Double Description Method in Cost Partitioning

Raphael Kübler

University of Basel, Switzerland

November 11, $2 \times 3 \times 337$

Planning

Logistics Example

Logistics Example

(informal) task description

actions: trucks can drive from one location to the other and (un-)load package

 $\boldsymbol{goal:}$ find sequence of actions such that package is at other

location

Planning 0000

Logistics Example

Planning 0000

Logistics Example

Finding Plans

Heuristic Search

- cost partitioning over abstraction heuristics
- calculating (optimal) cost partitioning involves solving a large linear program ⇒ computationally expensive

Linear Programs

Example

$$\max \quad \frac{3}{4}x_1 + x_2 \quad \text{s.t}$$

$$\frac{1}{2}x_1 - x_2 \le 0$$

$$-3x_1 + x_2 \le 0$$

Linear Programs

Example

$$\max \quad \frac{3}{4}x_1 + x_2 \quad \text{s.t.} \\ \frac{1}{2}x_1 - x_2 \le 0 \\ -3x_1 + x_2 \le 0$$

Generating Rays

Every solution can be written as a finite sum of generating rays

Planning

Dantzig-Wolfe Decomposition

- solves linear programs with special structure
- starts with linear program that uses less columns
- iteratively adds columns that improve solution
- to know which columns to add, it solves the pricing problem

Dantzig-Wolfe in Cost Partitioning

- B_i 's are the abstraction heuristics used in cost partitioning
- A_i 's form the cost partitioning constraints

Pricing Problem

Minimize c(y) - h subject to h < heuristic *i* under cost *c*

⇒ one pricing problem per abstraction

Pricing Problem in Cost Partitioning

Constraints

$$d_0 = 0$$

 $d_t \leq d_s + c_\ell$

for all transitions from state s to t with cost c_ℓ for all goal states s^\ast

Example

 $h < d_{s^*}$

$$d_0 = 0$$

$$d_0 \le d_2 + c_0$$

$$d_1 \le d_0 + c_0$$

$$d_1 \le d_0 + c_2$$

$$d_2 \le d_0 + c_1$$

$$d_2 \le d_1 + c_0$$

$$h \leq d_2$$

Double Description

Used to calculate the generating rays of linear constraints

Fourier-Motzkin Elimination

Used to project out variables of linear constraints

Strategies

Projection - A Closer Look

Fourier-Motzkin Elimination

choose variable to project out

Example

$$d_0 = 0$$

$$d_0 \le d_2 + c_0$$

$$d_1 \le d_0 + c_0$$

$$|d_1| \le d_0 + c_2$$

$$d_2 \le d_0 + c_1$$

$$d_2 \le \boxed{d_1} + c_0$$

$$h \leq d_2$$

Projection - A Closer Look

Fourier-Motzkin Elimination

group constraints with respect to chosen variable

Example

$$d_0 = 0$$

$$d_0 \le d_2 + c_0$$

$$d_1 \leq d_0 + c_0$$

$$d_1 \leq d_0 + c_2$$

$$d_2 \le d_0 + c_1$$

$$d_2 \leq d_1 + c_0$$

$$h \leq d_2$$

Projection - A Closer Look

Fourier-Motzkin Elimination

 \odot combine constraints from different groups \Rightarrow new constraints without chosen variables

Example

$$d_0 = 0$$

$$d_0 \le d_2 + c_0$$

$$d_2 \leq d_0 + c_0 + c_0$$

$d_2 \leq d_0 + 2c_2$

$$d_2 \le d_0 + c_1$$

$$h \leq d_2$$

Observation

- nodes get eliminated ⇒ new edges
- edges represent open or closed walks in the original graph

Applying Fourier-Motzkin elimination to all distance variables \Rightarrow constraints represent open walks from start to goal or closed walks in the original graph...

Applying Fourier-Motzkin elimination to all distance variables \Rightarrow constraints represent open walks from start to goal or closed walks in the original graph...

... but it gets even better

Applying Fourier-Motzkin elimination to all distance variables \Rightarrow constraints represent open walks from start to goal or closed walks in the original graph...

... but it gets even better

Theorem

The constraint system representing all simple paths and simple cycles has the same solution space as the original pricing problem.

Strategies

Setup

- 1590 tasks from International Planning Competition
- considered projections onto one or two variables for every task
- run involved calculating all generating rays for all projections onto one or two variables of one task
- time limit of 5 min per run
- memory limit of 2 GiB per run
- experiment run on Intel Xeon Silver 4114

Number Of Solved Tasks

Sys1	Solved	Time Limit Reached	Memory Limit Reached
DDProj	1398	192	_
FMDD	1560	9	21
SCDD	1590	_	_

Sys2	Solved	Time Limit Reached	Memory Limit Reached
DDProj	163	1427	_
FMDD	196	327	1107
SCDD	351	1013	226

Complexity vs. Runtime

Idea: complexity can be measured by multiplying number of constraints (at the beginning) by the number of variables

Complexity vs. Peak Memory Consumption

Idea: complexity can be measured by multiplying number of constraints (at the beginning) by the number of variables

Redundant Constraints

Conclusion and Outlook

Conclusion

- projecting first seems to be the superior strategy
- projecting by calculating simple paths and simple cycles seems to outperform (naive) Fourier-Motzkin
- our measure of complexity seems to be a good indicator for runtime but not for peak memory consumption

- Does precomputing the generating rays improve performance of cost partitioning?
- detecting and removing redundant constraints
- interesting generating rays

Pricing Problem

Minimize c(y) - h subject to h < heuristic *i* under cost *c*

decomposing solution space

Decomposition Polyhedral Cones

