
Master’s Thesis

Double Description Method in Cost
Partitioning

Raphael Kübler∗

August 29, 2022

University of Basel
M.Sc. Course in Mathematics

∗Prof. Dr. Jérémy Blanc, Prof. Dr. Malte Helmert, Dr. Florian Pommerening

Acknowledgment

First of all, I would like to thank Prof. Dr. Jérémy Blanc and Prof. Dr. Malte Helmert,
for making it possible for me to write this thesis as well as setting me up with Dr. Florian
Pommerening.

Second, I would like to express my gratitude to Dr. Florian Pommerening. He supported
and encouraged me throughout the four months of writing this thesis.

I also want to thank my family and friends for their support and for proofreading the
final version of this thesis.

Last but not least I am grateful to my flatmate Raphael who turned out to be my own
personal stackoverflow during the last month and helped me out when my computer broke
a week before the deadline.

i

Abstract

Cost partitioning is a technique used to calculate heuristics in classical optimal planning.
It involves solving a linear program. This linear program can be decomposed into a master
and pricing problems. In this thesis we combine Fourier-Motzkin elimination and the dou-
ble description method in different ways to precompute the generating rays of the pricing
problems. We further empirically evaluate these approaches and propose a new method
that replaces the Fourier-Motzkin elimination. Our new method improves the performance
of our approaches with respect to runtime and peak memory usage.

iii

Contents

1 Introduction 1

2 Planning 3
2.1 Classical Optimal Planning . 3
2.2 State Space Search . 5
2.3 Cost Partitioning . 9

3 Linear Inequalities 11
3.1 Fourier-Motzkin Elimination . 11
3.2 Polyhedral Cones . 15
3.3 Double Description Method . 19
3.4 Linear Programming . 23
3.5 Dantzig-Wolfe Decomposition and Column Generation 25

4 Cost Partitioning and the Dantzig-Wolfe Decomposition 29
4.1 Restricted Master Problem . 29
4.2 Pricing Problem . 31

5 Theoretical Analysis 33
5.1 Fourier-Motzkin and the Pricing Problem . 33
5.2 Double Description and the Pricing Problem 39

6 Experiments 43
6.1 Algorithms . 43
6.2 Setup . 44
6.3 Results . 44

6.3.1 Solved Tasks . 44
6.3.2 Total Runtime . 45
6.3.3 Peak Memory Consumption . 48
6.3.4 Redundant Constraints After Projection 49

7 Conclusion 51
7.1 Discussion of Results . 51
7.2 Future Work . 51

v

Chapter 1

Introduction

Planning tasks are as old as humankind. They are concerned with finding a strategy to
change the state of a given world into a desired state. We are able to change the state of
the world by applying predefined actions. A strategy is a sequence of actions that we can
apply. If this sequence changes the world into a desired state we call it plan. A naive way
to find such a plan would be to search through all possible states our world could be in by
considering the actions we can apply. Fortunately there exist more advances search methods
that can limit the number of states we need to look at to find an optimal solution. In order
to accomplish this, the search methods use functions named heuristics that compute a lower
bound of for the distance of a state to the desired state. For example, they could tell us
how many actions we need to apply at most to reach a desired state from our current state.
In this thesis we are looking at a specific method to compute such heuristics. The method
used is originally based in operations research and computing its value involves solving a
large linear program with a technique called column generation. This technique relies on
repeatedly computing solutions over a subset of constraints called the pricing problem. We
attempt to solve this problem by precomputing all possible solutions to the price problem,
although this seems to contradict the nature of column generation, as we will discover when
we present the technique in detail. The reason we still explore this approach lies in the fact
that there is reason to believe that the number of solutions is small in our practical cases
(Pommerening et al., 2021). Moreover, this precomputation could potentially let us skip an
expensive step in the computation of the heuristic functions. This would result in a faster
search for a plan and would therefore let us solve the planning task more quickly.

In this thesis we compare two different approaches to precompute the solutions for the
pricing problems. Moreover, we present a new method that replaces parts of the faster
approach which further improves its running time.

To formally state our original problem, grasp the methods used to solve it and under-
stand our two approaches knowledge of different concepts in computer science and math is

1

Chapter 1 Introduction

mandatory. The necessary background for computer science will be covered in chapter 2,
whereas the mathematical background will be discussed in chapter 3. These concepts al-
low us to better understand the problem setting presented in chapter 4 and our theoretical
results covered in chapter 5. In chapter 6 we discuss the results we got by implementing
the different approaches and testing them on existing planning tasks from the International
Planning Competitions1.

The concepts presented throughout this thesis may sometimes seem challenging to under-
stand. In order to convince you that they mostly just seem challenging, simple illustrating
examples are provided along the way.

1http://ipc.icaps-conference.org

2

Chapter 2

Planning

Throughout most of this chapter, we will consider a logistics task as an example. This
task takes place in the so called logistics domain introduced by McDermott (2000). An
illustration of the example is given in Figure 2.1. In our domain there are two locations L1

and L2. At location L1 there is a packet p and at location L2 there are two trucks T1 and
T2. The trucks are able to drive from one location to the other depicted by the arrow in
Figure 2.1. Moreover, it is possible to load and unload the package from the trucks at both
locations (given that the package is at the same location as the truck or that the package
is inside the truck). The goal is to move the package from L1 to L2.

L1

p

L2

T1, T2

Figure 2.1: Illustration of the inital state of the logistics example.

2.1 Classical Optimal Planning

There are many different forms of planning. We will focus our attention on classical optimal
planning. The word classical implies that our problem has the following three properties. It
must be static, i.e. the state of our world only changes through our actions. Second, every
action in our world only has one outcome. This property is called deterministic. Moreover,
our world must be finite and fully observable, i.e. we only deal with a finite amount of
states, actions and events and always have complete knowledge of the world. The word
optimal refers to the fact that we only accept optimal plans as solutions. A plan is optimal
if there does not exist another plan that is better with respect to the metric considered in

3

Chapter 2 Planning

the problem. The metric we will consider is the smallest distance of a state to a desired
state.

Formally describing a problem in classical optimal planning is not always done the same
in research. We will use the SAS+ formalism (Bäckström and Nebel, 1995). In order to
define a planning task in this formalism, we need to introduce some concepts first.

In planning a variable v is an object that has a finite domain dom(v). The set of all
variables is denoted by V. The process of assigning a value w ∈ dom(v) to every variable v ∈
V is called assignment. We write v "→ w to denote that the variable v is assigned the value
w. A partial assignment γ maps a subset vars(γ) ⊆ V of the variables to dom(vars(γ)),
where vars(γ) is the set of all variables that are mapped to a value by γ. We refer to the
value of a variable v ∈ vars(γ) of a partial assignment γ by γ[v].

A state s is a partial assignment over all variables, i.e. vars(s) = V, and denote this by
s = {v "→ w | w ∈ dom(vars(s))}. The set of all states is denoted by S. We say that a
state s ∈ S satisfies a partial assignment γ if s[v] = γ[v] for all v ∈ vars(γ). We then write
s |= γ.

An action a is a tuple 〈pre(a), eff(a), cost(a)〉, where the precondition pre(a) and the effect
eff(a) are partial assignments. By cost(ai) we denote the cost of applying action a. The
set of all actions is denoted by A. We say that an action a ∈ A is applicable in a state s if
the precondition pre(a) holds in s. Applying an action a in state s results in a new state
s′ = s[[a]] where s[[a]] := eff(v) for all v ∈ eff(a) and s[[a]] := eff(v) for all v ∈ V \ eff(a).

We can now finally give a formal definition of a SAS+ planning task.

Definition 2.1 (SAS+ planning task) A SAS+ planning task is defined as a tuple Π =
〈V , A, s0, G〉, where

• V = {v1, . . . , vn} is a finite set of variables.

• A = {a1, . . . am} is a finite set of actions.

• s0 ∈ S is the initial state.

• G is a partial assignment that defines the goal states. A state s ∈ S is called a goal
state, if s satisfies G i.e. s |= G.

In the SAS+ formalism states are given as a factored representation. This means that the
states are encoded as assignments of the variables. We will take a look at our logistics
example to get a better understanding on what the different concepts mean.

4

2.2 State Space Search

The set of variables is given by V = {p, T1, T2} and are mapped to their current location.
Their respective domains are given in the following table along with the actions of our model
for 1 ≤ i, j, k ≤ 2.

variable domain
p {L1, L2, T1, T2}
T1 {L1, L2}
T2 {L1, L2}

action precondition effect
drive(Ti, Lj , Lk) Ti "→ Lj , Lj ∕= Lk Ti "→ Lk

load(p, Ti) p "→ Lj , Ti "→ Lj p "→ Ti

unload(p, Ti) p "→ Ti, Ti "→ Lj p "→ Lj

The cost of every action is set to 1. The initial state is given by s0 = {p "→ L1, T1 "→
L2, T2 "→ L2}. Goal states must satisfy G = {p "→ L2}.

2.2 State Space Search

A classical optimal planning task induces a state space1. The task of finding a plan becomes
the task of finding a path from the initial state to a goal state.

Definition 2.2 (Induced State Space) The state space induced by a planning task Π is a
6-tuple ΘΠ = 〈S, A, cost, T , s0, G〉, where

• S is the finite set of states of Π.

• A is the set of actions of Π.

• cost : A → R is the function that maps each action to a cost.

• T ⊆ S × A × S is the set of transitions. For s, s′ ∈ S, a ∈ A we have 〈s, a, s′〉 ∈ T if
and only if a is applicable in s and the effect of applying a in state s results in s′.

• s0 ∈ S is the initial state of Π.

• sG ⊆ S is the set of goal states of Π.

1Some authors use the term transition system instead of state space.

5

Chapter 2 Planning

L1L2L2start

L1L1L2

L1L1L1

L1L2L1

T1L1L2

T1L1L1

T2L1L1

T2L2L1

T1L2L1

T1L2L2

T2L1L2

T2L2L2

L2L2L1

L2L2L2

L2L1L2

L2L1L1

drive
(un-)load

Figure 2.2: Illustration of the state space of the logistics example. We used the following
abbreviations for the states TiLjLk = {p "→ Ti, T1 "→ Lj , T2 "→ Lk}. The goal
states are depicted by double-circles and the initial state is marked by start.

State space search can be grouped into two categories. The first category consists of
uninformed search methods. Uninformed search methods systematically try to find a plan
by only using the knowledge from the initial problem statement. Informed search methods
use heuristics to approximate the distance from a state to the nearest goal state. Heuristic
search is one of the state or the art search methods to solve classical optimal planning tasks.

Definition 2.3 (Heuristic) A heuristic h for a planning task Π with states S is a function
h : S × cost → R ∪ {−∞} that assigns a real value or −∞ to every state s ∈ S considering
the cost function cost. A heuristic h is called perfect and denoted by h∗ if it maps every
state s ∈ S to a cost of an optimal plan from s or to −∞ if no plan exists. If cost is the
cost function of the task we will simply write h(s).

In our work we further restrict our heuristics. More precisely, we want our heuristic to
be admissible. An admissible heuristic never overestimates the remaining cost of reaching a
goal state, i.e. h(s) ≤ h∗(s), for all s ∈ S. This property guarantees that if we use certain
search-algorithms (e.g. A*-search) we will always find an optimal solution, if a solution
exists.

A special family of heuristic search is abstraction. An abstraction α is a surjective func-

6

2.2 State Space Search

tion that maps states s ∈ S to abstract states Sα. If there was a transition between two
states s, s′ ∈ S there will also be a transition between the abstract states α(s), α(s′) ∈ Sα.
Formally, the abstraction function α induces the abstract state space ΘΠα .

Definition 2.4 (Induced Abstract State Space) Let Π be a planning task and ΘΠ its
induced state space. Let α : S → Sα be an abstraction function. We call ΘΠα =
〈Sα, A, cost, T α, sα

0 , Gα〉 the induced abstract state space of α, where Sα = {α(s) | s ∈ S},
T α = {〈α(s), a, α(s′)〉 | 〈s, a, s′〉 ∈ T }, sα

0 = α(s0) and Gα = {α(s) | G |= s}.

Abstract state spaces are an important tool in practice because their state space is small
enough to be stored in computer memory and every plan in the original state space is also
a plan in the abstract state space. Additionally, the cost of an optimal plan in the original
state space will always be higher or equal than the cost of an optimal plan in the abstract
state space. Thus using the cost of the abstract is an admissible heuristic.

Theorem 2.1 Let Π be a planning task and ΘΠ = 〈S, A, cost, T , s0, s∗〉 its corresponding
state space. Let α : S → Sα be an abstraction function. A plan p in the original state space
ΘΠ is also a plan in the abstract state space ΘΠα . Moreover, the optimal goal distances in
the abstract state space are an admissible heuristic for the original state space.

A special case of abstractions are projections. For projections the abstraction function
maps the states onto a pattern. A pattern is a subset of the original variables. Abstract
state spaces can be computed quite fast if the patterns are small, since all preconditions
and effects outside the pattern can be ignored.

7

Chapter 2 Planning

L1L2L2start

L1L1L2

L1L1L1

L1L2L1

T1L1L2

T1L1L1

T2L1L1

T2L2L1

T1L2L1

T1L2L2

T2L1L2

T2L2L2

L2L2L1

L2L2L2

L2L1L2

L2L1L1

drive
(un-)load

L1start

T1

T2

L2

Figure 2.3: Illustration of the state space for the abstraction function that projects each state
to the position of the packet. The top image shows the abstraction function in
the original state space the bottom shows the induced state space.

8

2.3 Cost Partitioning

2.3 Cost Partitioning

One of the problems of abstraction heuristics is that there are a lot of different admissible
heuristics and it is usually not clear which one we should choose. Moreover, it was shown
that using a single heuristic is usually not enough to capture all the details needed for solving
the problem efficiently (Holte et al., 2006). It is therefore common to use multiple heuristic
functions and combine them to generate a better estimate. A priori we do not know if
the combination of multiple admissible heuristics is admissible as well. Furthermore, we do
not know how to combine the results of each heuristic to obtain a better heuristic. This is
where the idea of cost partitioning comes into play. Cost partitioning is a technique that
distributes the original costs of the problem among the different heuristics, such that their
combination is again admissible (Katz and Domshlak, 2010; Pommerening et al., 2015). In
the following defintions and theorems we formally define (optimal) cost partitioning and
show how to construct an admissible (optimal) cost partitioning.

Definition 2.5 (General Cost Partitioning; Pommerening et al., 2015) Let Π be a planning
task with a set of actions A and cost function cost: A → R. A general cost partitioning for
Π is a tuple P = 〈cost1, . . . , costn〉 where costi : A → R for 1 ≤ i ≤ n and !n

i=1 costi(a) ≤
cost(a) for all a ∈ A.

Theorem 2.2 (Pommerening et al., 2015) Let Π be a planning task and let P = 〈cost1, . . . ,

costn〉 be a general cost partitioning. For admissible heuristics h1, . . . , hn of Π we get that

hP (h1, . . . , hn, s) =
n"

i=1
hi(s, costi) (2.1)

is an admissible heuristic for every state s of the planning task Π. Note that if any term in
(2.1) is ∞, then the whole sum is defined as ∞, even if one of the terms is −∞.

Definition 2.6 (Optimal General Cost Partitioning; Pommerening et al., 2015) Let Π be
a planning task and let Pn be the set of all general cost partitionings for Π with n elements.
We say that a general cost partitioning is optimal, if it achieves the highest heuristic value
for a given state and heuristics. More formally, we define the set of all general optimal cost
partitionings for admissible heuristics in a state s of Π as

OCP(h1, . . . , hn, s) = arg max
P ∈Pn

hP (h1, . . . , hn, s)

Theorem 2.3 (Pommerening et al., 2015) Let Π be a planning task and let Pn be the set of
all general cost partitionings for Π with n elements. Moreover, let s be a state of Π. We can

9

Chapter 2 Planning

calculate an optimal general cost partitioning estimate for admissible heuristics h1, . . . , hn

in state s as follows

hOCP(h1, . . . , hn, s) = max
P ∈Pn

(h1, . . . , hn, s)

The method used to compute such cost partitions will be presented in chapter 4.

10

Chapter 3

Linear Inequalities

This chapter focuses on systems of linear inequalities. That is, given a matrix A ∈ Rm×n,
vector b ∈ Rm for some numbers m, n ∈ N, we want to find vectors x such that Ax ≤ b. Such
vectors are called feasible solutions. The set of all feasible solutions of a system of linear
inequalities is called feasible set or polyhedron. The polyhedron formed by a single linear
inequality is called a half-space, since it divides the underlying space into two. Geometrically,
we can therefore think of a polyhedron as the intersection of half-spaces. This is a very
general object that can be grouped into different subclasses, as we will see later.

In this chapter we first discuss a technique for determining if solutions for general systems
of linear inequalities exist. Afterwards we shift to the special case where the solution space
is a polyhedral cone. We inspect some of its properties before giving a brief introduction into
linear programming. We conclude the chapter by looking at two different approaches that
help us solve large linear programs. Namely, we consider the Dantzig-Wolfe Decomposition
that uses column generation for solving linear programs with a special structure.

3.1 Fourier-Motzkin Elimination

One of the most natural questions to ask for a system of linear inequalities is, if a feasible
solution exists at all, i.e. if the feasible set is nonempty. Fourier and Motzkin independently
developed a method to answer this question (Fourier, 1826; Motzkin, 1936). As we will see
in just a moment, their method can not only be used to check if a solution to a system
exists. It is particularly useful, if we want to reduce the number of variables in our system.

Suppose we are given a system of linear inequalities Ax ≤ b in n variables and we want
to determine if it has a solution. The main idea of Fourier-Motzkin elimination is to reduce
the question of feasibility of the original system in n variables, to one about a system in
n − 1 variables. That is, the original system is feasible if and only if the reduced system
is feasible. Fourier-Motzkin elimination achieves this by cleverly removing one of the n

11

Chapter 3 Linear Inequalities

variables such that the previous statement holds. Note that for a system of equalities, we
could simply isolate one of the variables in any of the equations and then substitute it in
all other equations.

We will look at a motivating example to understand how the method works and also
get an intuition on why it works. Consider the following system of linear inequalities in 2
variables for which we would like to know if a feasible solution exists. An illustration is
given in Figure 3.1 on the left side.

x1 − 4x2 ≤ −3

−5x1 + 2x2 ≤ −3
1
2x1 + x2 ≤ 15

2
x1 ≤ 7

For the sake of argument assume that the system is too large for us to be able to directly
check if a feasible solution exists. Thus, we want to eliminate one of the variables and choose
to eliminate x2. Since we do not want to loose any information about the feasibility of the
system, we try to see what we know about the feasible values of x2. For this, we isolate x2

in every inequality

x2 ≥ 1
4x1 + 3

4
x2 ≤ 5

2x1 − 3
2

x2 ≤ −1
2x1 + 15

2
x1 ≤ 7

(3.1)

We observe that there are three types of constraints with respect to x2. The first constraint
gives us a lower-bound restriction on a feasible solution for x2. The next two constraints
give us upper-bound restrictions and the last constraint gives us no restriction about feasible
solutions for x2. We will from now on group the constraints in upper-bound, lower-bound and
independent constraints. We eliminate x2 by combining every lower-bound constraint with
every upper-bound constraint to create new constraints. The independent constraints should
be preserved, since they give restrictions for the feasible solutions of the other variables.

12

3.1 Fourier-Motzkin Elimination

Applying the described procedure to our example yields the following result.

1
4x1 + 3

4 ≤ 5
2x1 − 3

2
1
4x1 + 3

4 ≤ −1
2x1 + 15

2
x1 ≤ 7

This is a system of linear inequalities in only one variable. Isolating the variables results in

x1 ≥ 1

x1 ≤ 9

x1 ≤ 7

For such a system it is quite easy to see, if a feasible solution exists. In our case this means
that the system is feasible for 1 ≤ x1 ≤ 7, which we illustrate in Figure 3.1 on the right. We
can plug these solutions into the previous system to calculate the feasible solutions for the
variable that was eliminated in the step before. For example let us use x1 = 1. The system
(3.1) simplifies to

x2 ≥ 1

x2 ≤ 1

x2 ≤ 14
2

1 ≤ 7

and we have that (1, 1) is a feasible solution for the original system and therefore the original
system is feasible.

It is important to note that we could also have chosen to eliminate the last remaining
variable by repeating the procedure of combining lower-bound and upper-bound constraints.
This would have resulted in the two constraints 1 ≤ 7 and 1 ≤ 9. Since both constraints
are satisfied this would have also implied that the original system is feasible.
To formalize this approach consider a general system of linear inequalities with m constraints
and n variables.

n"

j=1
aijxj ≤ bi, i ∈ I (3.2)

13

Chapter 3 Linear Inequalities

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

x1

x2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

x1

x2

Figure 3.1: The left figure shows original system of linear inequalities. The feasible set is
colored in grey grey. In the figure on the right we can see the result of Fourier-
Motzkin elimination of variable x2. It projects the feasible set onto the x1-axis.
The red arrows indicate the projection. The solid red line on the x1-axis depicts
the feasible set for x1.

where I = {1, . . . , m} denotes the index set for the constraints. We can split the index set
into the following three groups

I+ = {i ∈ I | ain > 0}
I0 = {i ∈ I | ain = 0}
I− = {i ∈ I | ain < 0}

Consider now a second system that is a modification of (3.2).
"

1≤j≤n−1
(a′

ij + a′
kj)xj ≤ b′

i + b′
k, i ∈ I+, k ∈ I−

"

1≤j≤n−1
a′

ij · xj ≤ b′
i, i ∈ I0

(3.3)

where a′
ij = aij

|ain| and b′
i = bi

|ain| for i ∈ I+ ∪ I− and 1 ≤ j ≤ n.

Theorem 3.1 (Fourier-Motzkin elimination theorem; e.g. Conforti et al. (2014)) The
following statement holds for general linear inequality systems as in (3.2)

x′ = (x1, . . . , xn−1) satisfies (3.3)

⇐⇒ ∃xn s.t. x = (x1, . . . , xn−1, xn) satisfies (3.2)

14

3.2 Polyhedral Cones

3.2 Polyhedral Cones

The focus of this section is on the study of a special class of polyhedra that is considered
throughout this thesis.

We say that a vector x ∈ Rn is a linear combination of vectors x1, . . . , xk ∈ Rn if there
exist scalars λi, 1 ≤ i ≤ k, such that

x =
k"

i=1
λixi, λi ∈ R

A conic combination is a linear combination where we restrict the scalars λi to be non-
negative. The span of a set of vectors x1, . . . , xk ∈ Rn is given by the set of a linear
combinations

span(x1, . . . , xk) :=
#

k"

i=1
λixi | λi ∈ R

$

Additionally we define the span of a matrix as the span of its column vectors. The nullspace
of a matrix A ∈ Rm×n is defined as the set of vectors x ∈ Rn such that Ax = 0, where 0
denotes the zero vector. We write Nul(A) to denote the nullspace of a matrix A.

A set C ⊆ Rn is a cone, if it contains the origin and every positive multiple of any vector
x ∈ C, i.e. λx ∈ C for all λ ≥ 0. We say that C is a convex cone if every conic combination
of some vectors is contained in C. The smallest cone containing a nonempty set S ⊆ Rn is
denoted by cone(S). By smallest we mean that there exists no cone C ′ such that S ⊆ C ′ ⊊
cone(S). The set S is said to generate cone(S). For S = ∅, we define cone(S) = {0}. For
vectors r1, . . . , rk, k ≥ 0 we define cone(r1, . . . , rk) := cone(S), where S denotes the set of
all conic combinations of the vectors. Analogously we can define cone(A) for a matrix A as
the set of all conic combination of its column vectors.

A finitely generated cone is a convex cone C for which there exists a finite set of vectors
r1, . . . , rk ∈ Rn, k ≥ 1 such that C = cone(r1, . . . , rk). The vectors r1, . . . , rk are called the
generators of C.

Definition 3.1 (Polyhedral Cone) We call a set C ⊆ Rn a polyhedral cone if it is the feasible
set for a system of linear inequalities of the form Ax ≤ 0 for a real matrix A ∈ Rm×n and
some positive numbers m, n, i.e. if

C = {x ∈ Rn | Ax ≤ 0}, A ∈ Rm×n (3.4)

This implies that a polyhedral cone is a nonempty polyhedron, since it always contains

15

Chapter 3 Linear Inequalities

the origin 0. Moreover, it contains all conic combinations of vectors x1, . . . , xk ∈ C. This
implies that all polyhedral cones are convex, since every convex combination is also a conic
combination. An example of a polyhedral cone is shown in Figure 3.2.

x1

x2

x3

Figure 3.2: A polyhedral cone in 3-dimensions.

Now that we have defined our object of interest, we want to know more about it. We have
described polyhedral cones as the intersection of a finite number of half-spaces containing
the origin (3.4). The theorems of Minkowski and Weyl show, that there exists an alternative
description for polyhedral cones.1

Theorem 3.2 (Minkowsky-Weyl Theorem for Polyhedral Cones; e.g. Conforti et al. (2014))
Let S ⊆ Rn be a set of points, then S is a polyhedral cone if and only if S is finitely generated.

A ray is a half-line that starts at a point x0 ∈ Rn and moves in a direction d for infinity.
More formally, any set {x ∈ Rn | x = x0 + λd, λ ≥ 0} is called a ray. Hence the column vec-
tors of R represent rays of cone(R), since {x ∈ Rn | x = λr, λ ≥ 0, r is column vector of R}
are rays of the cone. This may not seem like a big deal at first, but what it tells us is, that
every polyhedral cone can be generated by a finite set of rays. This gives rise to many more
questions such as: Given a cone how can we find rays that generate it? Are the generating
rays unique?

Before answering these questions in the next section, we will turn our attention to a last
special class of polyhedral cones, so called pointed polyhedral cones. The name comes from
the fact that these polyhedral cones contain a point through which no ray passes, namely
the origin. That is, if the cone contains a ray r, the negation −r can not lie in the cone.

1There exists a more general formulation of this theorem for general polyhedra (Minkowski, 1910; Weyl,
1949).

16

3.2 Polyhedral Cones

For example the cone in Figure 3.2 is a pointed polyhedral cone. The rays r that have the
property that their negation −r is also contained in the cone form what is known as the
lineality space.

Definition 3.2 (Lineality Space) The lineality space of a polyhedral cone C = {x ∈ Rn |
Ax ≤ 0} is given by

lin(C) = {x ∈ Rn | Ax = 0} (3.5)

We notice that the lineality space in the definition is equal to the nullspace of the matrix
A. We can use the definition of the lineality space to define pointed polyhedral cones.

Definition 3.3 (Pointed Polyhedral Cone)2 We call a polyhedral cone C pointed, if its
lineality space only contains the origin, that is lin(C) = {0}.

Lemma 3.1 Let A be a matrix. We have that

span(AT) ∩ Nul(A) = {0}

Proof. Let v be a vector in span(AT) ∩ Nul(A). Since v ∈ span(AT) we have that there
exists a vector x such that v = AT x. Moreover, since v ∈ Nul(A) we also have Av = 0.
This lets make the following calculation

vT v = (AT x)T (AT x)

= xT AAT x

= xT Av

= 0

This implies that v = 0.

We can use our two newly defined objects to generate any polyhedral cone by adding
them together. The addition of two sets of vectors is given by their Minkowski sum.

Definition 3.4 (Minkowski Sum) Let U, V be two subset of Rn. The Minkowski sum of U

and V is given by
U + V := {u + V | u ∈ U, v ∈ V }

Theorem 3.3 (Decomposition Theorem for Polyhedral Cones; e.g. Conforti et al. (2014))3

2The definition of the lineality space and the property of being pointed is the same for general polyhedra.
3This theorem is usually stated for general polyhedra (Conforti et al., 2014). However, this special case

17

Chapter 3 Linear Inequalities

Let C = {x ∈ Rn | Ax ≤ 0} be a nonempty polyhedral cone. Then

C = lin(C) + Q (3.6)

where Q is a pointed polyhedral cone and the addition denotes the Minkowski sum.

Proof. The reason this proof is included in the thesis is that it shows how to define the
pointed polyhedral cone Q. An illustration of such a decomposition is given in Figure 3.3.

If C is pointed we have lin(C) = {0} and the statement follows for Q := C. Thus we
assume that C is not pointed. We first explicitly construct a pointed polyhedron Q and then
show that C = lin(C) + Q is true for our construction of Q. Let d denote the dimension of
the lineality space of C. Since C is not pointed, d is greater than 0. Now let B = {b1, . . . , bd}
be a basis of lin(C), i.e. span(B) = lin(C). We define Q := {x ∈ Rn | Ax ≤ 0, BT x = 0}.
Thus we can rewrite Q as Q = {x ∈ Rn | Dx ≤ 0} where

D =

%
&&'

A

BT

−BT

(
))*

which is the definition of a polyhedral cone. Moreover, Q is also pointed, since we have

lin(Q) = {x ∈ Rn | Dx = 0}
= {x1 ∈ Rn | Ax = 0 and BT x = 0}
= {x ∈ Rn | Ax = 0} ∩ {x ∈ Rn | BT x = 0}
= lin(C) ∩ Nul(BT)

= span(B) ∩ Nul(BT)

= {0}

Where we used Lemma 3.1 in the last step. We are left to show that (3.6) holds for our
defined Q. Since lin(C) ⊆ C and Q ⊆ C it follows that lin(C) + Q ⊆ C. To prove that
C ⊆ lin(C) + Q, let x ∈ C. If Ax = 0, then x ∈ lin(C) and we are done. If Dx ≤ 0, then

suffices for our thesis.

18

3.2 Polyhedral Cones

x ∈ Q and we are also done. Thus we may assume

Dx =

%
&&'

b

c

−c

(
))*

with Ax = b and BT x = c. Since x ∈ C and x /∈ lin(C) we have that b < 0. Since Dx ≤ 0
we cannot have c = 0. By the orthogonality of x to lin(C) and b < 0 there exists y ∈ Q

such that Ay = b and BT y = 0, i.e.

Dy =

%
&&'

b

0
−0

(
))*

Moreover, let z be the orthogonal projection of x onto lin(C), i.e. z ∈ lin(C). We get

Dz =

%
&&'

0
c

−c

(
))*

Hence we have Dx = Dy + Dz with y ∈ Q and z ∈ lin(C).

x1

x2

x1

x2

Figure 3.3: On the left hand side we have the polyhedral cone C = {x ∈ R2 | −x1 + x2 ≤
0}. The right hand side shows its decomposition into the lineality space and
a pointed polyhedral cone. The lineality space is depicted by the straight line
from bottom left to top right. The pointed polyhedral cone only consists of a
single ray depicted by the arrow.

19

Chapter 3 Linear Inequalities

3.3 Double Description Method

The Minkowski-Weyl theorem for polyhedral cones has shown us, that it is possible to
describe a polyhedral cone in two different ways. However, it is not immediately clear, how
we could switch from one description to the other. In this section we present the double
description method, which allows us to just that. It was first introduced by Motzkin et al.
(1953) but independently rediscovered many times.

Definition 3.5 (DD pair; Fukuda and Prodon, 1995) Let A ∈ Rm×n and R ∈ Rn×d be real
matrices. We say that (A, R) is a DD pair, if for all x ∈ Rn

Ax ≥ 0 ⇐⇒ x = Rλ for some λ > 0

Note that the Minkowski-Weyl theorem for polyhedral cones tells us that such a pair
always exists. From now on we will call the matrix A of a DD pair representation matrix
and the matrix R the generating matrix. The polyhedral cone generated by them will be
denoted by C.

Continuing forward we will consider the problem of finding a generating matrix R given a
representation matrix A. Additionally, we will require R to be minimal, i.e. there exists no
proper submatrix R′ ⊊ R generating C. We did not choose this direction arbitrarely. For
the problem considered later in this thesis, we are always given the representation matrix.
We refer the interested reader to Farkas’ Lemma (Farkas, 1902), which implies that (A, R)
is a DD pair if and only if (RT , AT) is a DD pair.

In its simplest form, the double description method works as follows.4 Given a real
matrix A ∈ Rm×n, we select a subset I ⊆ {1, . . . , m} of row indices, such that we have DD
pair (AI , R), where AI denotes the submatrix of A consisting of the rows indexed by I.
Afterwards, we select a new row i ∈ {1, . . . , m}\ I and find a DD pair (AI∪{i}, R′) using our
previously found DD pair (AI , R). The last step is repeated until AI = A, in which case we
have found the desired DD pair (A, R).

4Since the method was first introduced by Motzkin et al. it has been optimized over and over again. Most
notably by Fukuda and Prodon (Fukuda and Prodon, 1995).

20

3.3 Double Description Method

Algorithm 1 Procedural form of the DD method
Input: A
Output: (A, R)

1: Obtain initial DD pair (AI , R)
2: while I ∕= {1, . . . , m} do
3: Choose i ∈ I \ {1, . . . , m}
4: Construct (AI∪{i}, R′) from (AI , R)
5: I ← I ∪ {i}
6: R ← R′

7: end while

The method can essentially be split into an initialization step (line 1 of the procedure) and
an iteration step (line 2 to 7). The easiest way to get an initial is to set A = ∅ and let R be
a conic basis of Rn.

The interesting part of the DD method is in the iteration step. A priori it is not clear
how we can construct a new DD pair from a previously generated one. Consider an initial
DD pair (A, R). Let Ai denote the newly chosen row. The constraint Aix ≥ 0 splits the
space Rn into the following three separate spaces:

H+ = {x ∈ Rn | Aix > 0}
H0 = {x ∈ Rn | Aix = 0}
H− = {x ∈ Rn | Aix < 0}

Remember that the column vectors rj ∈ R, j ∈ J are rays. Since we consider polyhedral
cones, we know that these rays start at the origin and must therefore lie in one of the three
spaces defined above. Thus we can use them to separate the index set J of our generating
matrix R into three parts:

J+ = {j ∈ J : rj ∈ H+
i }

J0 = {j ∈ J : rj ∈ H0
i }

J− = {j ∈ J : rj ∈ H−
i }

We call the rays indexed by J+, J0, J− the positive, zero and negative rays with respect
to i. The trick is to cleverly combine these rays to construct our new generating matrix
R′. Clearly, the negative rays can no longer be part of a generating matrix. But if we
would just use the old generating matrix without the negative rays we could loose important
information. Therefore, we try to modify them such that they end up lying in the hyperplane

21

Chapter 3 Linear Inequalities

H0. Geometrically, we copy every ray in H− once for every ray in H+. We then turn these
copies into the direction of the corresponding ray in H+ until they lie in the hyperplane
H0. These |J+| · |J−| new rays together with the |J+| positive and |J0| zero rays form
our new generating matrix R′. This process is illustrated in Figure 3.4. The following
lemma formally describes how to construct the additional rays and shows that the new pair
(AI∪{i}, R′) is indeed a DD pair.

x1

x2

x3

x1

x2

x3

Figure 3.4: Illustration of an iteration step. The dashed area in the left figure shows the cut
section by the newly introduced inequality. The right figure shows the result of
the iteration step

Theorem 3.4 (Fukuda and Prodon, 1995) Let (AI , R) be a DD pair and let i be a row
index of A not in I. Then the pair

+
AI∪{i}, R′

,
is a DD pair where R′ is the d × |J ′| matrix

with column vectors rj (j ∈ J ′) defined by

J ′ = J+ ∪ J0 ∪
+
J+ × J−

,
, and

rjj′ = (Airj) rj′ − -
Airj′

.
rj for each

-
j, j′. ∈ J+ × J−.

We still have not answered the question of what these generating rays are and if this gener-
ating matrix R is unique. It turns out that in the special case of pointed polyhedral cones
the answers are quite interesting.

Theorem 3.5 (Fukuda and Prodon, 1995) Let C be a pointed polyhedral cone. Then, the
minimal generating matrix R is unique up to scaling.

We will not formally prove this theorem. We will however give an intuitive explanation on
why the minimal generating matrix R is unique. Note that jst applying the DD method

22

3.4 Linear Programming

does not give us a minimal generating matrix R, since it generates a lot of redundant rays.
Redundant rays of R are rays that could be omitted from R such that R would still generate
the same polyhedron.

We already know that the generating matrix R consists of rays. In the case of pointed
polyhedral cones these rays are extreme rays.

Definition 3.6 (Extreme Rays) A ray r of a pointed polyhedral cone C ⊆ Rn is called
extreme ray, if it cannot be written as the conic combination of other rays r1, . . . , rk ∈
C, k ≥ 2.

If we would have a second minimal generating matrix R′ ∕= R, this would mean that there
exists at least one extreme ray r in R that is not in R′. Since R′ and R both generate the
same cone C there must be rays in R′ such that r is the conic combination of them. This is
a contradiction. Therefore R must be unique. By the same argument we can see that every
extreme ray of C must be in R.

3.4 Linear Programming

Unlike the name suggests, linear programming has nothing to do with computer program-
ming. The term originated in the U.S. military, where proposed plans, strategies, and
schedules were referred to as programs. George Dantzig, who worked for them on a plan-
ning problem, discovered that parts of these problems could be formulated as a system of
linear inequalities. He therefore introduced the term Programming in Linear Structure be-
fore eventually changing it to linear programming (Dantzig and Thapa, 1997) . In essence,
linear programming is a method to optimize a linear function where we have linear inequal-
ities as constraints for the variables involved.

Definition 3.7 (Linear Program) Given numbers n, m ∈ N, vectors o ∈ Rn, b ∈ Rm and
matrix A ∈ Rn×m, we define the linear program L as the problem of maximizing oT x subject
to a system of linear inequalities Ax ≤ b. A shorthand notation is given by L = max{oT x |
Ax ≤ b}.

The linear inequalities for a linear program defined as above, are called constraints. We
will use the term constraint and inequality interchangeably. We call oT x objective function
and x satisfying the constraints is again called a feasible solution. Every x that also maxi-
mizes the objective function is called an optimal solution. If there exists no solution to the
linear program we say that it is infeasible. If x can be arbitrarily large, we call the linear
program unbounded and define max{oT x | Ax ≤ b} to be −∞.

23

Chapter 3 Linear Inequalities

In canonical form a general linear program looks as follows

Maximize oT x subject to

Ax ≤ b

We will again only consider linear programs where the set of constraints form a polyhedral
cone, i.e. where b = 0. To get a better understanding of the topic at hand, we consider the
following example of a linear program L depicted in Figure 3.5.

Maximize − 3
4x1 − x2 subject to
1
2x1 − x2 ≤ 0

−3x1 + x2 ≤ 0

If not stated otherwise, we assume the variables to be real valued. In our simple example
we can quickly realize that there does not exist an optimal solution, because we can let
the objective function take on arbitrarily large values. In such a case the linear program is
called unbounded.

−1 1 2 3 4
−1

1

2

3

4

x1

x2

Figure 3.5: The feasible set is coloured in grey. The objective function is depicted by the
red line. The arrow denotes the direction in which we can move the objective
function to maximize it.

The most important concept in linear programming is duality.

Definition 3.8 (Dual of Linear Program) Given numbers n, m ∈ N, vectors o ∈ Rn, b ∈ Rm

24

3.5 Dantzig-Wolfe Decomposition and Column Generation

and matrix A ∈ Rn×m. The dual of the linear programming problem L := max{oT x | Ax ≤
b} is the problem L′ := min{bT y | AT y ≥ o}.

The dual problem of a linear program is especially interesting because of the following
theorem.

Theorem 3.6 (Strong Duality; e.g. Conforti et al., 2014) Let L := max{oT x | Ax ≤ b}
and L′ := min{bT y | AT y ≥ o} for some numbers n, m ∈ N, vectors o ∈ Rn, b ∈ Rm and
matrix A ∈ Rn×m. If L or L′ is feasible and bounded, then both are feasible and bounded
and their optimal solutions coincide.

3.5 Dantzig-Wolfe Decomposition and Column Generation

One of the most commonly used method to find optimal solutions of general linear programs
is the Simplex algorithm (Dantzig et al., 1955). Still, for large linear programs the task of
finding optimal solutions is computationally expensive. A method that works well on linear
programs with a specific structure is the Dantzig-Wolfe decomposition (Dantzig and Wolfe,
1960). The method rewrites the original linear program and solves it using a technique
called column generation (Ford Jr. and Fulkerson, 1958).

The Dantzig-Wolfe decomposition is defined for linear programs, where the constraint
matrix can be written in the following form (the empty spaces denote zero-entries).

%
&&&&&&&&&&&'

A1 A2 An

B1

B2
.

Bn

(
)))))))))))*

Since we split the matrix into blocks, it also makes sense to split the coefficient vector o

of the objective function and the variable vector x into corresponding sub-vectors oi and

25

Chapter 3 Linear Inequalities

xi, 1 ≤ i ≤ n. We rewrite the linear program as

Maximize
"

1≤i≤n

oT
i xi subject to

"

1≤i≤n

Aixi ≤ b0 (3.7)

Bixi ≤ bi for all 1 ≤ i ≤ n (3.8)

The constraints in (3.8) are independent of each other, i.e. they do not involve variables
of other constraints in (3.8). We will refer to these constraints as subproblem constraints.
If all constraints were of this form, we could solve the following linear program for all i,
1 ≤ i ≤ n.

Maximize oT
i xi subject to

Bixi ≤ bi

(3.9)

The solutions to these linear programs could then be concatenated, leading to a solution of
the original linear program by setting x = (x1, . . . , xn)T , 1 ≤ i ≤ n. The problem is that we
also have constraints as in (3.7). These constraints (potentially) involve every variable xi

and are therefore called the complicating constraints.
In the problem considered in this thesis the vectors bi, 1 ≤ i ≤ n are set to 0. Hence

we know that the solution for the subproblem constraints forms a polyhedral cone, i.e.
Ci := {Bixi ≤ 0} is a polyhedral cone. By the Minkowski-Weyl Theorem for Polyhedral
Cones (Thm. 3.2) we know that every vector v ∈ Ci can be written as the sum of finitely
many generating rays ri1, . . . , r1k, k ≥ 0 of Ci. This means that we can replace the vectors
xi in the original linear program by a sum of generating rays. The rewritten form is called
master problem and given below.

Maximize
"

1≤i≤n

"

j

oT
i λijrij subject to

"

1≤i≤n

"

j

Aiλijrij ≤ b0

λij ≥ 0 for all i and j

Even though the master problem has less constraints, we still face a major challenge. The
number of generating rays is usually too large, which makes finding a solution to the linear

26

3.5 Dantzig-Wolfe Decomposition and Column Generation

program computationally infeasible.
This is where column generation comes into play. The basic idea of column generation is

to first solve the master problem by only considering a small amount of the original variables
involved. This smaller linear programming is called the restricted master problem. In the
following example we coloured the entries in the restricted master problem in red. The
black entries are currently not considered but part of the master problem.

%
&&&'

a11 . . . a1k a1k+1 . . . a1n

...
...

...
...

am1 . . . amk amk+1 . . . amn

(
)))* ·

%
&&&&&&&&&&&'

x1
...

xk

xk+1
...

xn

(
)))))))))))*

≤

%
&&&'

b1
...

bm

(
)))*

After finding a solution for the restricted master problem, we try to check if there exists
a variable that has not been considered yet, but improves the solution. If such a variable
is found, we add it to our linear program. Adding a variable consists of adding a column
to the matrix, which is where the name column generation originates from. The updated
example where we added the variable xk+1 is given below.

%
&&&'

a11 . . . a1k a1k+1 . . . a1n

...
...

...
...

am1 . . . amk amk+1 . . . amn

(
)))* ·

%
&&&&&&&&&&&'

x1
...

xk

xk+1
...

xn

(
)))))))))))*

≤

%
&&&'

b1
...

bm

(
)))*

After updating the restricted master problem with the new variable we solve it again.
These steps are then repeated until we can show that there is no variable left that could
improve our current optimal solution. The final solution is then the optimal solution for
the original linear program.

To check if an improving variable exists, we solve the following linear program called the
pricing problem.

27

Chapter 3 Linear Inequalities

Minimize (Aixi)T y − oT
i xi subject to

Bixi ≤ 0

The value y represents the solution of the dual linear program of the restricted master
problem. The pricing problem determines an improving variable by checking if there exists
a generating ray for the polyhedron generated by the inequalities such that the solution of
the pricing problem is negative. If yes, the ray is added to the restricted master problem as
a new column. If no ray produces a negative solution we are done.

28

Chapter 4

Cost Partitioning and the Dantzig-Wolfe
Decomposition

Let us quickly recap what we have learned so far. We have seen that an optimal classical
planning task can be solved using an admissible heuristic. Abstractions are admissible
heuristics for which we can compute an optimal solution. Cost partitioning can then use
the obtained solutions to construct an admissible heuristic for the original planning task.

The following sections show the linear program used for cost partitioning and how to apply
the Dantzig-Wolfe decomposition to it. They closely follow the publication by Pommerening
et al. (2021).

4.1 Restricted Master Problem

Let Π be our original planning task with induced state space ΘΠ = 〈S, L, cost, T , s0, G〉.
Note that instead of a set of actions A we now talk about a set of labels L. These are the
same objects but in this context using labels makes the notation easier. Katz and Domshlak
(2010) have shown that given a set of abstractions A = {α1, . . . , αn}, we can compute an
optimal cost partitioning over A in the initial state by solving the following linear program.

Maximize
"

1≤i≤n

hi subject to

"

1≤i≤n

ciℓ ≤ cost(ℓ) for all ℓ ∈ L

dis0i
= 0 for all ℓ ∈ L

dit = dis + ciℓ for all i and 〈s, ℓ, t〉 ∈ Ti

hi ≤ dis∗ for all i and s∗ ∈ Gi

where the variables di, 0 ≤ i ≤ n, are called distance variables that represent the current

29

Chapter 4 Cost Partitioning and the Dantzig-Wolfe Decomposition

lower bound for the distance of state i to the nearest goal state. The variables ciℓ, 1 ≤ i ≤ n,
denotes the assigned cost for label ℓ ∈ L in the constraints of submatrix Bi of the Dantzig-
Wolfe decomposition. This linear program has the desired structure to apply the Dantzig-
Wolfe decomposition. The constraints in the first line of the linear program represent
the complicating constraints. The remaining constraints form one subproblem for each
abstraction αi, 1 ≤ i ≤ n. Remember that we have defined a matrix for Dantzig-Wolfe
decomposition to be of the following form

D =

%
&&&&&&&&&&&'

A1 A2 An

B1

B2
.

Bn

(
)))))))))))*

The submatrices Ai are defined as Ai = (I | Z) where I is the identity matrix with size
equal to the number of labels ℓ ∈ L and Z being the zero matrix with column size being
the number of states in the abstraction plus an additional column for the heuristic value
of the abstraction. The reason being that for every label ℓ ∈ L there exists a row in Ai

and for every label, distance variable and the heuristic value there exists a column in Ai.
The submatrices Bi have one row for every constraint of the subproblem. We therefore get
Dx ≤ b as our system of inequalities, with

x =

%
&'

variables in submatrix B1/ 01 2
c1ℓ1 , . . . , c1ℓ|L| , d1s1 , . . . , d1s|S1| , h1, . . . ,

variables used in submatrix Bn/ 01 2
cnℓ1 , . . . , cnℓ|L| , dns1 , . . . , dns|Sn| , hn

(
)*

T

b =

%
&'cost(ℓ1), . . . , cost(ℓ|L|)1 2/ 0

result of Ax

, 0 . . . , 01 2/ 0
result of Bx

(
)*

T

where Si denotes the set of states considered in the constraints of submatrix Bi and

30

4.2 Pricing Problem

A =
+

A1 A2 An

,
B =

%
&&&&&&&&'

B1

B2
.

Bn

(
))))))))*

We know that the solution to a problem Bix ≤ 0, 1 ≤ i ≤ n, is given by the generating rays
of its polyhedral cone. If we consider the rays rij of subproblem i they look as follows

rij =
+
cℓ1 , . . . , cℓ|L| , di1 , . . . , di|Si| , hi

,

By comparing the master problem for the cost partitioning with the general master prob-
lem of the Dantzig-Wolfe decomposition, we realize that the coefficients λij are all zero for
the variables dijs. Therefore we can interpret a ray rij as a cost function for the labels in
the abstraction together with the heuristic value hi. Therefore we will sometimes refer to
these rays as cost functions. The cost partitioning is then given by

costi(ℓ) =
"

j

λijcijℓ

where cijℓ denotes the assigned cost of label ℓinL in the generating ray rij . The heuristic
value hi is given by

hi =
"

j

λijhij

where hij denotes the value assigned to hi in generating ray hij . Thus we can interpret
the cost functions returned by the pricing problem as candidate cost functions with the
heuristic value achieved under them. The restricted master problem then finds a linear
combination for the returned candidate cost functions satisfying the cost partitioning. This
cost partitioning is always optimal for the current set of candidate cost functions.

4.2 Pricing Problem

To compute the pricing problem we need the solution for the dual of the restricted master
problem. Let y be this solution. The pricing problem for our subproblem i is given by

31

Chapter 4 Cost Partitioning and the Dantzig-Wolfe Decomposition

Minimize
"

ℓ∈L

yℓciℓ − hi subject to

dis0i
= 0 for all ℓ ∈ L

dit = dis + ciℓ for all i and 〈s, ℓ, t〉 ∈ Ti

hi ≤ dis∗ for all i and s∗ ∈ Gi

Looking at the objective function it may seem odd that we are allowed to freely choose
the costs for our labels, since we could just choose them to be negative. The second and
third constraint penalize this strategy. If we assign negative costs to too many labels, we
get a negative value for our heuristic hi which in return makes our objective value larger.

This is where our thesis gets weird. In the following chapters we will consider methods
that precompute all generating rays of our pricing problems. As already mentioned in the
introduction this seems odd because the whole point of column generation is that we do
not have to compute all solutions. However, we have reason to believe (Pommerening et al.,
2021) that the number of solutions for the tasks we will consider are small and therefore the
precomputation of all solutions of the pricing problem should take less time than repeatedly
resolving the pricing and restricted master problem.

32

Chapter 5

Theoretical Analysis

This chapter contains the theoretical results derived during the study of the pricing problem.
We first show, what happens to the linear constraints and the corresponding transition
system if we us the Fourier-Motzkin elimination to remove all distance variables. We further
propose a method to generate a system of constraints, whose feasible set is equivalent. In the
second part we take a closer look at the result of the double description algorithm. We define
which generating rays are interesting for our pricing problem and give an interpretation of
what happens if we first decompose the cone into its lineality space and a pointed polyhedral
cone.

5.1 Fourier-Motzkin and the Pricing Problem

Throughout this section we will refer to the following example of a pricing problem to better
understand the introduced notation and results (we omit the objective function, since we
are only interested in the generating rays).

d0 = 0

d0 ≤ d0 + c0

d0 ≤ d2 + c0

d1 ≤ d0 + c0

d1 ≤ d0 + c2

d2 ≤ d0 + c1

d2 ≤ d1 + c0

h ≤ d2

0start

1

2

c0

c2

c0

c1

c0

Figure 5.1: Graph corresponding to the linear program on
the left.

33

Chapter 5 Theoretical Analysis

The constraints of a general pricing problem are given by an induced abstract state space
of the original planning task. For the sake of readability we omit the abstraction indices i.

d0 = 0

dt ≤ ds + cℓ for all 〈s, ℓ, t〉 ∈ T
h ≤ ds∗ for all goal states s∗ ∈ G

Without loss of generality we can assume that only one goal state exists. If there are
multiple goal states we can simply introduce a new goal state that has incoming edges from
the original goal states where the label has zero cost.

Let ΘΠ = 〈S, L, c, T , s0, s∗〉 be an induced state space corresponding to one of our pricing
problem defined as above. Let n be the number of states indexed from 0 to n − 1 and let 0
denote the initial state. We call a sequence of transitions

ω = (〈s0, ℓ0, s1〉, . . . , 〈sm−1, ℓm−1, sm〉) , 1 ≤ m ≤ n − 1

a directed closed walk in ΘΠ if 〈si, ℓi, si+1〉 ∈ T , 1 ≤ i ≤ m − 1 and s0 = sm. Note that we
do not restrict the ℓi’s to be unique. If s0 ∕= sm we call ω a directed open walk from s0 to
sm in ΘΠ. The cost of a directed open / closed walk ω is given by the sum of costs of all
labels used during the walk (if a label is used multiple times, the cost will be added every
time). To denote the summed cost of a walk ω we will write !

ℓ∈ω cℓ. An example for a
directed open and closed walk with their summed cost can be seen in Figure 5.2.

0start

1

2

c0

c2

c0

c1

c0

Figure 5.2: The directed open walk ω = (〈0, c0, 1〉, 〈1, c0, 2〉) is coloured in red and has cost
c0 + c0. The directed closed walk ω = (〈0, c1, 2〉, 〈2, c0, 0〉) is coloured in blue
and has cost c1 + c0.

34

5.1 Fourier-Motzkin and the Pricing Problem

We call a constraint good if it is in one of the following sets

Iinit = {d0 = 0} (5.1)

Igoal = {h ≤ ds∗} (5.2)

Ic = {0 ≤
"

ℓ∈ω

cℓ | ω is a directed closed walk in ΘΠ} (5.3)

Io = {dt ≤ ds +
"

ℓ∈ω

cℓ | ω is a directed open walk from s to t in ΘΠ, s, t ∈ S} (5.4)

We call Ax ≤ 0 a good system of constraints if all of its constraints are good.

Lemma 5.1 Let Ax ≤ 0 be a good system of constraints. The Fourier-Motzkin elimination
of a distance variable di, 1 ≤ i ≤ n − 1 results in a good system of constraints.

Proof. For n = 1 the statement follows immediately, since we only have one state. Let
n ≥ 2, we want to eliminate di, 1 ≤ i ≤ n − 1. The Fourier-Motzkin elimination retains all
constraints that do not involve di. By assumption these constraints are already good. The
remaining constraints all involve di and must be of the form

di ≤ ds +
"

ℓ∈ω

cℓ, ω is a directed open walk from s to i (5.5)

dt ≤ di +
"

ℓ∈ω

cℓ, ω is a directed open walk from i to t (5.6)

h ≤ di +
"

ℓ∈ω

cℓ, ω is a directed open walk from i to s∗ (5.7)

Fourier-Motzkin elimination combines constraints (5.5) with (5.6) or (5.7). The first com-
bination results in

0 ≤
"

ℓ∈ω

cℓ, ω is a directed closed walk, for s = t

dt ≤ ds +
"

ℓ∈ω

cℓ, ω is a directed open walk from s to t, for s ∕= t

Thus they are also good constraints. For the second possible combination we get

h ≤ ds +
"

ℓ∈ω

cℓ, ω is a directed open walk from s to s∗

which are also good constraints. This concludes the proof.

35

Chapter 5 Theoretical Analysis

Corollary 5.1 Let Ax ≤ 0 be a good system of constraints. The Fourier-Motzkin elimina-
tion of all distance variables di, 1 ≤ i ≤ n − 1 results in the following system of constraints

0 ≤
"

ℓ∈ω

cℓ, ω is a directed closed walk

h ≤
"

ℓ∈ω

cℓ, ω is a directed open walk from 0 to s∗

Proof. Iteratively applying Lemma 5.1 results in a system of the form

d0 = 0

0 ≤
"

ℓ∈ω

cℓ, ω is a directed closed walk

d0 ≤ ds +
"

ℓ∈ω

cℓ, ω is a directed open walk from s to 0

h ≤ ds +
"

ℓ∈ω

cℓ, ω is a directed open walk from s to s∗

Since every distance variable except d0 has been eliminated, we are left with

d0 = 0

0 ≤
"

ℓ∈ω

cℓ, ω is a directed closed walk

h ≤ d0 +
"

ℓ∈ω

cℓ, ω is a directed open walk from 0 to s∗

Using the first constraint we can substitute d0 by 0. This concludes the proof.

We will refer to this system of constraints as A∗.
Fourier-Motzkin elimination produces a lot of redundant rays during each iteration. Ef-

ficiently identifying them is a problem on its own. It could therefore prove beneficial if we
could somehow avoid this step or at least have less of them. Knowing the directed open and
closed walks used in the constraints of A∗ will allow us to build the system of constraints
directly, without performing Fourier-Motzkin elimination.

Definition 5.1 (Simple Cycle in a State Space) Let ΘΠ be an induced state space of a
planning task Π. A simple cycle ω = (〈s0, ℓ0, s1〉, . . . , 〈sk−1, ℓk−1, sk〉) , 1 ≤ k ≤ n − 1 in ΘΠ

is a directed closed walk with si ∕= sj , 0 ≤ i < j ≤ k except for s0 = sk.

Definition 5.2 (Simple Path in a State Space) Let ΘΠ be an induced state space of a
planning task Π. A simple path ω = (〈s0, ℓ0, s1〉, . . . , 〈sk−1, ℓk−1, sk〉) , 1 ≤ k ≤ n − 1 in ΘΠ

36

5.1 Fourier-Motzkin and the Pricing Problem

is a directed open walk with si ∕= sj , 0 ≤ i < j ≤ k.

The directed open and closed walk in Figure 5.2 are a simple path and a simple cycle.

Lemma 5.2 Let ω be a simple cycle in ΘΠ. Then

0 ≤
"

ℓ∈ω

cℓ

is a constraint of A∗.

Proof. Let ω = (〈s0, ℓ0, s1〉, . . . , 〈sm−1, ℓm−1, sm〉) , 1 ≤ m ≤ n − 1 be a simple cycle in ΘΠ.
Thus our original constraint system must contain the constraints

di+1 ≤ di + cℓi
, 0 ≤ i ≤ m − 1

Eliminating any of the distance variables di, 0 ≤ i ≤ m − 1 results in a new system of
constraints containing

dj+1 ≤ dj + cℓj
, for j ∕= i

di+1 ≤ di−1 + cℓi−1 + cℓi

Iteratively eliminating all but two distance variables di, dj , 0 ≤ i < j ≤ m − 1 we get a
system of constraints containing

di ≤ dj +
"

0≤k≤i−1
cℓk

+
"

j≤k≤m−1
cℓk

dj ≤ di +
"

i≤k≤j−1
cℓk

Eliminating either one of these variables results in

0 ≤
"

0≤k≤m−1
cℓk

This concludes the proof.

Lemma 5.3 Let ω be a simple path in ΘΠ. Then

0 ≤
"

ℓ∈ω

cℓ

37

Chapter 5 Theoretical Analysis

is a constraint of A∗.

Proof. Analogous to the proof for simple cycles.

Lemma 5.4 Let ω = (〈s0, ℓ0, s1〉, . . . , 〈sm−1, ℓm−1, sm〉) , 1 ≤ m ≤ n−1 be a directed closed
walk in ΘΠ. The constraint representing the walk can be written as the sum of constraints
representing simple cycles in ΘΠ.

Proof. Let ω = (〈s0, ℓ0, s1〉, . . . , 〈sm−1, ℓm−1, sm〉) , 1 ≤ m ≤ n − 1 be a directed closed walk
that is not a simple cycle (otherwise we are done). Since ω is not a simple cycle there exist
states si, sj ∈ S, 0 ≤ i < j ≤ n − 1 such that si = sj . Let j be the smallest index such that
this holds. Thus ω1 =

+
〈si, cℓi

, si+1〉, . . . , 〈sj−1, cℓj−1 , sj〉
,

is a simple cycle in ΘΠ. Moreover,

ω2 =
+
〈s0, cℓ0 , s1〉, . . . , 〈si−1, cℓi−1 , sj〉, 〈sj , cℓj

, sj+1〉, . . . , 〈sm−1, cℓm−1 , sm〉
,

is a directed closed walk in ΘΠ. If ω2 is a simple cycle we are done, since we can write the
constraint corresponding to ω as the sum of the constraints corresponding to ω1 and ω2. If
ω2 is not a simple cycle we can repeat the procedure from before until we are left with a
simple cycle. This must eventually happen, since we only consider finite state spaces.

Lemma 5.5 Let ω = (〈s0, ℓ0, s1〉, . . . , 〈sm−1, ℓm−1, sm〉) , 1 ≤ m ≤ n − 1 be a directed open
walk from the initial state 0 to the goal state s∗ in ΘΠ, i.e. sm = s∗. The constraint
representing the walk can be written as the sum of a constraint representing a simple path
and constraints representing simple cycles in ΘΠ.

Proof. Analogous to the proof for simple cycles. An example of such a decomposition is
given in Figure 5.3.

Definition 5.3 (Simple Constraint System) We call S∗ the simple constraint system if its
constraints are all constraints corresponding to a simple cycle or a simple path from 0 to h

in ΘΠ.

Theorem 5.1 Let FA∗ and FS∗ denote the feasible sets of the constraint systems A∗ and
S∗. We have

FA∗ = FS∗

Proof. ⊆: By Lemma 5.2 and 5.3 we have that every constraint in S∗ is also a constraint in
A∗. It follows that FA∗ ⊆ FS∗ .
⊇: By Corollary 5.1 every constraint in A∗ corresponds to either a directed closed walk or a

38

5.2 Double Description and the Pricing Problem

0start

1

2

c0

c2

c0

c1

c0

0start

1

2

c0

c2

c0

c1

c0

Figure 5.3: The directed open walk ω = (〈0, c0, 1〉, 〈1, c0, 2〉, 〈2, c0, 0〉, 〈0, c1, 2〉) (green) can
be seen on the left. Its decomposition into a directed simple path (red) and
directed simple cycle (blue) is given on the right. This decomposition is not
unique.

directed open walk from 0 to h in ΘΠ. By Lemma 5.4 and 5.5 we can write these constraints
as the sum of constraints in S∗. Note that if a vector x satisfies the sum of two constraints
it also satisfies the individual constraints. Hence we have that FA∗ ⊇ FS∗ which concludes
the proof.

5.2 Double Description and the Pricing Problem

The double description gives us generating rays for the polyhedral cone forming our solution
space. Still not all of them generate a new column. Remember that a ray generates a new
column if it produces a negative objective value in the pricing problem. For this to happen,
either we must assign a negative cost to at least one of the labels or the heuristic value is
larger than zero. We will call a ray that satisfies this interesting. Throughout this section
we assume every ray r to be of form (c1, . . . , cm, h) where m denotes the number of labels.
Moreover, we call the rays (0, . . . , 0, −1), (1, 0 . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 1, 0) basic.

Proposition 5.1 Let C be the solution space of our system of constraints. The basic rays
are always inside the polyhedral cone C.

Proof. Remember that the pricing problem consists of the following constraints:

0 ≤
"

ℓ∈ω1

cℓ

h ≤
"

ℓ∈ω2

cℓ

where ω1 is a simple cycle and ω2 is a simple path from the initial state to the goal state of

39

Chapter 5 Theoretical Analysis

the considered state space. The rays from the statement all satisfy these constraints.

This statement also makes intuitive sense, as it tells us that we can always increase the cost
of any label or decrease the heuristic value.

Corollary 5.2 Let C ⊆ Rn be the pointed polyhedral cone generated by the rays in
Proposition 5.1. For any polyhedral cone Q ⊆ Rn with generating rays r1 . . . , rk we have

ri is interesting ⇐⇒ ri /∈ C

Proof. =⇒ : From Proposition 5.1 we know that C does not contain any interesting rays.
⇐= : Since ri /∈ C, it must either have a negative cost for a label or the heuristic value is
larger than 0. This is exactly the definition of an interesting ray.

Proposition 5.2 If the initial state is not a goal state and the lineality space is nonempty,
the lineality space contains only interesting cost functions.

Proof. Assume for contradiction that r ∈ lin(C) is not interesting. Since r ∕= 0 we must
either have at least one label with cost greater than 0 or the heuristic value must be negative.
If h < 0, there must exist a simple path with total negative costs. Therefore at least one
of the costs for a label must be negative, Thus r is interesting which is a contradiction. If
h = 0, there must exist a positive cost for a label. Since we only consider alive graphs, this
label must be part of either a simple cycle or a simple path. Thus, there must be at least
one label that compensates for its positive cost, i.e. there exists a label with negative costs.
Thus r is interesting which is again a contradiction. Therefore r must be interesting.

Proposition 5.3 Let C be a polyhedral cone. Then the following statements are equivalent

(i) ri ∈ lin(C)

(ii) The ray ri achieves the same heuristic value for all simple paths from the initial to the
goal state, i.e. all simple paths from the initial to the goal state have the same cost.
All simple cycles have cost 0.

Proof. Since ri lies in the lineality space we achieve equality for every constraint. The
statement follows immediately.

A second important property a ray can have is called saturated (Seipp et al., 2020). For
such a ray the cost of each label can no longer be reduced without affecting the heuristic
value. We are especially interested in saturated rays, since they make our constraints tighter.

40

5.2 Double Description and the Pricing Problem

Proposition 5.4 Let C = {Ax ≤ 0} be a pointed polyhedral cone and let R be such that
(A, R) is a DD-pair. Then every extreme ray r ∈ C is saturated.

Proof. Assume for contradiction that r ∈ C is an extreme ray that is not saturated. Thus
we can either increase h or decrease the cost for a label without changing the rest of the
entries. For the first case we get a new vector c′ = r + (0, . . . , 0, λ) for λ > 0. Thus
r = c′ + λ(0, . . . , 0, −1) which by Proposition 5.1 is a conic combination of rays inside C.
This is a contradiction to the fact that r is an extreme ray. For the second case let us assume
that we decrease the cost of the first label. We get a new vector c′ = r + (−λ, 0, . . . , 0) for
λ > 0. Thus r = c′ + λ(1, 0, . . . , 0) which by Proposition 5.1 is a conic combination of rays
inside C. This is a contradiction to the fact that r is an extreme ray and we are done.

Conjecture 1 (Raphaels Conjecture) The converse of Proposition 5.4 also holds, that is
every saturated ray r of a pointed polyhedral cone C is an extreme ray.

41

Chapter 6

Experiments

We used the theory presented in the previous chapters to design five different algorithms
to find the generating rays of our pricing problems. This chapter presents these algorithms
and the results we got when evaluating them on planning tasks.

6.1 Algorithms

We pursue two different approaches. The first approach uses the double description method
on the original pricing problem to compute the generating rays. Afterwards we us a projec-
tion to eliminate the distance variables from our generating rays.

For the second approach we first use a projection to eliminate the distance variables.
Afterwards we use the double description method to compute the generating rays.

The two approaches results in five different algorithms.

1. DDProj: This algorithm first uses the double description method on the original
pricing problem. The projection consists of simply dropping the distance variables
from the rays and removing duplicate rays. Note that for this approach we (almost)
always end up with redundant generating rays. This is not the case in the other
approach.

2. FMDD: For the projection we use Fourier-Motzkin elimination. The double descrip-
tion method then computes the generating rays.

3. FMDecDD: We again use Fourier-Motzkin elimination to project out the distance
variables in the constraints of the pricing problem. Afterwards we compute the lin-
eality space for our new constraints and use the decomposition method presented in
Theorem 3.3 to construct a pointed polyhedral cone. We compute the generating
rays of the pointed polyhedral cone with the double description method and combine

43

Chapter 6 Experiments

it with the generating rays of the lineality space to get the generating rays for our
original problem.

4. SCDD: This algorithm is the same as FMDD except that we calculate the simple
constraint system instead of using Fourier-Motzkin elimination.

5. SCDecDD: Analogous to the FMDecDD algorithm but we eliminate the distance
variables by constructing the simple constraint system.

6.2 Setup

The algorithms were implemented in Python 3.8. Fourier-Motzkin elimination was imple-
mented as presented in chapter 3 and we only removed (redundant) constraints if they were
not unique. We used the double description method of the pycdd library1 which is based on
the cdd library by Fukuda programmed in C2. The directed simple paths and cycles were
computed using the python version of the igraph library3. We obtained the nullspace by
using the module scipy4.

Our benchmark consisted of the abstractions in two (SYS2) and three (SYS3) variables
for the 1827 tasks without conditional effects from the optimal sequential tracks of the
International Planning competitions 1998-20185. However, we were only able to use 1590 of
these tasks, since for the remaining 237 tasks we were not able to generate all abstractions.

We ran the experiment on Intel Xeron Silver 4114 processors running on 2.2 GHz at
sciCORE scientific computing cluster of the University of Basel6. We set the time limit to
5 minutes and limited the memory to 2 GiB per task.

6.3 Results

6.3.1 Solved Tasks

In a first step we compared the number of tasks we were able to solve using the different
algorithms. The results are given in Table 6.1. As expected the number of tasks we were
able to solve was much higher in Sys2 than Sys3. For Sys2 we were able to solve 1372

1https://pypi.org/project/pycddlib/
2https://github.com/cddlib/cddlib
3https://igraph.org/python/
4https://scipy.org
5http://ipc.icaps-conference.org
6https://www.scicore.unibas.ch

44

6.3 Results

out of the 1590 tasks with all algorithms, whereas for Sys3 this was only the case for 138
tasks. It is also evident that the approach of getting rid of the distance variables with either
Fourier-Motzkin elimination or constructing the simple constraint system outperforms the
method of directly applying the double description method, since we removed the distance
variables. The algorithms that construct the simple constraint system were even able to
solve all tasks in Sys2.

Sys2 Solved Time Limit Reached Memory Limit Reached
DDProj 1398 192 −
FMDD 1560 9 21
FMDecDD 1548 12 30
SCDD 1590 − −
SCDecDD 1590 − −

Sys3 Solved Time Limit Reached Memory Limit Reached
DDProj 163 1427 −
FMDD 196 327 1107
FMDecDD 192 274 1124
SCDD 351 1013 226
SCDecDD 356 915 319

Table 6.1: Number of tasks solved per algorithm and reason why the algorithm was not
able to solve a task. Highest number of solved tasks and main reason for not
completing remaining tasks are marked bold.

Considering the source of not completing the tasks we can see that the DDProj never
reaches the memory limit even though it is the algorithm that fails to solve the task the
most. This is probably due to the fact, that the pycdd library removes redundancy during
runtime. We will take a closer look at redundant constraints in a moment.

Summarizing we can state that the bottleneck for the algorithms DDProj, SCDD and
SCDecDD is given by the time limit. FMDD and FMDecDD seem to reach the memory
limit more often before running out of time. They still solve more tasks than DDProj.

6.3.2 Total Runtime

In a next step we compared the runtime (in s) for the tasks that were solved by all algorithms.
For this we calculated the mean and the median of the runtime for all tasks that were solved

45

Chapter 6 Experiments

by all five algorithms. The results are presented in Table 6.3.

Sys2 Mean Total Runtime Median Total Runtime
DDProj 5.593 0.392
FMDD 4.226 0.126
FMDecDD 8.591 0.166
SCDD 4.727 0.156
SCDecDD 9.301 0.195

Sys3 Mean Total Runtime Median Total Runtime
DDProj 7.865 0.137
FMDD 0.988 0.147
FMDecDD 1.455 0.200
SCDD 0.202 0.104
SCDecDD 0.307 0.136

Table 6.2: Measurements of total runtime (in s) for tasks that were solved by all five algo-
rithms. Fastest runtimes are bold.

The results show that there is a significant difference between the mean and median runtime
for tasks in Sys2. This difference suggests that if we were able to solve a task, we were
usually fast in doing so and there were only few outliers. However, these outliers still
seemed to significantly impact the mean of the total runtime. This assumption is further
strengthened by Figure 6.1 which shows that most of the solved tasks in Sys2 have a
runtime below one second and that there exist some extreme outliers with runtimes of over
100 seconds. For tasks in Sys3 the proportion of tasks solved in under one second seems
smaller but there still exists more tasks for which the runtime is below one second.

To get an indicator for the runtime of an algorithm, we tried to measure the complexity
of a task by multiplying the number of constraints of the original problem by the number
of variables involved. We would assume that the total runtime for a task increases with its
complexity. Figure 6.1 seems to confirm our assumption for most tasks but there seems to be
a group of tasks in Sys3 that have a low complexity but still produce a high runtime (bottom
right of the right figure in Figure 6.1). This also destroys our hope that the generating rays
for the pointed polyhedral cone constructed during the decomposition might be easier to
compute using the double description method.

46

6.3 Results

10
°2

10
°1

10
0

10
1

10
2

Time

10
3

10
4

10
5

10
6

10
7

10
8

10
9

P
ro
b
le
m

C
o
m
p
le
xi
ti
y

Algorithm

FMDecDD

FMDD

DDProj

SCDecDD

SCDD

10
°2

10
°1

10
0

10
1

10
2

Time

10
3

10
4

10
5

10
6

10
7

10
8

10
9

P
ro
b
le
m

C
o
m
p
le
xi
ti
y

Algorithm

FMDecDD

FMDD

DDProj

SCDecDD

SCDD

Figure 6.1: Total runtime versus complexity of the problem for tasks in Sys2 (left) and
Sys3 (right) that were solved by all five algorithms.

Sys2 Mean Total Runtime Median Total Runtime
DDProj 5.593 0.392
FMDD 4.226 0.126
FMDecDD 8.591 0.166
SCDD 4.727 0.156
SCDecDD 9.301 0.195

Sys3 Mean Total Runtime Median Total Runtime
DDProj 7.865 0.137
FMDD 0.988 0.147
FMDecDD 1.455 0.200
SCDD 0.202 0.104
SCDecDD 0.307 0.136

Table 6.3: Measurements of total runtime (in s) for tasks that were solved by all five algo-
rithms. Fastest runtimes are bold.

Although the FMDD and SCDD algorithms seem to have a similar performance regard-
ing runtime, we can see that this is not the case when considering the 1590 (Sys2) and 194
tasks (Sys3) that could be solved by both of them. Table 6.4 shows the difference in total
runtime while also considering the time used by the double description method after the
projections. The table clearly indicates that the SCDD algorithm is superior with respect

47

Chapter 6 Experiments

to the runtime and that the runtime of the double description method is negligible when
compared to the time used for the projection.

Sys2 Mean Median Mean Median
Total Runtime Total Runtime DD Runtime DD Runtime

FMDD 7.597 0.037 0.192 0.002
SCDD 0.387 0.036 0.123 0.002

Sys3 Mean Median Mean Median
Total Runtime Total Runtime DD Runtime DD Runtime

FMDD 19.944 0.262 0.682 0.011
SCDD 3.982 0.066 0.304 0.008

Table 6.4: Measurements of total runtime and runtime of the double description method (in
s) for tasks that were solved by FMDD and SCDD.

6.3.3 Peak Memory Consumption

Besides measuring the runtime for the tasks we also measured peak memory consumption
(in MiB). The results can be seen in Table 6.5.

Sys2 Mean Peak Memory Consumption Median Peak Memory Consumption
DDProj 135.8 147.7
FMDD 132.0 147.0
FMDecDD 135.5 148.6
SCDD 132.0 147.2
SCDecDD 135.8 148.9

Sys3 Mean Peak Memory Consumption Median Peak Memory Consumption
DDProj 153.8 147.1
FMDD 140.3 147.2
FMDecDD 144.6 148.7
SCDD 138.7 147.3
SCDecDD 143.6 148.2

Table 6.5: Measurements of peak memory consumption for tasks that were solved by all five
algorithms. Lowest values are marked bold.

Interestingly enough, the peak memory consumption for Sys2 and Sys3 and all five algo-
rithms is approximately the same. At first, this seems to indicate that the double description

48

6.3 Results

method could be responsible for the peak memory, since it is the only component all five
algorithms have in common. What seems odd with this explanation is that we never reach
the memory limit when using the double description method before projecting but we reach
the memory limit a lot when first using the projection for tasks in Sys3. This would imply
that either the input matrix for the double description method is larger after applying the
projection and therefore the double description method is able to reach the memory limit
or the memory limit is reached during the projection. Figure 6.2 suggests that there is little
correlation between the complexity and the peak memory. This suggests that the memory
limit is indeed reached during projection.

10
2

10
3

Peak Memory

10
3

10
4

10
5

10
6

10
7

10
8

10
9

P
ro
b
le
m

C
o
m
p
le
xi
ti
y

Algorithm

FMDecDD

FMDD

DDProj

SCDecDD

SCDD

10
2

10
3

Peak Memory

10
3

10
4

10
5

10
6

10
7

10
8

10
9

P
ro
b
le
m

C
o
m
p
le
xi
ti
y

Algorithm

FMDecDD

FMDD

DDProj

SCDecDD

SCDD

Figure 6.2: Peak memory consumption versus complexity of the problem for tasks in Sys2
(left) and Sys3 (right) that could be solved by all five algorithms.

Summarizing we can conclude that our definition of complexity seems to be a good indi-
cator for the runtime in most cases. Moreover, we observed that the algorithms involving
the simple constraints approach seem to outperform the others with respect to runtime for
tasks in Sys3 and when the problems have a higher complexity. For the peak memory
performance we observed that all five algorithms use a similar amount of peak memory.

6.3.4 Redundant Constraints After Projection

Fourier-Motzkin elimination could potentially result in an exponential number of constraints
compared to the original number of constraints. The same is true for the number of con-
straints in the simple constraint system, since there can be exponentially many simple paths

49

Chapter 6 Experiments

and cycles in a graph. Table 6.3 shows the number of constraints existing before applying the
double description method, that is after projecting out the distance variables with Fourier-
Motzkin elimination or with the simple constraint system. Recall that for tasks in Sys2 the
number of times we reached the memory limit was almost identical for both type of projec-
tions. The difference was large for tasks in Sys3. For these tasks the number of constraints
after the projection is higher when using Fourier-Motzkin elimination. This suggests that
there are more redundant constraints generated which could explain why the memory limit
was reached far more often and less tasks could be solved.

10
0

10
1

10
2

10
3

Mean DD constraints FMDD

10
0

10
1

10
2

10
3

M
ea
n
D
D

co
n
st
ra
in
ts

S
C
D
D

10
0

10
1

10
2

10
3

Mean DD constraints FMDD

10
0

10
1

10
2

10
3

M
ea
n
D
D

co
n
st
ra
in
ts

S
C
D
D

Figure 6.3: Number of constraints for the matrices in Sys2 (left) and Sys3 (right) before
applying the double description method.

50

Chapter 7

Conclusion

7.1 Discussion of Results

The aim of this thesis was to empirically compare different approaches that compute the
generating rays of the pricing problem. We have shown that the approach where we first
project and then apply the double description method is superior to the one where we di-
rectly use the double description method and then project, with respect to runtime and
numbers of tasks solved. We have found an indicator for the runtime of our algorithms.
However, this indicator fails when we try to use it to predict peak memory consumption.
Moreover, we have presented a method that replaces the Fourier-Motzkin elimination by
constructing a system of constraints using the simple paths and simple cycles of the tran-
sition system of the planning task. This approach was able to solve more tasks and had
a better runtime than the approach using Fourier-Motzkin elimination and created less re-
dundant constraints. Furthermore we showed that decomposing the solution space into a
pointed polyhedral cone and lineality space, we additionally get an interpretation for the
solutions that lie in the respective object. The use of the decomposition did not result
in a faster runtime and was not able to solve significantly more tasks for both projection
methods.

7.2 Future Work

The reason we completed this thesis, was the work by Pommerening et al. (2021) where they
used the Dantzig-Wolfe decomposition to solve planning tasks faster. It would be interesting
to test if precomputing the generating rays of the pricing problems further improves the
performance of their approach.

Not all generating rays of the pricing problems result in an added variable for the original
linear program. We know that there are rays that will never produce a new column (e.g.

51

Chapter 7 Conclusion

the basic rays in chapter 5.2). It would be nice, if we could already dismiss them while
calculating the generating rays to our pricing problems.

Removing the distance variables of the pricing problem using either projection method
creates a lot of redundant constraints and increases the complexity. We could probably
significantly improve the runtime and peak memory consumption of our algorithms if we
would be able to remove the redundant constraints during the projection.

52

Bibliography

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Compu-
tational Intelligence, 11:625–655, 1995.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming.
Springer, 2014.

George B Dantzig and Mukund N Thapa. Linear Programming, 1: Introduction. Springer,
1997.

George B Dantzig and Philip Wolfe. Decomposition principle for linear programs. Operations
research, 8:101–111, 1960.

George B Dantzig, Alex Orden, and Philip Wolfe. The generalized simplex method for min-
imizing a linear form under linear inequality restraints. Pacific Journal of Mathematics,
5:183–195, 1955.

Julius Farkas. Theorie der einfachen Ungleichungen. Journal für die reine und angewandte
Mathematik (Crelles Journal), 1902:1–27, 1902.

Lester R Ford Jr. and Delbert R Fulkerson. A Suggested Computation for Maximal Multi-
Commodity Network Flows. Management Science, 5:97–101, 1958.

Jean B J Fourier. Solution d’une question particuliere du calcul des inégalités. Nouveau
Bulletin des Sciences, par la Société philomatique de Paris, 99:100, 1826.

Komei Fukuda and Alain Prodon. Double description method revisited. In Combinatorics
and Computer Science, pages 91–111. Springer, 1995.

Robert C Holte, Ariel Felner, Jack Newton, Ram Meshulam, and David Furcy. Maximizing
over multiple pattern databases speeds up heuristic search. Artificial Intelligence, 170:
1123–1136, 2006.

Michael Katz and Carmel Domshlak. Optimal admissible composition of abstraction heuris-
tics. Artificial Intelligence, 174:767–798, 2010.

53

Bibliography

Drew M McDermott. The 1998 AI planning systems competition. AI magazine, 21:35–35,
2000.

Hermann Minkowski. Geometrie der Zahlen. BG Teubner, 1910.

Theodore S Motzkin. Beiträge zur Theorie der linearen Ungleichungen. Azriel Press, 1936.

Theodore S Motzkin, Howard Raiffa, Gerald L Thompson, and Robert M Thrall. The
Double Description Method. Contributions to the Theory of Games, 2:51–73, 1953.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From Non-
Negative to General Operator Cost Partitioning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, page 3335–3341. AAAI Press, 2015.

Florian Pommerening, Thomas Keller, Valentina Halasi, Jendrik Seipp, Silvan Sievers, and
Malte Helmert. Dantzig-Wolfe Decomposition for Cost Partitioning. In Proceedings of
the Thirty-First International Conference on Automated Planning and Scheduling, pages
271–280, 2021.

Jendrik Seipp, Thomas Keller, and Malte Helmert. Saturated Cost Partitioning for Optimal
Classical Planning. Journal of Artificial Intelligence Research, 67:129–167, 2020.

Hermann Weyl. The Elementary Theory of Convex Polyhedra. Contributions to the Theory
of Games, 1:3–18, 1949.

54

