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Abstract

Multi-Agent-Path-Finding (MAPF) is a common problem in robotics and memory management. Pebbles
in Motion is an implementation of a problem solver for MAPF in polynomial time, based on a work by
Daniel Kornhauser from 1984. Recently a lot of research papers have been published on MAPF in the
research community of Artificial Intelligence, but the work by Kornhauser seems hardly to be taken into
account. We assumed that this might be related to the fact that said paper was more mathematically
and hardly describing algorithms intuitively. This work aims at filling this gap, by providing an easy
understandable approach of implementation steps for programmers and a new detailed description for
researchers in Computer Science.
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Chapter 1

Introduction

In recent years there has been an increasing number of publications in journals and conferences in
Artificial Intelligence and Robotics on the topic of solving Multi-Agent Pathfinding (MAPF) problems.
In this chapter we will introduce this problem along with the problem of pebble motion and how they
relate to each other. We discuss their application areas and certain properties for their computational
complexity.

We close this chapter by describing the aim of this work and the further structure of this report.

1.1 MAPF and Pebble Motion Problems

In this section we describe the MAPF and pebble motion problems and how they relate to each other.
We will see that pebble motion problems can be seen as the equivalent of a major subclass of MAPF
problems.

1.1.1 Pebble Motion Problems

A pebble motion problem is given by a graph, where each vertex is either occupied by a pebble that
should reach a goal position (distinct from all other pebbles) or unoccupied (“blank”). In order to achieve
this all pebbles can move sequentially along the edges of the graph from an occupied vertex to a blank
vertex. The problem is solved if all pebbles have reached their goal positions.

A widely known pebble motion problem in recreational puzzles is that of the 15-puzzle.
It has been shown that for any given problem in this area finding the best solution with a minimal

number of steps is NP-hard [9], i.e. it is not feasible to compute the optimal solution with an increasing

(a) Classical variant.

2 8 13 6

12 3 10

9 4 7 15

1 5 14 11

BLANK

(b) Translated into a graph.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 BLANK

(c) In goal configuration.

Figure 1.1: The classical 15-puzzle, its transformation into a graph and displyaying the goal configuratio.
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number of vertices and pebbles, thus solving suggestions are trying to generate a solution with few steps
in reasonable polynomial calculation.

Research in pebble motion problems was carried out primary by mathematicians around the eighties.
The work by Wilson [14] published 1974 was a major step by indicating an efficient solving technique on
biconnected graphs, which was later refined in 1984 by Kornhauser, Miller and Spirakis whose work [3][4]
gives a mathematical description for an algorithm that solves with a generalization for all types of such
graphs.

1.1.2 Multi-Agent Pathfinding

An often described application for MAPF problems are multiple robots in a storage room that should
reach a certain distinct goal position in a non-competitive way.

Thus the abstract definition of a MAPF problem is that there is a space occupied by a number of
agents whose aim is to reach a certain distinct goal position. The problem is solved if all agents have
reached their goal positions.

Almost all solving approaches divide the space into a discrete graph (or assume it is already discrete)
where the agents are put onto the vertices and then a plan is to be created to reach the goal in a low
number of steps, as finding an optimal solution is NP-hard as well [2].

1.1.3 Relation Between MAPF and Pebble Motion Problems

MAPF could be thought of a generalization of pebble motion problems: In pebble motion problems we
usually assume that there is a central planner who aims to minimize a sequential execution of moves on
the graph.

In MAPF solving research there are mainly two distinctions made

1. whether the agents can move in parallel or only sequential as well

2. if there is a centralized all-knowing planning agent or if the agents plan on their own depending on
their knowledge

It can be intuitively seen that the problem of sequential, centralized planning MAPF is directly
equivalent to the pebble motion problem. However the recent research has not yet really reflected the
works on pebble motion from 1974 nor 1984 ; likely reasons for this were

• that the research was carried out by rather different research communities,

• at different decades and

• furthermore the archival proceedings publication by Kornhauser, Miller and Spirakis [4] is quite
sketchy, often refering to a “final version” that never appeared. The actual details are described
in Kornhauser’s master’s thesis [3].

1.2 Aim of this work

The aim of this work is to provide a step-by-step explanation of the approach for solving pebble motion
problems as described in 1984 by Kornhauser, Miller and Spirakis [3], with an emphasis placed on the
pebble motion problem cases of biconnected graphs with 1 blank vertex, as this is the most interesting
one.

A major movitivation is further to provide a freely available implementation of that work.

1.3 Further structure of this paper

In chapter 2 we will introduce some approaches to solving MAPF and pebble motion problems in brevity.
In 3 we will explain in detail the ideas of the works published in 1984 [3][4] by Kornhauser, Miller

and Spirakis.
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In chapter 4 we will provide some code fragments to translate the ideas of just mentionned works
into a more algorithmic description, thus improving the preconditions for other implementations.

In chapter 5 we will close with a discussion and steps for future work.
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Chapter 2

Background

In this chapter we will describe some recent approaches to solving MAPF problems quite briefly. The
group-theoretic approaches for solving centralized-planned, sequential MAPF problems (on which this
work is based upon) by Wilson from 1974 [14] and refined by Kornhauser et al. in 1984 [3][4] are started
to be described in detail in 3.

In 2008 Peasgood et al. [8] presented a centralized planning algorithm in linear time for trees, where
a solution is guaranteed iff there are less agents than leaves in the tree.

In 2009 Wang and Botea [13] defined the class of SLIDEABLE MAPF problems (which are based on
a grid) along with their algorithm MAPP to solve it in low-polynomial time for most but not all cases
of SLIDEABLE. An extended version of MAPP from 2011 [12] by Wang and Botea can solve a larger
subclass of SLIDEABLE problems than the one from 2009.

In 2011 Khorshid et al. [2] presented their tree-based agent swapping strategy TASS, which is a
centralized polynomial-time algorithm for a class of trees that can find solutions on more densely occupied
as in the paper by Peasgood et al. (e.g. for 4 blanks and 966 agents). Furthermore they presented a
Graph-to-Tree Decomposition (GDT ) algorithm (e.g. usable to transform SLIDEABLE into trees).

The Push and Swap algorithm from 2011, by Luna and Bekris [6] [7] is complete for all graphs with
at with at least two unoccupied nodes.

However looking in detail at all these works it is clear that many findings have already been covered
by Wilson [14] or Kornhauser et al. [3]. The works by Luna and Bekris, as well as by Peasgood et al.
rely on observations that were already contained in Kornhauser’s thesis, eventually to be interpreted as
instantiations of the general algorithm by Kornhauser et al. for the case with at least two unoccupied
vertices. Khorshid et al.specify conditions which are sufficient for a solvable, but are just special cases
of Kornhauser’s et al. criteria when considering only trees, as Kornhauser gives a more precise analysis,
specifying sufficient and necessary conditions.

According to our observation the researchers of these works regard the identification of tractable sub-
classes of MAPF problems for non-optimal solving as an interesting open problem. Wang and Botea [12]
empasized that they

have identified conditions for a class of multi-agent path planning problems on grid maps
that can be solved in polynomial time

Khorshid et al. wrote [2]

We have demonstrated that this algorithm runs in polynomial time [ . . . ]. This work is
just one step in classifying problems which can be solved in polynomial time.

Luna and Bekris stated [6]

In comparison to existing complete alternatives, the proposed method provides complete-
ness for a much wider problem class.

In contrast to the statements above from recent research work in AI and Robotics on MAPF, the work
of Kornhauser et al. from 1984 [3] [4] describes a centralized planned solving procedure in polynomial-
time for all solvable, sequential MAPF problems which creates solutions with upper and lower bounds of
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O(n3) moves required on graphs with n vertices. Thus to the best of our knowledge this work has neither
been ever fully implemented1, nor taken fully into account in recent research; the only notable exception
beeing Surynek who already pointed out in early 2009 [10] the strong connection between research on
MAPF problems and the earlier work on pebble motion problems, as well as providing further improved
(but rather briefly explained) algorithms BIBOX [10] and BIBOX−Θ [11] for solving the specific class
of problems on biconnected graphs with one blank explicitely based on the earlier works by Wilson [14]
from 1974 and the improved procedure by Kornhauser et al. from 1984 [3].

1i.e. including their insights into the decomposition of connected graphs
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Chapter 3

Mathematical Description

In this chapter we will explain in detail the ideas of the work published in 1984 [3][4] by Kornhauser,
Miller and Spirakis relevant to solving pebble motion problems, i.e. we omit the last part of their work,
which is refering to insights on the diameter of permutation groups.

We start by introducing useful mathematical notations and then proceed with an overview of the
basic ideas of the group-theoretic proofs for pebble motions problems.

3.1 Basic Mathematical Definitions

In this section we are going to introduce some basic definitions of mathematical structures that are
crucial in order to understand the ideas that were published by Kornhauser et al.

3.1.1 Graphs and Paths

As graphs are building the main underlying structure of pebble motion problems, we start by giving a
formal definition for these before we can start to formalize the problems as such in the next subsection.

Definition 1 (Graph) A (simple, undirected) graph G = (V,E)1 consists of

1. a set of vertices (or nodes) V

2. a set of edges E whose elements are 2-element subsets of V .

Given a vertex v ∈ V its adjacent vertices (or directly neighbored vertices), the subset consisting of
all attached vertices to v ∈ V is denoted by adj (v), i.e. adj (v) = ∀u ∈ V, {u, v} ∈ E ≡ u ∈ Vv. The
valence (or degree) val(v) of a vertex v ∈ V is an integer denoting the number of edges attached to it,
i.e. val(v) ≡ |adj (v)|.

A graph G = (V,E)is a bipartite graph iff there are disjoint vertex sets X and Y with V = X
.∪ Y

and for all {vx, vy} ∈ E, (vx ∈ X and vy ∈ Y ) or (vy ∈ X and vx ∈ Y ).

Further we define paths on a graph which will turn out useful later for various purposes.

Definition 2 (Path) A path p on a graph G = (V,E) from some vertex v0 to some vertex vn is a
sequence p = [v0, . . . , vn] whose elements vi ∈ V,∀i, 0 < i ≤ n, {vi, vi+1} ∈ E.

A simple path has the requirement that no vertex is visited more than once i.e. the path [v0, . . . , vn]
in the graph G = (V,E)has the property that ∀i, j, 0 ≤ i < j < n, vi 6= vj.

A closed path [v0, v1, . . . , vn] on a graph G = (V,E)has the property that the start and ending vertex
are identical, i.e. v0 = vn. Otherwise it is an open path.

1We will solely refer to graphs with unweighted, undirected edges in this work.
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(a) A bipartite graph. (b) A non-bipartite graph.

Figure 3.1: Examples of a bipartite and a non-bipartite graph.

A cycle path is a path that satisfies the requirements for a closed path and a simple path (with the
exception that v0 = vn). 2

Given a path p = [v0, . . . , vn] we write p−1 = [vn, . . . , v0] to denote the reversed order of elements of
the path sequence p.

Let us denote a handle of a graph G as a simple path h on G from a vertex v to a distinct vertex w,
where for all vertices u ∈ h, u 6= v 6= w, val(u) = 2 and for vertices val(v) ≥ val(w) > 2. The vertices of
u ∈ V with val(u) = 2 are denoted as internal vertices of the handle.

Let us similarly denote to handles an arm of a graph G from a vertex v to a distinct vertex w, the
difference beeing that that val(v) = 1 or val(w) = 1.

One application of paths is to define the set of connected graphs.

Definition 3 (Connected and Disconnected Graphs) A graph G = (V,E)belongs to the set of
connected graphs iff for any two vertices v1, v2inV there is a path from v1 to v2 in G. Otherwise
the graph belongs to the set of disconnected graphs.

A disconnected graph G = (V,E)can be easily decomposed into a finite set of connected graphs, de-
noted as connected subgraphs of G. Use Starting with an arbitrary v ∈ V an empty set W where , using
adj (()V ), a set. We will refer to this decomposition function as conG(G) = {G0 = (V0, E0), G1 = (V1, E1), . . . , Gg = (Vg, Eg)}.
If G = (V,E)is aleady a connected graph conG(G) results simply into the set with the graph G itself as its
only element, i.e. conG(G) = {G = (V,E)} An algorithmal description for conG(G) is found at 4.2.1.

We can now further define the betti number3 of a graph by the function betti(G) = |V | − |E| +
|conG(G)| (recall |conG(G)| = 1 for a connected graph). Informally the betti number describes the
number of “loops” in a graph.

2In most scientific literature on graphs such a path is simply called a cycle. However we will later proceed with a small
introduction into permutation theory, where there is also the notion of cycle permutations, which are mathematically not
equivalent to cycle paths on graphs, but also informally often referred by the term cycle in literature; for clarity reasons
we decided thus to use the term cycle path throughout this work when speaking about paths on graphs that satisfies their
requirements.

3To be mathematically more precise: we denote in this work with the function “betti(G)” an applied definition for
graphs of the function betti1 (S). There is a set of betti functions {betti0 (S), betti1 (S), betti2 (S), . . .} where bettii (S) is
solely applicable to a topological space S as argument with dimension(S) = i + 1. betti1 (S) is applicable to a graph
G = (V,E)as defined in this paper which is a planar topological space with dimension(G) = 2. As only this case is relevant
for this work we refrain from going more into details of the betti functions.
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(a) A trivial biconnected or T0 graph (b) A polygon or T1 graph (c) A T2 graph

Figure 3.2: Examples of biconnected graphs classified into disjoint subsets by their betti number

We now define the biconnected graphs B (a subset of connected graphs) and further decompose it
into disjoint subsets TX .

Definition 4 (Biconnected Graphs with TX) For a graph G = (V,E)and v ∈ V we define a surjec-
tive mapping removeVertex (G, v), whose application results in a graph Gr where v is fully removed from
G i.e. removeVertex (G, v) = Gr(V \ v,E \ {{v, u} ,∀u ∈ adj (v)}.

A graph G = (V,E)belongs to the subset of biconnected graphs iff by choosing an arbitrary vertex
v ∈ V the result of removeVertex (G, v) is not a disconected graph. An alternative definition is that G is
biconnected iff for vi, vj ∈ V there is a simple cycle path [vi, . . . , vj , . . . , vi] on G.

Let B denote the set of all biconnected graphs and decompose it into disjoint subsets B = T0
.∪

T1
.∪ T2

.∪ T3
.∪ . . ., where the index denotes the respective betti numbers of the graphs i.e. a graph

G ∈ B, i ≥ 0, G ∈ Ti iff betti(G) = i.
The subset T0 is further denoted trivial biconnected graphs whose graphs consist of a single edge and

two vertices i.e. |V | = 2, |E| = 1.
The subset T1 is further denoted as polygons, whose graphs consists of a single “loop” i.e. ∀v ∈

V val(v) = 2.
Given a handle h = [v, u1, u2, . . . uu, w] in graph G we define a surjective mapping removeHandle(G, h)

whose application results in a graph Gh where all internal vertices of the handle h have been removed
from G, i.e. removeHandle(G, h) = removeVertex (removeVertex (. . . removeVertex (G, uu) . . . , u2), u1).

3.1.2 Pebble Motion Problems

We now can formally describe a pebble motion problem.

Definition 5 (Pebble Motion Problem and Moves) A pebble motion problem is formally described
as Π = (G,P, a, z), where

• G = (V,E)is a graph

• P = {p0, p1, . . . , pk} is a set of pebbles with |P | ≤ |V |

• a is the initial pebble configuration, a mapping of P to V (see below)

• z is the goal pebble configuration.

A pebble configuration of Π is a mapping as c : P → V is an injective function from P to V . The
image of c consists of the occupied vertices which we will write as V c

+. V c
− = V \ V c

+ denotes the set of
all blank vertices (or blanks). Let further denote CΠ the set of all pebble configurations of Π.

A move m from vertex v ∈ V to vertex winV on graph G is denoted as an ordered pair m = (v, w).
Note that each move m = (v, w) has an inverse move m−1 = (w, v). We define a partial function
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execMove: (V × V ) × CΠ → CΠ. It maps moves and configurations to configurations if the move is
applicable on the configuration c; otherwise execMove is undefined:

execMove((v, w), c) =

{
c
[
c−1(v) 7→ w

]
if v ∈ V c

+, w ∈ V c
−, {v, w} ∈ E

⊥ otherwise

where c [p 7→ v] denotes the configuration which is equivalent to c except that pebble p is mapped to vertex
v.

For a move sequence M = [m1,m2, . . . ,mn] we define an analogous partial function execMoveSeq(M, c)
iff the moves in M are consecutively applicable starting on configuration c, as otherwise execMoveSeq(M, c)
would be undefined. execMoveSeq([m1,m2, . . . ,mn] , c) = execMove(mn, execMove(mn−1, . . . execMove(m1, c) . . .))

A move sequence M is a solution of Π if execMoveSeq(M,a) = z.
We define the function generatePebbleMS (p) which creates the move sequence M = [(v0, v1), (v1, v2), . . . , (vn−1, vn)]

given a path p = [v0, v1, v2, . . . , vn−1, vn]
A move sequence M = [(v1, w1), (v2, w2), . . . , (vn, wn)] is simple if for 1 ≤ i < n, vi = wi+1. Such a

simple move sequence can also be seen as moving a “blank” along a path on G. Hence we can specify
such a move sequence alternatively by the trace of this blank, i.e. 〈M〉 = 〈w1, w2, w3, . . . , wn, vn〉 =
〈w1, v1, v2, . . . , vn−1, vn〉.

We define the function generateBlankMS (p) which creates the simple move sequence 〈M〉 = 〈v0, v1, v2, . . . , vn−1, vn〉
given a path p = [v0, v1, v2, . . . , vn−1, vn]

3.1.3 Permutations, Cycles, Transitivity and Conjugations

For the next section to understand it is a preliminary to define the notion of Permutations and structures
that are build upon them in order to further explain the basic algorithm. Note that the definitions in
this subsection are to be found in a similar form at the master’s thesis

Definition 6 (Permutations amd Cycles) A cycle h is a bijective mapping from a finite set Q to
itself. It is denoted by k distinct elements h =

(
e1 e2 . . . ek

)
,∀1 ≤ i ≤ k, ei ∈ Q The application

of a cycle h(Q) maps an element denoted in h to the element denoted in h on it’s right side except
for the last element that is mapped to the first element and all elements ∈ Q not denoted in h, i.e.
∀1 ≤ i < k, ei 7→ ei+1, ek 7→ e1).

An cycle which maps k elements is denoted as k-cycle. A 2-cycle is also denoted as transposition or
swap.

A permutation is an analogous mapping to a cycle. A permutation is written as

P =

(
e1 e2 . . . en−1 en
f1 f2 . . . fn−1 fn

)
By applying a permutation P on a set Q the elements on the upper row are mapped to the elements on
the lower row i.e. ∀1 < i < n, ei 7→ fi

Any permutation can also be written in cycle notation, a product i.e. a sequential application of k-
cycles P =

(
e1 f1

) (
e2 f2

)
. . .

(
en−1 fn−1

) (
en fn

)
A permutation (or cycle) which maps no element

to another is denoted as identity permutation.
P is an even permutation if it can be expressed by an even number of transpositions. Otherwise P

is an odd permutation. It follows that any k-cycle is an even permutation if it k is odd, and an odd
permutation if k is even.

Let us denote a permutation group by Pn = (Q,P )

• Q a set, |Q| = n

• P a set of permutations on Q

Sn = (Q,P = S) denotes the symmetric group where S as the set of all possible permutations on Q.
Let An = (Q,P = A) denote the alternating group a subgroup of Sn with A as the set of all even

permutations on Q.

Given a permutation group, we now define the notion of transitivity.

11



Definition 7 (Transitivity) A subgroup Pn = (Q,P ) of Sn is said to be k-transitive iff for any two
subsets A,B ⊂ Q with |A| = |B| = k there is a sequence of permutations ∈ P whose consecutive applica-
tion maps A to B, i.e. for ∀A = {a1, a2, . . . , ak} , B = {b1, b2, . . . , bk} ⊂ Q∃TAB = [p1, p2, . . . pt], 1 ≤ i ≤
t, pi ∈ P, TA,B(A) = pt(pt−1(. . . p1(A) . . .)) 7→ B.

For a subgroup Pn to be k-transitive it is sufficient, if there is a fixed subset C ⊂ Q, |C| = k to which
any A ⊂ Q, |A| = k can be mapped to by a permutation sequence TA,C . As permutations are bijective,
there is also an inverse permutation sequence TC,A whose application maps C 7→ A for any A ⊂ Q. Thus
for any two subsets X,Y ⊂ Q with |X| = |Y | = k to map X to Y we use a consecutive application of
TX,C and TC,Y , i.e. TC,Y (TX,C(X)) 7→ Y

It is obvious that the symmetric group Sn is n-transitive.
It is also easy to show that the alternating group An = (Q,A) must be (n− 2)-transitive as either(

e1 e2 . . . en−2 en−1 en
f1 f2 . . . fn−2 fn−1 fn

)
or

(
e1 e2 . . . en−2 en−1 en
f1 f2 . . . fn−2 fn fn−1

)
are an even permutation and are thus ∈ A.

We then proof that An can be created be the at most n− 2 3-cycles.

Definition 8 (Generation of permutation groups) A permutation group can be created for any
finite set F = f1, f2, . . . , fk of permutations on n elements . The set G created by consecutive (and repet-
itive) applications of any element in F is clearly a group, denoted as the permutation group generated
by F . We denote G(F ) = G for this operation.

We can show that the alternating group An = (Q,A) can be generated by the set of all 3-cycles on
n elements denoted as Zn and is expressible as a sequence of at most n − 2 3-cycles. As all 3-cycles
are even permutations, G(Zn) must be a subgroup of An. In order to show that G(Zn) ≡ An take

any permutation A 3 a

(
e1 e2 . . . en−1 en
f1 f2 . . . fn−1 fn

)
. Let Zn 3 pi =

(
ei fi gi

)
1 ≤ i ≤ n denote a

corresponding 3-cycle which maps ei to fi, fi to some gi and gi to ei. If p1 does not map e2 to f2 we
multiply p1 with p2 =

(
p1(e2) f2 g2

)
where we choose p2 such that g2 6= f1 (i.e. an element that has

already been correctly mapped by p1 previously). If necessary (i.e. iff for some i, ei 6= fi already), we
continue to consecutively choose a practical pi (i.e. gi 6∈ {f1, . . . , fi−1} and multiply it with our pi−1.
This product results in a permutation which already maps all fi correctly up to the point when we reach
i = n− 2. However the elements fn−1 and fn must already be correctly mapped at this point, as if they
would be not correctly mapped, we would need an odd permutation to fix this mapping, which contradicts
the assumption that a ∈ An.

Note: By a similar induction it can be shown that Sn can be decomposed in a product of at most n-1
2-cycles.

We now define the conjugation mapping and some of it’s properties which will be crucial for solving
pebble motion problems efficiently.

Definition 9 (Conjugation) A conjugation is a mapping of the elements of a permutation to another.
Given 2 permutations S and T the conjugation of permutation S by T is defined as applying T−1ST .
This basically applies permutation S to the elements of T as if they were replacing the elements in S. If
S was a k-cycle the conjugation of S is again a k-cycle.

Combining conjugation mappings and the property of transitivity we get the important insight: Given
any permutation group Pn of which is known that it is k-transitive and that it contains a
k-cycle S, then Pn contains all k-cycles.

3.2 The Approach by Kornhauser

In this section we will informally describe the approach from the master thesis by Kornhauser et al. [3],
which is partially based on the previous work by Wilson 1974 [14].

As discussed Wilson showed how to solve pebble motion problems on biconnected graphs with one
blank.

Kornhauser et al. showed how to improve Wilson’s work on biconnected graphs with generating
solutions with a lower number of steps. Furthermore they introduced a generalized solving procedure for
pebble motion problems on all types of undirected graphs. In the upcoming subsections we will explain
this procedure.
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3.2.1 Introductory Overview

The pseudocode listing below gives a first introductury overview over the primary procedures for solving
a pebble motion problem Π = (G,P, a, z). It is similar to the description of the “(”main theorem) found
on page 34 of Kornhauser’s thesis [3]. For brevitiy of this overview we assumed that Π is solvable, thus
left out error handling and other minor details.

1 solveAPebbleProblem (Problem) {

2 foreach conProblem of Problem

3 solveAConProb(conProblem);

4 }

5 //---------------------------------------------------

6 solveAConProblem(conProblem) {

7 rearrangePebbles(conProblem)

8 if conProblem is some special problem

9 solveASpecialProblem(conProblem)

10 else

11 foreach subProblem of conProblem

12 solveSubProblem(subProblem)

13 }

14 //---------------------------------------------------

15 solveASubProblem(subProblem){

16 if subProblem has only one blank

17 solveAWilsonCase(subProblem)

18 else

19 solveMultiBlankProblem(subProblem)

20 }

21 //---------------------------------------------------

22 solveAWilsonCase(subProblem) {

23 solvingCycles = cycleCalc(subProblem)

24 if graph of subProblem is a G2

25 solveAG2(subProblem,solvingCycles)

26 else {

27 standardCycle=getStandardCycle(subProblem)

28 foreach cycle in solvingCycles

29 conjugateAndExecute(subProblem,cycle,standardCycle)

30 }

31 }

Listing 3.1: Pseudo procedure overview

For the four procedures defined in this listing we describe their main functionality now in brevity; a
detailed description is discussed in the upcoming subsections.

We start by the procedure solveAPebbleProblem which we call for any pebble motion problem
Π = (G,P, a, z)Problem. We there decompose the graph G of Problem into a set of connected subgraphs
by conG() and create a pebble motion problem conProblem for each connected graph, which are solved
by calling solveAConProblem on each of them.

In solveAConProblem we first call rearrangePebbles(conProblem) so that the same vertices become
occupied by a as in the goal configuration then we

1. either sort out some problems with certain special graphs which require different solving algorithms
which are then called (solveASpecialProb)

2. or we try try to dissect the connected graph of conProblem further into subProblems and iteratively
solving them by calling solveASubProblem.

In solveASubProblem

1. in case there is only 1 blank in the subProblem we call the solving procedure solveAWilsonCase

13



2. otherwise we call the solving procedure solveMultiBlankProblem

In solveAWilsonCase we calculate 3-cycles solvingCycles to solve the problem first; then depend-
ing if the graph belongs to a special class or not, we either execute these by a calling shortcut func-
tion solveaG2 or call a procedure getStandardCycle which results in a known 3-cycle move sequence
standardCycle that will be used to execute all solvingCycles by conjugatng each of them into it by
conjugateAndExecute.

3.2.2 Procedure solveAPebbleProblem

Let Problem be a pebble motion problem Π = (G,P, a, z)with a graph G = (V,E).
If G is a disconnected graph the pebbles are confined to the vertices that are connected to each

connected subgraph of G. This does not change anything on the solvability of the problem, as either the
problem was solvable before the separation of G into a set of connected subgraphs conG(G) or not.

We thus separate a Π = (G,P, a, z)into a set with c = |conG(G)| of connected subproblems ΠC =
{Π1, . . .Πc} with the respective connected graphs Gi and pebble sub-configurations ai, zi assigned to
each Πi ∈ ΠC and proceed by solving each Πi with the procedure for connected graphs. A possible
implementation algorithm for this decomposition is described in ??.

If all subproblems Πi were solvable this results in a respective move sequence Mi which combined
result in the overal solution move sequence M for Π. If not all subproblems Πi were solvable, Π was
overall not solvable.

3.2.3 Procedure solveAConProblem

Let Problem be a pebble motion problem Π = (G,P, a, z)with a connected graph G = (V,E). Let c
denote the current pebble configuration at any time.

Same Vertices Occupied As in Goal Configuration

We execute rearrangePebbles on the connected graph problem Π in order to overcome cases where
V a

+ 6= V z
+. This step may not only for solve trivial problems, but V a

+ = V z
+ is also a necessary precondition

for later procedures.
For this step we define a short-hand terminology

Definition 10 (Occupy states of vertices) Given a pebble motion problem Π = (G,P, a, z)that is in
the solving process and thus has the current pebble configuration c.

Let us denote a vertex v ∈ V as beeing in the correct state iff

• v ∈ V c
+ and v ∈ V z

+

• or v ∈ V c
− and v ∈ V z

−

otherwise as beeing in the wrong state.
Let us denote another vertex w ∈ V as beeing in the prefered state for v iff

• w ∈ V c
+ and v ∈ V z

+

• or w ∈ V c
− and v ∈ V z

−

The algorithm is informally described by Kornhauser on page 13ff: We create a minimal spanning
tree (MST) GMST out of the graph as temporary data structure with the Kruskal algorithm [5] and put
all vertices in a queue Q, which constantly rearranges all remaining vertices depending on their valence
(i.e. if take out from the queue we first get the leafs vertices, before we get the inner vertices).

We take a vertex v out of queue Q. If v is in the correct state, we prune v out of the GMST by
removeVertex (GMST , v) and take the next vertex out of Q.

If v is in the wrong state we search on the graph GMST a simple path p to another vertex w that has
the prefered state for v with least distance 4.

4No explicit search algorithm is indicated by Kornhauser, but it is obvious that a breadth-first-search (BFS) is to be
prefered.
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(a) A chain graph (b) A polygon or T1 (c) A Θ0 graph

Figure 3.3: Examples of graphs that need a special solution handling

1. If v ∈ V c
− we push the pebble mapped to w to v by execMoveSeq(generatePebbleMS (p), c)

2. If v ∈ V c
+ we push the blank mapped to w to v by execMoveSeq(generateBlankMS (p−1), c)

Afterwards v will be in the correct state. We prune v out of the GMST by removeVertex (GMST , v) and
take the next vertex out of Q.

We proceed until the queue Q is empty.
Details on a possible implementation are given in ??

Sorting Out Special Problems

There are certain special graphs which require a different solving procedure than the rest, namely

• fully occupied graphs

• chain graphs

• Polygons

• Θ0
5

Also see figure 3.3. We will discuss them now one by one.

Fully Occupied Graphs A Π = (G,P, a, z)has a fully occupied graph if |P | = |V |. The problem is
unsolvable if the pebble configurations a 6= z. Otherwise the problem was solved from the beginning.

Chain Graphs A G = (V,E)is denoted as chain graph if it satisfies ∃x, y ∈ V, x 6= y, val(y) =
val(x) = 1,∀v 6= x 6= y ∈ V, val(v) = 2. The most simple chain is the trivial, biconnected component
T0. The pebbles are confined to line of vertices and can’t exchange their order. If a pebble motion
problem Π = (G,P, a, z)has a chain graph the problem was either already solved by the procedure
rearrangePebbles or the problem Π is not solvable.

Polygons If in pebble motion problem Π = (G,P, a, z)G is a polygon, i.e. a T1 graph, the pebbles
are confined to the line of vertices, similar to the chain case. The problem Π is solvable iff the current
pebble configuration c is a cyclical rearrangement of the goal configuration z.

5this graph was denoted as T0 by Kornhauser, Miller and Spirakis, which may confuse with the trivial biconnected
graph T0; we thus denote it as Θ0
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Θ0 graph A G = (V,E)is denoted as Θ0 if it is the T2 graph shown in figure 3.3. This biconnected
graph does not contain any 3-cycle. As will explained Θ0 is not suitable for the solution via procedure
solveAWilsonCase. Given the relative low number of vertices it is easiest to calculate a lookup table of
all possible pebble configurations CΠ on Θ0 along with connecting moves to reach a goal configuration
z.

Creating Subpuzzles

Let B = |V c
−| denote the number of blanks for Π. Given B we see that p ∈ P is often confined to a

certain part of G.
Similar to a disconnected graph we can divide the connected graph G into a set {G1, . . . , Gb} of

so-called maximal biconnected components by using an algorithm described in 1973 by Hopcroft and
Tarjan [1], where each Gi in the set is a biconnected graph. We denote this algorithm by the function
biconG(G) which gives us said set.

Given B and biconG(G) we are going to create a set of subproblems ΠS = {Π1, . . .Πs} to be solved
separately, similar to what we did before for disconnected graphs.

The exact procedure is described in Kornhauser’s thesis [3] on page 28ff and will not be redescribed
in this work, as we only mentionned it for completeness. As pointed out in 1.2 we are most interested in
explaining the solutions of pebble motion problems of biconnected graphs with B = 1.

We remain by saying that after this step we will execute the procedure solveASubProblem for each
Πi ∈ ΠS .

3.2.4 Procedure solveASubProblem

In case there is only one blank in a resulting subProblem, G must be a biconnected graph. Thus we exe-
cute the solving procedure solveAWilsonCase. Else we execute the solving procedure solveMultiBlankProblem
for which we will not go into further detail. The procedure is similar to the Push and Swap algorithm
by Luna and Bekris [6] [7].

3.2.5 Procedure solveAWilsonCase

We are now at the point on which we want to put the emphasis on 1.2: biconnected graphs with 1 blank.

Decomposition of Configuration Permutation into Three-Cycles

Recall from the definition of Generation of permutation groups that the alternating group An is created
as a product of 3-cycles and any permutation ∈ An can be easily decomposed.

If V c
+ = V z

+ then there is a permutation Yc,z which maps c to z. So if Yc,z ∈ An we can decompose
Yc,z into a number of 3-cycles; if Yc,z is odd we would have to change the current configuration c 7→ d by
applying an odd permutation so we get Yd,z as an even permutation. To apply an odd permutation to
the pebble configuration while keeping the precondition V d

+ = V z
+ is only possible if G is not-bipartite.

Thus all bipartite graphs with an odd permutation in Y are not solvable.
We then decompose Y into a list of 3-cycles. See for a possible implementation.

Executing Calculated Three-Cycles

Recall the important insight given in the definition of conjugation:

Given any permutation group Pn of which is known that it is k-transitive and
that it contains a k-cycle S, then Pn contains all k-cycles.

So if G is 3-transitive we then only need to obtain a move sequence for one known 3-cycle in G to
execute all 3-cycles in it; i.e. the ones from the list which we previously calculated.
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Acquiring a Move Sequence for a Standard Three-cycle The standard Kornhauser solving
assumes that the blank vertex in the goal configuration v ∈ V z

− has val(v) ≥3. We discuss in 4.3.2 how
to overcome this assumption, by temporarily moving the blank to such a vertex and adapting the goal
configuration for this algorithm.

For all T2 graphs the move sequence for one standard 3-cycle s is easily obtained by cycling the
pebbles on the 2 loops in a certain manner 6, except for the special Θ0 graph which we already handled
previously. As we can add a handle to any T2 graph to create a T3 graph of it and so on, we can also
reduce any TX to a T2 graph by removing handles, while avoiding the creation of Θ0 , thereby having
an inductive procedure for acquiring s on all TX graphs.

Acquiring Three-Transitivity Furthermore it turns out that allmost all graphs in T2 are easily seen
to be 3-transitive if one of their handles consists of more than 4 vertices: We just turn the required
pebbles into it correspondingly. There are two graphs in T2 where all 3 handles have less than 4 vertices:

• The T2 graph consisting of 5 vertices (we call it an element of the biconnected graph subset G2,
which we handle differently, discussed below)

• The T2 graph consisting of 4 vertices, but which does not need 3-transitivity as there are only 3
pebbles mapped to it and it is non-bipartite, which implies that we need at maximum one 3-cycle
which can be directly executed.

All other biconnected graphs TX , X > 2, can be shown to be at least 3-transitive.

The Solving Procedure In order to calculate a solution move sequence for a biconnected graphs with
1 blank that is not Θ0 and 3-transitive on vertices h = (a, b, c) we

1. get the permutation for the current pebble configuration

2. if the permutation is odd and G is non-bipartite we apply an odd permutation on the pebble
configuration and get the new even permutation

3. we decompose the permutation in a product list of 3-cycles L

4. we acquire the move sequence for the standard 3-cycle s which is easy for all T2 graphs; if the
betti(G) > 2 we can acquire the standard 3-cycle as well by “virtually reducing handles” until we
have a T2 subgraph

5. we execute each 3-cycle of l ∈ L by l moving into h, then to s, then “execute” s, move the pebbles
again h and from there to l (“moving” via conjugation

Procedure solveAG2

This is a slight variation which we propose from the procedure as described by Kornhauser, as we assume
that this generates shorter move sequences in general than the standard procedure.

Let us define the class of G2 graphs.

Definition 11 (G2 graphs) A biconnected graph G = (V,E)belongs to the subset of G2 iff ∀v ∈
V val(v) = 2, except 2 distinct vertices x and y with val(x) = val(y) = 3 and adj (x) = adj (y).

If we assume that vertex vx is blank, we can immediately see that it is easy to execute any 3-cycle(
v1 v2 v3

)
on a G = (V,E)∈ G2 without . Either vertex vy is part of the 3-cycle (the trivial case) or

else we use the simple move sequence 〈M〉 = 〈vx, v3, vy, v2, vx, v2, vy, v1, vx, v2, vy, v3〉 that is equivalent
to the 3-cycle we aimed to achieve. An implementation is found at 4.3.5.

6in the upcoming chapter we do not provide any pseudocode for this step, as all the cases can be easily implemented
taking the descriptions of Kornhauser’s master’s thesis on page 19-21 [3]
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(a) The simplest G2 with 3 internal
vertices (b) G2 4 internal vertices (c) G2 5 internal vertices

Figure 3.4: Examples of G2 on which permutation cycles can be directly executed
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Chapter 4

Code fragments

This chapter introduces some code fragments for clarification. Throughout this chapter pseudocode in
Java-style is used.

4.1 Basic Data Structures

We assume there are already data structures for sets, arrays, queues and common primitive data types
like integers, floats and strings present. Furthermore we refer to Edge, Vertex, Pebble, Permutation,
KCycle and Move as if they were implemented as classes.

If an Object is said to have assigned the value NULL , it is implied that this represents either an
invalid state or a special state.

4.1.1 Graph Representation

An undirected graph is then represented by a class called Connections whose signature is as follows

1 class Connections{

2 //class fields

3 public Edge{} edges;

4 public Vertex{} vertices;

5 //class constructor

6 public Connections(Integer verticeCount);

7 //class methods

8 public Edge getEdge(Vertex v1, Vertex v2);

9 public Vertex[] getVertices(Edge e);

10 public Boolean areConnected(Vertex v1, Vertex v2);

11 public void addConnection(Vertex v1, Vertex v2);

12 public void removeConnection(Vertex v1, Vertex v2);

13 public Vertex[] getNeighboursOf(Vertex j);

14 public Integer valence(Vertex j);

15 public Vertex[] findSimplePath(Vertex v1, Vertex v2);

16 public Vertex[] findSimplePath(Vertex v1, Vertex v2, Vertex{}

forbiddenVertices);

17 }

Listing 4.1: Class Connections

4.1.2 Pebble Problem Representation

A pebble configuration can be represented by using an array of Pebble having the length of the vertice-
Count where there is either a Pebble or a NULL value. Together with the class Connections we present
the method signature of the class Graph
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1 class Graph {

2 //class fields

3 public Pebbles[] pebbles;

4 public Connections graph;

5 //class constructor

6 public Graph(Integer verticeCount);

7 //class methods

8 public Boolean vertexShouldBeOccupied(Vertex v);

9 public Boolean vertexIsEmptyAt(Vertex v);

10 public Boolean vertexIsCorrectlyOccupied(Vertex v);

11 }

Listing 4.2: Class PebbleGraph

4.2 Algorithms For All Problem Cases

In this section we present algorithms that are applicable for all problem cases.

4.2.1 Calculate Connected Graphs Separately

This is a code fragment for calculating disconnected graphs as in the procedure solveAPebbleProblem.
If we assume that the graph may not be fully connected we start by calculating fully connected graph

components and solving them separately. We use a common approach by putting all vertices in a list

1 Graph[] findConnectedGraphs(Graph graph){

2 PebbleGraph[] disconnectedGraphs=[];

3 Vertex{} remainingV = graph.vertices;

4 while(remainingV is not empty){

5 Vertex v = remainingV.first();

6 PebbleGraph newG = new PebbleGraph(graph.vertices.length);

7 findConnectedGraphFromAVertex(graph, v, newG);

8 remainingV.removeAll(newG.vertices);

9 disconnectedGraphs.add(newG);

10 }

11 return disconnectedGraphs;

12 }

13
14 Graph findConnectedGraphFromAVertex(Graph graph, Vertex v, Graph newG){

15 Vertex{} openV = {v};

16 do {

17 v = openVertices.first();

18 open.remove(v);

19 closed.add(v);

20 newG.pebbles[v]=graph.pebbles[v];

21 Vertex{} neighbours = graph.getNeighboursOf(v);

22 for (Vertex w : neighbours){

23 newG.graph.addConnection(v, w);

24 }

25 neighbours.removeAll(closed);

26 open.addAll(neighbours);

27 } while (open is not empty);

28 return g;

29 }

Listing 4.3: calculating connected graphs from disconnected one
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4.2.2 Calculating Arms and Handles

It turns out to be useful to calculate a list of all arms and handles of a connected graph G once,
respectively classify G as polygon or chain just after it’s creation by the algorithm above.

If a graph G = (V,E)is neither a chain, nor a polygon, each edge e ∈ E is part either part of a handle
or an arm of G.

A possible algorithm to do this all at once is by putting all existing edges e ∈ E in a queue Q.

1. We initalize an empty set x of edges. We take the first edge e = s out of Q, add e to x, get one of
both vertices v ∈ e. We start building a simple path p by putting v into it.

2. If val(v) = 2 we continue to “walk into this direction” by updating the current edge e and vertice
v accordingly and adding v to p.

(a) If we find that the current edge e is the edge we started with, we have found G beeing a
polygon and stop the execution.

(b) If val(v) < 2 we may have found either a part of an arm of G or G beeing a chain. If val(v) > 2
we may have found either a part of a handle or arm of G. In both cases we “walk into the
other direction” by assigning assign p = p−1, edge e = s and vertex v with the other vertice
of e (i.e. the one 6∈ p.

3. We then continue similar to step (2) until we find val(v) 6= 2. For brevity let us denote the first
and last vertex in p with a and b.

(a) If val(a) = val(b) = 1 we have found G to be a chain and stop the execution.

(b) If val(a) 6= 1 6= val(b) we have found p to be a handle of G

(c) Else we have found p to be an arm of G

4. If we found an arm or a handle we add it to a respective lists and remove all edges in x from Q.
We do this until Q is empty.

1 findHandles(Graph graph) {

2 Handles[] = [];

3 Arms [] = [];

4 Edge{} unusedEdges = E of G;

5 while (unusedEdges not empty){

6 Edge startE=unusedConnections.next();

7 Edge currentE=startE;

8 Edge{} visitedE={};

9 Path path[] = [];

10 walkIntoDirection(0);

11 while (valence(currentV)==2){

12 if (currentE==startE)

13 exit(G is a polygon);

14 walkIntoDirection(0);

15 }

16 path = path.reverse();

17 currentE=startE;

18 walkIntoDirection(1);

19 while (valence(currentV)==2)

20 walkIntoDirection(1);

21 if (valence(currentV))==1)

22 if (valence(path[0])==1)

23 exit(G is a chain);

24 else

25 Arms.add(path);

26 else
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27 if (valence(path[0])==1)

28 Arms.add(path);

29 else

30 Handles.add(path);

31 unusedEdges.removeAll(visitedE);

32 }

33 }

34 walkIntoDirection(Integer i){

35 Vertex currentV = getVertices(currentE)[i];

36 path.add(currentV);

37 visitedE.add(currentE);

38 if (getEdge(adj(currentV)[0],currentV)==currentE)

39 currentE = getEdge(adj(currentV)[1],currentV)

40 else

41 currentE = getEdge(adj(currentV)[0],currentV)

42 }

Listing 4.4: algorithm to find arms and handles of a graph

4.2.3 Moving Pebbles into the Goal Configuration

We introduce the signature of a class LeafQueue which is filled with a minimum spanning tree (MST)
created via the original graph via the Kruskal algorithm. From the queue we then sequentially prune each
leaf vertex out of the MST as discussed for procedure rearrangePebbles from the previous chapter.

1 class LeafQueue{

2 //class constructor

3 public LeafQueue(Connections tree);

4 //class methods

5 public Vertex popNextLeaf();

6 }

Listing 4.5: Class LeafQueue

The following listing is describing the actual procedure. The Kruskal algorithm for generating the
MST is not explicitly listed, but assumed to be present as library call.

1 Move[] rearrange(Graph problem) {

2 Move[] solutionMoves=[];

3 Connections mst=KruskalAlgorithm.getMST(problem.graph);

4 LeafQueue verticeQ = new LeafQueue(mst);

5 while (verticeQ is not empty) {

6 Vertex nextV = verticeQ.popNextLeaf();

7 if (not graph.vertexIsCorrectlyOccupied(v))

8 solutionMoves.add(fixVertex(problem, mst, v));

9 for (Vertex w:mst.getNeighboursOf(v))

10 mst.removeConnection(w, v);

11 }

12 return solutionMoves;

13 }

14
15 Move[] fixVertex(Graph problem, Connections mst, Vertex v) {

16 Move[] partialSolution=[];

17 Boolean lookFor = problem.vertexShouldBeOccupied(v);

18 Integer vc = problem.graph.countVertices;

19 Vertex{} openV = {};

20 Vertex[] predecessors = new Vertex[vc];
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21 predecessors.set(v, v);

22 do {

23 Vertex{} neighbours = mst.getNeighboursOf(v);

24 neighbours.removeAll(predecessors);

25 for(Vertex w:neighbours)

26 if (predecessors[w]==null)

27 predecessors[w]=vertex

28 openV.addAll(neighbours);

29 v = openV.pop();

30 } while (problem.vertexIsEmptyAt(v) == lookFor);

31 Vertex previousV=predecessors[v];

32 do {

33 if (lookFor)

34 partialSolution.add(new Move(v,previousV);

35 else

36 partialSolution.add(new Move(previousV,v);

37 Vertex tmp = previousV;

38 v = previousV;

39 previousV = predecessors[tmp];

40 } while (previousV is not equal to v);

41 return partialSolution;

42 }

Listing 4.6: arranging pebbles to end position

4.3 Algorithms for Biconnected Graphs with One Blank

In this chapter we discuss algorithms that are useful in case we need to solve a non-trivial biconnected
graph with only 1 blank.

4.3.1 Fixing Odd Permutations on Non-Bipartite Graphs

This listing shows pseudocode for how to fix an odd permutation on non-bipartite graphs. We first
check the parity of the currently induced permutation by the pebble configuration. If it is odd we can
then acquire an odd cycle for non-bipartite graphs; else we result with NULL and the problem is not
solvable. We then show how to apply the odd cycle to get into a new pebble configuration where an even
permutation is induced.

1 Move[] assertEvenPermutation (Graph graph)

2 if not permutationIsEven(graph.pebbles) {

3 Vertex[] oddCycle = getOddCycle(graph.connections);

4 if (oddCycle==NULL)

5 exit(odd Permutation on bipartite graph);

6 else

7 return fixToEvenPermutation(graph,oddCycle)

8 }

9 }

10
11 boolean permutationIsEven(Pebbles[] permutation){

12 Integer parity = 0;

13 Integer l= permutation.length;

14 Boolean[] v = [];

15 int j=l-1;

16 while(j>=0){

17 v.add(false);
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18 j--;

19 }

20 j=l-1;

21 while(j>=0) {

22 if(v[j]){

23 parity++;

24 } else if (permutation[j]!=NULL) {

25 int x = j;

26 do {

27 x = this.get(x);

28 v.set(x,true);

29 } while (x!=j);

30 }

31 j--;

32 }

33 return (p%2==0);

34 }

35
36 Vertex[] getOddCycle(Connections graph){

37 Integer l = graph.Vertex.length

38 Boolean[] colour = new Boolean[l];

39 Boolean[] visited = new Boolean[l];

40 Vertex[] path = new Vertex[l];

41 Vertex[] cycle = NULL;

42 for (Vertex v : G.Vertex)

43 if (!visited[v])

44 dfs(graph, v);

45 return cycle;

46 }

47
48 void dfs(Connections G, Vertex v) {

49 visited[v] = true;

50 for (Vertex w : G.getNeighboursOf(v)) {

51 if (cycle not empty)

52 return;

53 if (!visited[w]) {

54 path[w] = v;

55 colour[w] = !colour[v];

56 dfs(G, w);

57 } else if (colour[w] == colour[v]) {

58 for (Vertex x = v; x != w; x = path[x])

59 cycle.add(x);

60 cycle.add(w);

61 }

62 }

63 }

64
65 Move[] fixToEvenPermutation(Graph graph, Vertex[] oddCycle) {

66 Move[] m = [];

67 Vertex blank = graph.pebbles.indexOf(NULL);

68 Vertex exchange = oddCycle[0];

69 Vertex[] exchangePath = graph.connections.findSimplePath(blank, exchange);

70 m.add(exchangePath);

71 oddCycle.needAtBeginning(blank);

72 m.add(oddCycle);

73 m.add(exchangePath.reverse());
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74 return m;

75 }

Listing 4.7: fixing odd permutations

4.3.2 Having the blank at a vertex with val(v) > 2

This step is not explicitly described in the Kornhauser thesis citeKHT, but imminent in order to acquire
a solution as the blank should be residing at a vertex v with val(v) > 2.

If this is not the case we look at which vertex v the blank is residing and apply a apply a breadth-
first-search to find the closest vertex w with val(w) > 2, resulting in a path p from v to w.

We then push the blank mapped at v to w by execMoveSeq(generateBlankMS (p), ) and furthermore
modifiyng the goal configuration z accordingly to zb, so that we can execute the standard algorithm.

Afterwards we reverse the operations just described by execMoveSeq(generateBlankMS (p−1), ) and
re-modifiy the goal configuration from zb back to z accordingly.

4.3.3 Calculating Three-Cycles

This is an implementation the decompositon of an even permutation into a list of 3-cycles.

1 KCycle[] cycleCalc(Graph graph) {

2 Permutation p = new Permutation(graph.pebbles);

3 KCycle[] solution=[];

4 Vertex{} availableV=graph.getNonEmptyVertices();

5 Permutation p2 = Permutation.identity(p.length);

6 for (int steps = 0; steps < p.length - 2; steps++) {

7 int oldIndex = p2.indexOf(p[steps]);

8 availableV.remove(steps);

9 if (oldIndex == steps) {

10 continue;

11 }

12 int n = availableV \ {oldindex,steps};

13 KCycle s = [n,steps,oldIndex];

14 p2.apply3cycle(s.reverse());

15 solution.add(s);

16 }

17 return solution.reverse();

18 }

Listing 4.8: calculating 3-cycles out of a permutations

4.3.4 Executing a Three-cycle by Conjugation into the Standard Cycle

This fragment shows how to execute any 3-cycle
(
v1 v2 v3

)
by conjugation, given a handle in the

graph that provides 3-transitivity.

1 //for simplicity we assume that handles have been ordered so that the blank is at

the bottom

2
3 Graph graph = problemToSolve.graph;

4 Vertex[] handleToUse = graph.connections.getLongesHandle();

5 blank = graph.pebbles.indexOf(NULL);

6 KCycle pushDown = pushPebbleDownPositions(localGraph);

7 Move[] pushDownSequence = addSequenceFromCycleNotation(blank, pushDown);

8
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9 Move[] conjugateIntoCycle(KCycle cycleToAchieve, KCycle standardCycle, Move[]

standardCycleMoveSequence, ){

10 Move[] m = [];

11 Move[] standard = getMovesIntoHandle(standardCycle);

12 Move[] cycle = getMovesIntoHandle(cycleToAchieve);

13 m.add(cycle);

14 m.add(standard.reversed());

15 m.add(standardCycleMoveSequence);

16 m.add(standard);

17 m.add(cycle.reversed());

18 return m;

19 }

20
21 Move[] getMovesIntoHandle(KCycle verticePositionsToMove){

22 Graph localgraph = graph.clone();

23 Move[] m = [];

24 Pebbles[] pebblesToMove = [];

25 for (Integer i = verticePositionsToMove.size() - 1; i >= 0; i--) {

26 Integer pos = verticePositionsToMove[i];

27 Pebble p = localGraph.pebbles[pos];

28 pebblesToMove.add(p);

29 }

30
31 Vertex to = handleToUse[0];

32
33 for (Pebble pebble : pebblesToMove) {

34 if (not first pebble) {

35 localGraph.executeMoveSequence(pushDownSequence);

36 m.add(pushDownSequence);

37 }

38 pebble = pebblesToMove.get(i);

39 Vertex from = localGraph.pebbles.indexOf(pebble);

40
41 if (to == from) //if already at correct position

42 continue;

43
44 // searching a move sequence from->to not passing handleToUse

45 if (handleToUse.contains(from)))

46 from = movePebbleOut(localGraph, verticePositionsToMove,

handleToUse, from, m);

47
48 Vertex{} forbiddenVertices.add(handleToUse);

49 MoveSequence todo = getMoveCycle(localGraph, from, to,

forbiddenVertices);

50
51 while (localGraph.pebbles.indexOf(pebble) != to) {

52 localGraph.executeMoveSequence(todo);

53 m.add(todo);

54 }

55 }

56 m;

57 }

58
59 KCycle pushPebbleDownPositions(Connections graph, Vertex[] handleToUse) {

60 Move[] pushDownSequence = getMoveSequenceFromCycleNotation(blank,

pushDown);
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61 Vertex from = handleToUse.get(0);

62 Vertex to = handleToUse.get(1);

63 Pebble pebble = graph.pebbles[from];

64 return getMoveCyclePositions(graph, from, to, blank);

65 }

66
67 KCycle getMoveCyclePositions(Connections graph, Vertex from, Vertex to, VerticeSet

forbiddenVertices) {

68 forbiddenVertices.remove(to);

69 forbiddenVertices.remove(from);

70 forbiddenVertices.add(blank);

71 VerticeList path1 = graph.findSimplePath(from, to, forbiddenVertices);

72
73 forbiddenVertices.add(path1);

74 forbiddenVertices.remove(to);

75 forbiddenVertices.remove(blank);

76 VerticeList path2 = graph.findSimplePath(to, blank, forbiddenVertices);

77
78 forbiddenVertices.add(path2);

79 forbiddenVertices.remove(blank);

80 forbiddenVertices.remove(from);

81 VerticeList path3 = graph.findSimplePath(blank, from, forbiddenVertices);

82
83 KCycle cycleX = new KCycle();

84 for (int j = 1 ; j < path3.size(); j++)

85 cycleX.add(path3[j]);

86 for (int j = 1; j< path1.size(); j++)

87 cycleX.add(path1[j]);

88 for (int j = 1; j< path2.size() - 1; j++)

89 cycleX.add(path2[j]);

90
91 return cycleX;

92 }

93
94 protected Move[] getMoveCycle(Connections g, Vertex from, Vertex to, VerticeSet

forbiddenVertices) {

95 KCycle cycleX = getMoveCyclePositions(g, from, to, blank, forbiddenVertices

);

96 return addSequenceFromCycleNotation(blank, cycleX);

97 }

98
99 Integer movePebbleOut(KCycle verticePositionsToMove,Vertex from, Move[] toAdd){

100 Move[] sMoveOut = [];

101 Pebble pebble=graph.getPebbleAt(from);

102
103 Move[] handleTurn=pushDownSequence;

104 Integer j = handleToUse.length-handleToUse.indexOf(from)-1;

105 for (Integer i=0;i<j;i++){

106 graph.executeMoveSequence(handleTurn);

107 toAdd.add(handleTurn);

108 }

109 Vertex to=graph.pebbles.indexOf(pebble);

110
111 //create reversal move sequence for reversing the handle turn later

on

112 MoveSequence handleTurnReversals=toAdd.createReversedMoveSequence()
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;

113
114 for (Vertex exchangeV : graph.connections.vertices){

115 if (!pushDown.contains(exchangeV) && exchangeV!=blank) {

116 break;

117 Vertex{} vForbidden={};

118 vForbidden.add(handleToUse);

119 vForbidden.remove(blank);

120 vForbidden.remove(handleToUse.get(0));

121 Move[] exchange=getMoveCycle(graph,to,exchangeV,vForbidden);

122
123 while(graph.pebbles[exchangeV]!=pebble){

124 graph.executeMoveSequence(exchange);

125 toAdd.add(exchange);

126 }

127 graph.executeMoveSequence(handleTurnReversals);

128 toAdd.add(handleTurnReversals);

129
130 return pNew;

131 }

132 }

Listing 4.9: executing a cycle by conjugation into a standard cycle

4.3.5 Executing a Three-cycles directly on G2 graphs

This snippet shows a slight variation by us, given a G2 graph on how to execute any 3-cycle
(
v1 v2 v3

)
directly on it without conjugation.

1 Move[] findCycleMovesOnG2(KCycle cycleToAchieve, Graph graph) {

2 Vertex blank = Pebbles.indexOf[NULL];

3 Vertex inbetween = Graph.connections.getNeighboursOf(blank)[0];

4 Vertex top = Graph.connections.getNeighboursOf(inbetween)[0];

5 if (top == blank)

6 top = graph.connections.getNeighboursOf(inbetween)[1];

7
8 if (cycleToAchieve contains top) {

9 KCycle clockwise = {1, 2, 3};

10 KCycle counterclockwise = {3, 2, 1};

11 switch(p) {

12 case 0: cycleToAchieve.apply3cycle(clockwise); break;

13 case 1: break; //nothing to do

14 case 2: cycleToAchieve.apply3cycle(counterclockwise); break;

15 }

16 Move[] sequence = addSequenceFromCycleNotation(blank, cycle);

17 } else {

18 Move[] sequence = {

19 blank, cycle[2], top, cycle[1],

20 blank, cycle[1], top, cycle[0],

21 blank, cycle[1], top, cycle[2]

22 };

23 }

24 return sequence;

25 }

Listing 4.10: executing cycles on G2
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Chapter 5

Discussion

In this paper we have presented an algorithm first proposed in 1984 by Kornhauser [3] which can solve
pebble motion problems, an equivalent to sequential, centralized-planned MAPF problems in polynomial-
time that produces sequences of moves with O(v3) and also provided pseudocode with an emphasis placed
on the pebble motion problem cases of biconnected graphs with 1 blank vertex and provided a further
proposal to reduce the number of solution moves required in cases of G2 graphs.

We further created an implementation in Java for the procedure as described by Kornhauser to quite
a large extend which we soon want to publish freely available for the public.

Due to the time constraints for this thesis we were unable to test out the performance of our imple-
mentation to the full extend by experimentation; it is our intend to rectify this as soon as possible.

Given the quite tractable procedure by Kornhauser for generating sequential moves solutions, we may
suggest that future research in MAPF could focus on how to translate sequential move sequences into
parallel move sequences.
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