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Logistics Example

(informal) task description

actions: trucks can drive from one location to the other and
(un-)load package

goal: find sequence of actions such that package is at other
location
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Finding Plans

Heuristic Search
@ cost partitioning over abstraction heuristics

o calculating (optimal) cost partitioning involves solving a large
linear program = computationally expensive

4/25



Planning

[eJe]e] ]

Linear Programs

Solution Space
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Linear Programs

Solution Space

3 Ty
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Generating Rays

T

Every solution can be
written as a finite sum of
generating rays
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Dantzig-Wolfe Decomposition

A1 | Ao | ... A,
By

By

By,

@ solves linear programs with special structure
@ starts with linear program that uses less columns
@ iteratively adds columns that improve solution

@ to know which columns to add, it solves the pricing problem
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Dantzig-Wolfe in Cost Partitioning

Ay | Ag | A,
By

By

By,

@ B;'s are the abstraction heuristics used in cost partitioning
@ A;'s form the cost partitioning constraints

Pricing Problem

Minimize ¢(y) — h subject to
h < heuristic 7 under cost ¢

=> one pricing problem per abstraction )25
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Pricing Problem in Cost Partitioning

dp=0
dy < dgs+ ¢ for all transitions from state s to ¢ with cost ¢,

h < dg for all goal states s*

T

do =0 o
do < dp + co co co

dy < dp+ co

dy < do+ c2 0-@

dy < dp+ c1 %

dy < di + o ‘
h<dy
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Calculating Generating Rays
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Methods

Double Description

Used to calculate the generating rays of linear constraints

Fourier-Motzkin Elimination

Used to project out variables of linear constraints
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Calculating Generating Rays
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Strategies

Pricing Problem
(constraints over
h,c,d)

compute
gen. rays
(with DD)

Y

generating rays
over h,c.d

project out distance
variables (with FM)

>

.

project out distance
variables (ignore)

constraints
over h,c

compute

gen. rays
(with DD)

Y

generating
rays over h,c
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Projection - A Closer Look

Fourier-Motzkin Elimination

@ choose variable to project out

do =0
d0§d2+00 co co

Ml < &+

B o ol o

dy < dp+ c1 co

d2§.+00

h < dp
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Projection - A Closer Look

Fourier-Motzkin Elimination

@ group constraints with respect to chosen variable

do =0 (1)

do < da+ o ¢

W <dote o<llili»o

dp < dp+ c1 o

dy < di+cp ’
h < dy
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Calculating Generating Rays
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Projection - A Closer Look

Fourier-Motzkin Elimination

© combine constraints from different groups = new constraints
without chosen variables

O T

do =0 co + ¢p

do < dy + cp
— G
Ay < do+2c0

dy < dp+ c1 y
h < dy
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Potential Shortcut for Projection

Observation

@ nodes get eliminated = new edges

@ edges represent open or closed walks in the original graph

start
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Potential Shortcut for Projection

Applying Fourier-Motzkin elimination to all distance variables =
constraints represent open walks from start to goal or closed walks
in the original graph...
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Calculating Generating Rays
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Potential Shortcut for Projection

Applying Fourier-Motzkin elimination to all distance variables =
constraints represent open walks from start to goal or closed walks
in the original graph...

... but it gets even better

The constraint system representing all simple paths and simple
cycles has the same solution space as the original pricing problem.
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Calculating Generating Rays
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Strategies

project out distance

Pricing Problem variables (with FM)

(constraints over constraints

h,c,d) > over h,c

. . compute
compute project out distance

; . gen. rays
gen. rays variables (calc. simple (with DD)
(with DD) cycles and simple paths)

Y Y

generating rays
over h,c.d

>  generating
project out distance rays over h,c
variables (ignore)
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Experiments
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1590 tasks from International Planning Competition
considered projections onto one or two variables for every task

run involved calculating all generating rays for all projections
onto one or two variables of one task

time limit of 5 min per run
memory limit of 2 GiB per run
experiment run on Intel Xeon Silver 4114
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Number Of Solved Tasks

Sysl Solved Time Limit Reached Memory Limit Reached
DDPRroJ 1398 192 —
FMDD 1560 9 21

SCDD 1590 — —

Sys2 Solved Time Limit Reached Memory Limit Reached
DDProJ 163 1427 —
FMDD 196 327 1107

SCDD 351 1013 226
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Complexity vs. Runtime

Problem Complexitiy

Experiments
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Idea: complexity can be measured by multiplying number of
constraints (at the beginning) by the number of variables
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Complexity vs. Peak Memory Consumption

Problem Complexitiy

Idea: complexity can be measured by multiplying number of
constraints (at the beginning) by the number of variables
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Redundant Constraints
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Conclusion and Outlook
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Conclusion

@ projecting first seems to be the superior strategy

@ projecting by calculating simple paths and simple cycles seems
to outperform (naive) Fourier-Motzkin

@ our measure of complexity seems to be a good indicator for
runtime but not for peak memory consumption
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Outlook

@ Does precomputing the generating rays improve performance
of cost partitioning?
@ detecting and removing redundant constraints

@ interesting generating rays

Pricing Problem

Minimize ¢(y) — h subject to
h < heuristic 7 under cost ¢

@ decomposing solution space
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Decomposition Polyhedral Cones
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