
Compressed Pattern Databases for
Classical Planning
Bachelor’s Thesis Presentation

11 December 2020

Pascal Mafli Supervisor: Dr. Silvan Sievers
pascal.mafli@unibas.ch Examiner: Prof. Malte Helmert

mailto:pascal.mafli@unibas.ch

● Introduction

● Background:
○ State Space, Abstract State Space
○ Pattern Database
○ Pattern Database Compression (min-compression)
○ Cost Partitioning

● Boosting

● Results

● Conclusion

Introduction

Example: Logistics task 1 Package, 2 Trucks

V = { pack, t
A

, t
B

}
dom(pack) = { L, R, A, B }
dom(t

A
) = dom(t

B
) = { L, R }

Actions:
- load/unload package
- move truck

State Space

Example taken from the Foundations of Artificial Intelligence lecture (Slideset ai37)

● Finite set of states
● Finite set of actions
● Cost Function
● Transition relation
● Initial State
● Goal States

State { pack ↦ i, t
A

 ↦ j, t
B
↦ k}

represented as ijk

Abstract State Space (1)

Example taken from the Foundations of Artificial Intelligence lecture (Slideset ai37)

● Projection using a pattern p
● p is a subset of all variables

Abstraction induced by projection
on p = { pack }

Abstract State Space (2)

Example taken from the Foundations of Artificial Intelligence lecture (Slideset ai37)

Abstraction induced by projection
on p = { pack, t

A
 }

Pattern Database (PDB) Heuristic

Consist of:

● Pattern

● Calculated using the abstract state space induced by the projection

● Shortest distance to a goal state for each abstract state is stored (Dijkstra)

● Ranking/Unranking function to map a concrete state to an abstract state

PDB Compression (min-compression)
Compress a PDB with size M to a PDB with size N

Background - Cost Partitioning

● Way to combine single admissible PDB heuristics to one combined admissible PDB heuristic

● Used in this thesis:
○ Canonical cost partitioning (CAN)
○ (Greedy) Zero-One cost partitioning (gZOCP)
○ Uniform cost partitioning (UCP)
○ Opportunistic uniform cost partitioning (oUCP)
○ Saturated cost partitioning (SCP)

Boosting - Problem

Given PDB P constructed on pattern p

● Find a bigger pattern p’ and calculate PDB P’

● Min-compress PDB P’ to a PDB P’’

● Evaluate P’’

● Use better of the two PDBs

Boosting - Finding expanded pattern

● Causally relevant variables (current pattern) are possible candidates

● Randomwalk
○ Add variables to the pattern until the number of abstract states reach a certain size
○ Calculate PDB P’ and evaluate

● Hillclimbing
○ Calculate PDBs for all candidate patterns (pattern ∪ { candidate variable })
○ Evaluate all PDBs and keep best for next iteration
○ Proceed until termination condition is reached

Boosting - Hillclimbing

Boosting - Evaluation

● Compare the distance entries of both PDBs P and P’’ (boosted)
○ If the boosted PDB has a higher value in an entry, the heuristic is better

Experiments

● Experiments performed on sciCORE cluster, using tasks from the IPC optimal track collection

● Time limit 30 minutes, memory limit 3.5 GiB RAM, search algorithm A*

● All Cost Partitioning methods compared using baseline (not-boosted) and boosted approach

Metrics used:

● Coverage (Cov): Number of solved tasks. Larger is better.

● Exp. until last jump (Exp): Expansions during search, excluding last f-layer. Smaller is better.

● Out of Memory (OOM): Sum of the tasks resulting in Out of Memory. Smaller is better.

● Out of Time (OOT): Sum of the tasks resulting in Out of Time. Smaller is better.

● Total time (Time): Overall time (geometric mean). Smaller is better.

Results (1)

Canonical cost partitioning:

Legend:
Hillclimbing: HC, Parameters: #Iterations, Limited. HC1L = Hillclimbing 1 iteration, Limited abstract states
Randomwalk: RND, Parameter: Limited. RNDL = Randomwalk, Limited abstract states

Results (2)

Uniform cost partitioning:

Legend:
Hillclimbing: HC, Parameters: #Iterations, Limited. HC1L = Hillclimbing 1 iteration, Limited abstract states
Randomwalk: RND, Parameter: Limited. RNDL = Randomwalk, Limited abstract states

Results (3)
Saturated cost partitioning:

Expansions (x-axis: Baseline, y-axis: Randomwalk limited)

● Big reduction on expansions
● Some tasks have 0 expansions until last jump

○ woodworking-opt08-strips
○ woodworking-opt14-strips

Conclusion

● Boosting has a positive effect on the coverage in some cost partitioning methods
○ Biggest improvement: Canonical CP 919 solved tasks to 928 tasks (+9 coverage)

● The additional computation for the boosting is time consuming
○ For example SCP SYS(2): Baseline 0.89 (geom. mean) to 8.75 (geom. mean) for Randomwalk

● For UCP and oUCP there was a negative impact for boosted PDBs

Further topics

● Orders of heuristics for certain cost partitioning methods (oUCP, SCP, ZOCP)

● Analysis of domains, where boosting had a big impact
○ woodwork-opt08-strips and woodwork-opt14-strips (for SCP)

● Finding more performant boosting methods

Questions?

