cov 860 858 858 858 851
OOM 738 723 722 722 715
OOT 210 227 228 228 242
Exp 1567M 1545M 1536M 1535M 1548M
Time 3.41 5.05 5.05 5.11 12.10

Table 4.6: oUCP- Hillclimbing pattern generation

Baseline HC1L HC2 HC3L RNDL

Cov 817 815 815 815 813
OOM 791 784 783 784 766
OOT 194 203 204 203 223
Exp 1492M 1469M 1461M 1460M 1471M
Time 3.20 4.60 4.60 4.66 11.36

than the Randomwalk and in summary the boosting is performing better than the baseline (genetic
pattern generation). The bad performance for the Randomwalk was a bit surprising.
The data from CAN CP and Greedy Zero-One CP had shown the limited approach to be equal
or better than the non-limited variants. Due to this finding the remaining three Cost Partitioning
methods were only tested with a limit of 2M states for a PDB and 20M states for a PDB collection.
The next two Cost Partitionings UCP and oUCP will be discussed together. In both cases the boost-
ing did not show a beneficiary effect and the coverage was reduced as shown in Tables 4.5 and 4.6.
One impact was that boosting reduced the amount of amount of tasks with a Search Out Of Memory

outcome, but increased the Search Out Of Time. The Search Out Of Time outcomes are a bit higher
due to the time needed to perform the boosting. Hillclimbing was a bit better than Randomwalk, this
is most likely due to the Randomwalk being more time consuming when the patterns get significantly
bigger.
The last cost partitioning method is Saturated Cost Partitioning (SCP). Like in the last two cost par-
titioning methods, we have no commonly used pattern generation method. We tested three different
ones (Hillclimbing, Systematic(2) and Systematic(3)) and picked the two different approaches for
SCP. The results are shown in Tables 4.7 and 4.8. In summary, the experiments using a boosting
algorithm have a better coverage and require more time. As in CAN CP and Greedy Zero-One CP,
the iterations of the Hillclimbing boost seem not to have a significant effect. The expansions until
last jump decrease significantely as shown in Figure 4.2 where the baseline (x-axis) is plotted against
RNDL (y-axis) for the SYS(2) pattern generation. An interesting observation are the tasks with 0
expansions, which are mainly in the two woodworking domains.

Experiments 16

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

Baseline

R
N

D
L

Figure 4.2: SCP - SYS(2) - Expansions - x-axis=Baseline, y-axis=RNDL

Table 4.7: SCP - Hillclimbing pattern generation

Baseline HC1L HC2L HC3L RNDL

Cov 828 831 831 831 835
OOM 785 781 781 781 772
OOT 195 196 196 196 201
Exp 1127M 1010M 989M 986M 756M
Time 3.12 3.88 3.88 3.89 7.86

Table 4.8: SCP- Systematic(2) pattern generation

Baseline HC1L HC2L HC3L RNDL

Cov 892 908 908 909 915
OOM 905 845 845 845 879
OOT 11 55 55 54 14
Exp 1757M 1503M 1483M 1467M 1259M
Time 0.89 1.81 1.83 1.86 8.75

A comparison between the two pattern generation methods (HC and SYS(2)) shows, that boosting
a lot small patterns (as provided by SYS(2)) results in a bigger relative gain than boosting larger
patterns (HC).
Overall most cost partionings yield better results when using Randomwalk as a boosting algorithm
with limited Pattern Database sizes to limit the runtime. The best cost partitioning method was
Canonical CP combined with limited Randomwalk. The mediocre performance of Saturated CP,
Greedy Zero-One CP and UCP/oUCP was most likely due to only using one fixed order of the
heuristics, which is a crucial aspect for those cost partitionings.
In our experiments for canonical CP, the domain termes-opt18-strips has shown a big improvement
in terms of coverage (+3), this could be investigated to figure out the reason of the good effect.
For Greedy Zero-One CP, the Hillclimbing increased the coverage of several domains by one. SCP
using SYS(2) pattern generation had big impacts on the domains termes-opt14-strips (+4 coverage),
woodworking-opt08-strips (+6 coverage) and woodworking-opt14-strips (+6 coverage). We do not
have an explanation for those improvements other than the 0 expansions as seen in Figure 4.2.

5
Conclusion

In this thesis we have used Pattern Databases as a heuristic for an A∗ search. We have introduced
the process of Boosting and designed algorithms to perform this process. The resulting boosting
algorithms were based on Hillclimbing and Randomwalk. The boosting was then combined and
evaluated with cost partitioning methods like Canonical CP, Saturated CP and others.
Our experiments have shown really good results for the Canonical Cost Partitioning, where the
coverage could be improved from 919 to 928 (+9 coverage). This result was achieved by using
the Randomwalk based boosting algorithm with a limited Pattern Database size of 2M states and a
collection size of 20M states.
The two Cost Partitioning methods UCP and oUCP were the only ones where the boosting did not
show better results than the baseline. This was due to many tasks resulting in Search Out Of Time.
In general time was a critical factor, which was the driving force for creating the Randomwalk
variant for boosting. This is one topic which could be investigated further by trying to design faster
algorithms for improving the boosting process.
There are several topics which could be further investigated. One really important topic would be
the different orders for Greedy Zero-One CP, SCP, UCP and oUCP. We have only partitioned and
boosted them in the order provided by Fast Downward. There we would need to find different
methods to find good orders, boost and compare those orders. On top of finding a single order,
several good orders could be combined.
In Chapter 4 we have mentioned some domains where the boosting had good results. Those domains
could be analyzed and evaluated why the boosting is working particularly well there.

Bibliography

[1] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Comput.

Intell., 11:625–656, 1995.

[2] Stefan Edelkamp. Planning with pattern databases. In Proceedings of the 6th European Con-

ference on Planning (ECP-01), pages 84–90, 09 2001.

[3] Patrik Haslum, Blai Bonet, and Hector Geffner. New admissible heuristics for domain-
independent planning. In Proceedings, The Twentieth National Conference on Artificial In-

telligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference,

July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 1163–1168. AAAI Press / The MIT
Press, 2005.

[4] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-independent
construction of pattern database heuristics for cost-optimal planning. In Proceedings of

the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver,

British Columbia, Canada, pages 1007–1012. AAAI Press, 2007.

[5] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res., 26:191–246, 2006.

[6] Malte Helmert, Nathan R. Sturtevant, and Ariel Felner. On variable dependencies and com-
pressed pattern databases. In Proceedings of the Tenth International Symposium on Combina-

torial Search, SOCS 2017, 16-17 June 2017, Pittsburgh, Pennsylvania, USA, pages 129–133.
AAAI Press, 2017.

[7] Michael Katz and Carmel Domshlak. Optimal additive composition of abstraction-based ad-
missible heuristics. In Proceedings of the Eighteenth International Conference on Automated

Planning and Scheduling, ICAPS 2008, Sydney, Australia, September 14-18, 2008, pages 174–
181. AAAI, 2008.

[8] Jendrik Seipp and Malte Helmert. Diverse and additive cartesian abstraction heuristics. In Pro-

ceedings of the Twenty-Fourth International Conference on Automated Planning and Schedul-

ing, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26, 2014. AAAI, 2014.

[9] Jendrik Seipp, Thomas Keller, and Malte Helmert. A comparison of cost partitioning algo-
rithms for optimal classical planning. In Proceedings of the Twenty-Seventh International

Conference on Automated Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania,

USA, June 18-23, 2017, pages 259–268. AAAI Press, 2017.

[10] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward Lab.
https://doi.org/10.5281/zenodo.790461, 2017.

https://doi.org/10.5281/zenodo.790461

Bibliography 19

[11] Silvan Sievers, Manuela Ortlieb, and Malte Helmert. Efficient implementation of pattern
database heuristics for classical planning. In Proceedings of the Fifth Annual Symposium on

Combinatorial Search, SOCS 2012, Niagara Falls, Ontario, Canada, July 19-21, 2012, pages
105–111. AAAI Press, 2012.

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Planning
	2.2 Pattern Databases
	2.3 Cost Partitioning (CP)
	2.3.1 Canonical CP
	2.3.2 Greedy Zero-One CP
	2.3.3 Saturated CP
	2.3.4 Uniform CP
	2.3.5 Opportunistic Uniform CP

	3 Combining PDB Compression and Cost Partitioning
	3.1 Boosting
	3.1.1 Hillclimbing algorithm
	3.1.2 Randomwalk algorithm

	3.2 Cost Partitionings

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusion
	Bibliography

