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Abstract

Certifying algorithms is a concept developed to increase trust by demanding affirmation of the com-

puted result in form of a certificate. By inspecting the certificate, it is possible to determine correctness

of the produced output. Modern planning systems have been certifying for long time in the case of

solvable instances, where a generated plan acts as a certificate.

Only recently there have been the first steps towards certifying unsolvability judgments in the form of

inductive certificates which represent certain sets of states. Inductive certificates are expressed with

the help of propositional formulas in a specific formalism.

In this thesis, we investigate the use of propositional formulas in conjunctive normal form (CNF) as

a formalism for inductive certificates. At first, we look into an approach that allows us to construct

formulas representing inductive certificates in CNF. To show general applicability of this approach, we

extend this to the family of delete relaxation heuristics. Furthermore, we present how a planning system

is able to generate an inductive validation formula, a single formula that can be used to validate if

the set found by the planner is indeed an inductive certificate. At last, we show with an experimental

evaluation that the CNF formalism can be feasible in practice for the generation and validation of

inductive validation formulas.
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1
Introduction

Planning is a research field in the area of artificial intelligence that investigates different ways to solve a

very natural problem: assume that we are given a starting point called the initial state, a set of actions

that enables us to transition between different states, and a goal description. Given that problem

setting, planning tries to answer the question which sequence of actions allows to us to get to the goal

from the initial state. There are many variations of that question where we take other factors into

consideration: do actions potentially fail? What can we do if not everything is observable?

For this work, we will focus on classical planning, where we assume everything to be deterministic and

fully observable, so if we apply an action, we know how the state will change.

Planning systems are highly developed algorithms that try to generate a sequence of actions called

plan, a solution for a given problem description. Generally, planning systems can give one of two

answers when presented a problem: either, a solution to the problem in the form of a plan, or a

statement declaring the task to be unsolvable. If the planning system finds a solution to a problem, it

is rather easy to check if the system did make any mistakes: since the solution consists of a sequence

of actions, we can simply test the correctness of a plan by applying it to the initial state. If we would

end up in a state that fits the goal description, the planning system produced a valid solution to the

problem. However, it is much more difficult to validate a statement of the form ”the task is impossible

to solve”.

For that reason, Eriksson, Röger, and Helmert (2017) developed an approached to augment planning

systems to be capable of producing a reason for its unsolvability judgement. These reasons are called

inductive certificates and are produced in a way such that they can be validated independently. In

that sense, inductive certificates act as a counterpart to plans in the case of unsolvable tasks.

Further, Eriksson, Röger, and Helmert (2017) proposed a list of properties that help to analyze the

suitability of certificates: there should exist a certificate if and only if the plan is unsolvable, certificates

should be efficient to generate and validate, and we would like to extend many planning systems to

produce certificates. As inductive certificates reason about sets of states, a central problem is the

representation of these sets.

In this work, we will develop a procedure to generate certificates represented as CNF formulas, where

we will try to take these properties into consideration. The choice of using CNF formulas is on one

hand very natural, as problems in itself are often described with propositional logic, and on the other

hand, we already have a wide range of verification tools available: we will formulate certificates in a

way such that they can be verified by arbitrary SAT-solvers.
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However, CNF-formulas have a well-known drawback: we don’t have a theoretical guarantee for their

efficiency regarding satisfiability checks, which are essential for the verification of the certificates.

Therefore, we will investigate how well CNF formulas are suited for certificate representation in prac-

tice, under the condition of allowing this inefficiency.



2
Related Work

One of the main goals of computer science is to develop algorithms that produce a correct answer for

a given problem.Whereas the theoretical side of computer science usually focuses on formally proving

algorithms to work correctly, practical implementations can often only be evaluated partially and

empirically. A very natural idea to enhance trust in an algorithm was presented by McConnell et al.

(2011): they proposed the concept of certifying algorithms. These are algorithms that produce ”with

each output a certificate or witness that the particular output has not been compromised by a bug.”

(McConnell et al., 2011, p.1). The presented output together with the certificate can then be inspected

to determine whether the algorithm worked correctly or not. In that sense, it is possible to validate

the correctness of the presented answer independently.

However, certifying the output of an algorithm is not a modern concept: the famous Euclidean algo-

rithm can be used to determine the greatest common divisor g of two inputs x and y. The algorithm

can easily be modified to not only calculate the number g, but also to generate two additional numbers

a and b with the property g = xa + yb. This version of the algorithm produces a certificate in the

form of a and b for the generated output value g: the output g can be validated easily by testing if

g = xa+ yb and g divides both a and b. Although not completely trivial, this guarantees that g is not

just any, but indeed the greatest common divisor of x and y.

Classical planning intends to find a plan for a given planning task or to prove that the task is unsolvable.

The planning community mostly focused on algorithms that find and generate plans if existent and

therefore the problem of proving a task unsolvable stayed, for the most part, relatively unattended.

The International Planning Competition (IPC) is part of the International Conference on Automated

Planning and Scheduling (ICAPS), one of the largest conferences on planning. Different planning

systems can compete against each other in the competition by evaluating a large number of planning

problems. The IPC has several tracks, each with different focus. The negligence of the problem of

proving tasks unsolvable is reflected in the fact that until 2014 almost all problems in the IPC are

solvable. Only first efforts that target unsolvable problems, such as an algorithm to detect unsolvable

planning tasks as fast as possible (Bäckström, Jonsson, and St̊ahlberg, 2013), brought a change to

this. With an upcoming interest of the community in unsolvable planning tasks, the IPC instantiated

a separate competition in 2016 that focuses purely on unsolvable tasks. Although the problem of

detecting unsolvability has made significant advances in recent years, there has been little investigation

into the problem of verifying unsolvability claims.

Eriksson, Röger, and Helmert, 2017 made a first step in the development of fully certifying planning

systems. They initiated the idea of generating certificates using inductive sets.
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Informally, these are sets of states that can never be left by any action application. This means that

once a state in an inductive set is reached, every action leads to a state in the same set. With the

help of these sets, we can formulate unsolvability of a planning task as follows: if an inductive set of

states contains the initial state and no goal state, then by inductivity of the set, there cannot exist

a sequence of actions that lead to a goal state and hence the task must be unsolvable. Further, the

inductive set acts as a certificate itself and is hence fittingly called inductive certificate. Additionally,

Eriksson, Röger, and Helmert (2017) showed that the existence of such a specific inductive set is

equivalent to the task being unsolvable. This means, that once we found such a set of states, the task

must be unsolvable. The inductive set often consists out of a huge number of states, and hence the

performance of the approach heavily relies on how to represent the inductive set. The authors discussed

three formalism, namely 2-CNF, Horn-formulas and BDD’s, and presented a practical evaluation of the

developed methods. These three formalisms were chosen, because they efficiently perform operations

that are required to verify that the described set indeed has the property of an inductive certificate.

Another formalism that is widely studied is given by propositional formulas in conjunctive normal

form (CNF). Although CNF formulas are commonly used in many areas of computer science, they

have a drawback: checking CNF formulas for satisfiability is NP-complete and even described as ”a

problem of central importance in computer science”(Vardi, 2014, p.1). Thus, it does not seem to be a

good formalism for inductive certificates at first glance.

Despite this, there is evidence that in practice satisfiability checking is often feasible: ”[...]have designed

and implemented highly scalable CDCL SAT solving algorithms (or simply, SAT-solvers) that are able

to efficiently solve multi-million variable instances obtained from real-world applications” (Ganesh and

Vardi, 2020, p.2). There has been ”remarkable success” (Biere, Heule, and Maaren, 2009, p.146) in the

use of SAT-solvers for CNF formulas generated from practical applications. In that sense, ”solvers are

efficient for many classes of large real-world instances” (Ganesh and Vardi, 2020, p.1) and the current

belief hints towards a beneficial structure of CNF formulas that are based on practical examples in

contrast to randomly generated formulas.

Hence, it might be interesting to investigate whether validating inductive certificates based on CNF

formulas can be feasible, since planning tasks are naturally structured by design of the problem de-

scription.

Certifying algorithms naturally spark a spiral of certificates: a first algorithm emits a certificate, which

needs to be validated in a validation tool. However, this simply shifts the problem to the validator,

as we are left again to simply trust it or require it to be certifying on its own. This creates a chain

of certifying validation tools until at one point we decide to trust the validation algorithm. This

observation provides us with another argument for the use of CNF formulas to certify unsolvable

planning systems.

The SAT-community has a long-lasting history with certifying algorithms initiated by Goldberg and

Novikov (2003), in which the authors describe an efficient procedure to generate unsatisfiability proofs

and a corresponding validation technique. The authors proposed a method in which the SAT-solver

emits an unsolvability certificate as a series of unit propagation that are part of the search process

already and allow validating the solver’s work. Although this first version of certifying SAT-solvers

was not performant enough to be used in practice, it instituted the idea of certifying unsatisfying

outputs in the SAT community. In fact, providing unsolvability certificates has become the standard

for SAT-solvers: the SAT competition1, a competitive event for the Boolean satisfiability problem,

1 http://www.satcompetition.org/

http://www.satcompetition.org/
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requires from 2013 onwards all algorithms that classify a formula as unsatisfiable to also provide a

certificate.

The progress in the SAT community regarding certifying algorithms provide an additional reason to

use CNF formulas to certify planning systems: instead of developing a certifying verifier on our own,

we only have to translate the unsolvability argument into SAT and have a range of certifying verifiers

available.



3
Background

In this chapter, we will introduce important terminology used in this work. At first, we introduce

propositional logic, which allows us to define core concepts in the field of classical planning. Finally,

we look into inductive certificates.

3.1 Propositional Logic
Propositional logic is a concept that describes how we can express logical conditions with formulas.

Its most basic element is a simple propositional variable v. This variable can only have one of two

values: true or false. Further, we can connect proportional formulas with the logical ”and” ∧ and the

logical ”or” ∨ called conjunction and disjunction respectively. This allows us to create more complex

formulas.

The following will describe how we can use propositional formulas to express logical relations. We

make use of them extensively to represents individual and sets of states. Propositional formulas can

be constructed as follows:

Definition 1 (propositional formula). Propositional formulas are defined over a set of propositional

variables V according to the following rules:

• For all v ∈ V , v is a propositional formula

• If φ is a propositional formula, then ¬φ is a propositional formula

• If φ and ψ are propositional formulas, then (φ ∨ ψ) and (φ ∧ ψ) are propositional formulas

Further, we use abbreviation (φ→ ψ) called implication for (¬φ∨ψ) and (φ↔ ψ) called equijunction

for ((φ→ ψ) ∧ (ψ → φ)).

Although, propositional formulas can be used to express a certain condition, they only have an actual

meaning if there are interpreted. Propositional formulas are interpreted as follows:
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Definition 2 (interpretation, model). Let V be a set of propositional variables.

An interpretation of V is a function I : V → {⊤,⊥}.
We say that I satisfies φ, or is a model of φ, written as I |= φ if:

• φ = v and I(v) = ⊤ for all v ∈ V

• φ = ¬ψ and I ̸|= ψ

• φ = ψ ∨ ψ′ and I |= ψ or I |= ψ′

• φ = ψ ∧ ψ′ and I |= ψ and I |= ψ′

When dealing with propositional formulas, we are often interested in how they relate to each other. A

very important property describes when two propositional formulas are equivalent.

Definition 3 (equivalent). Let φ and ψ be propositional formulas over propositional variables in V .

The formulas φ and ψ are equivalent iff for every Interpretation I we have I |= φ iff I |= ψ.

In particular, the formulas φ and ψ have the same set of models.

Often it is useful to consider formulas with a certain structure, so-called normal forms. To this end,

we introduce some additional terminology commonly used: the most basic propositional formulas are

called literals and consist of only a single, possibly negated, variable. Connecting a finite amount of

literals with conjunctions and disjunctions yields a clause or cube.

Definition 4 (literal, clause, cube). Let p be a propositional variable. The variable p and its negation

¬p are called literals. Any finite collection over literals that is connected over a disjunction of variables

in V is called a clause.

Contrary, a finite collection of literals over a conjunction is called a cube.

The main normal form considered in this work is the conjunctive normal form defined as follows:

Definition 5 (conjunctive normal form). A formula φ is in conjunctive normal form (CNF) iff it is

a conjunction of a finite number of clauses.

3.2 Planning Tasks
A classical planning task can be understood as a description of a problem consisting of four components:

a set of state variables which implicitly define the set of all states, an initial state of the problem setting,

a set of actions that can be used to alter between states and a goal description we want to satisfy.

Before we begin to introduce the different concepts used in this work, we will have a look at our

running example. For this, we will consider an instance of a Sokoban puzzle presented in Figure 3.1.

The Sokoban puzzle describes a problem in which a man needs to move a box from B3 to B5. However,

the man can only push the box and is unable to pull it.

For this thesis, we will focus on planning tasks formulated in propositional STRIPS representation

Fikes and Nilsson, 1971, where we represent a state by the set of true variables. This is particularly

useful, because we can easily generate propositional formulas that represent sets of states. Expressing

states with propositional formula enables us to not only represent states compactly, but also to make

use of powerful tools such as transformation algorithms and SAT-solvers.

The Sokoban puzzle, for example, could have a variable man-at-B2 expressing if the man is currently

at position B2.
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1 2 3 4 5 6

Figure 3.1: An instance of the Sokoban puzzle. Dark cells are walls, the brown cell is the position of
the box, and the red dot marks the goal position

A state is described by a specific configuration of propositional variables, in our case denoted by the

set of true variables:

Definition 6 (state). Let V be a set of propositional variables. A subset s ⊆ V is called a state (over

V ).

We could represent the Sokoban puzzle with the variables that describe the position of the box

box-at-* and the position of the man man-at-* for all grid positions *. In that case, the set

V consists out of all these variables. The state presented in Figure 3.1 can then be expressed with the

set {man-at-B2, box-at-B3}.

The description of a goal is given by a set of variables. A state is a goal state, if the goal description

is true in that state. In particular, this allows for multiple states to be a goal state. We could, for

instance, express the goal of the Sokoban task with the set {box-at-B5} and hence for example both

{man-at-B3,box-at-B5} and {man-at-C4, box-at-B5} are goal states.

Definition 7 (goal state). Let V be a set of propositional variables and G ⊆ V the goal. A state

s ⊆ V is called goal state if G ⊆ s.

The STRIPS formalism allows actions to change values of certain variables. Therefore, actions can be

used to switch between different states.

An action is a tuple of three different sets of variables, each with a specific role. The set of preconditions

contains variables that need to be fulfilled by a state for the action to be applicable in that state.

Further, an action contains a set of add- and delete-effects describing which variables are added and

removed by applying that action in a state.

Definition 8 (action, action applicability). Let V be a set of propositional variables, s be a state. We

call the tuple a = ⟨pre(a), add(a), del(a)⟩ an action, where pre(a) ⊆ V is the precondition, add(a) ⊆ V

the add-effects and del(a) ⊆ V the delete-effects of a.

Further, we say that a is applicable in s iff pre(a) ⊆ s. Applying a to s results in the successor state

s[a] defined as:

s[a] =

(s\del(a)) ∪ add(a) if pre(a) ⊆ s

undefined otherwise

A sequence of actions π = ⟨a1, . . . an⟩ is applicable in s iff s[a1] . . . [an] is well-defined for all 1 ≤ i ≤ n.

The resulting state after applying the action sequence π to state s is denoted by s[π].
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We could for example define the following action push-B3-B4 that encodes the act of pushing the

box from B3 to B4:

push-B3-B4 := ⟨{box-at-B3, man-at-B2 }, { box-at-B4, man-at-B3 },
{ box-at-B3,man-at-B2} ⟩

Naturally, this is only possible if the box is actually at position B3 and the man is in the position behind

the box, otherwise, he would not be able to push the box. This is expressed in the precondition-set.

The effect-sets of the action come naturally, as pushing the box from B3 to B4 changes the location of

the box and the man.

Now we have all tools available to define the centerpiece of classical planning: a planning task.

Definition 9 (STRIPS planning task). A STRIPS planning task Π is defined as Π = ⟨V Π, AΠ, IΠ, GΠ⟩
where

• V Π is a finite set of propositional variables

• AΠ is a finite set of actions

• IΠ ⊆ V Π is the initial state

• GΠ ⊆ V Π is the goal

Further, SΠ denotes the set of all states of Π and SΠ
G the set of all goal states.

Typically, actions have an associated cost specified by a cost function, representing the cost of applying

that action. Since action costs have no influence on the unsolvability of planning tasks, the action cost

function is negligible for our purposes.

Classical planning aims to find an action sequence that leads from the initial state to a goal state.

This action sequence is called a plan for planning task Π and is one solution of possibly many for a

planning task.

To illustrate, we could define the action sequence π = ⟨ push-B3-B4, push-B4-B5 ⟩ for our Sokoban
puzzle. After applying the actions contained in π to the initial state depicted in Figure 3.1, we would

have reached a goal state as the box would be at position B5.

Definition 10 (plan). Let Π be a planning task. An action sequence π = ⟨a1, . . . , an⟩ is called a plan

if π is applicable in IΠ and G ⊆ IΠ[π], in other words: π is called a plan if it defines a sequence of

actions that lead from the initial state IΠ to a goal state.

It is often possible to find a plan for a given planning task. In that case, the plan is considered to be a

solution to the planning task and hence the planning task is solvable. However, this is not always the

case, and naturally the planning task is then called unsolvable.

In this work, we will often argue about sets of states, and therefore we generalize our notion of action

applicability.

Definition 11 (progression). Let Π be a planning task, S ⊆ SΠ a set of states and a ∈ AΠ an action.

The set S[a] = {s[a] | s ∈ S, a applicable in s} is called the progression of S with a.

Similarly, let A ⊆ AΠ be a set of actions. The progression of S with A is given by S[A] =
⋃

a∈A S[a].

Furthermore, we sometimes like to traverse the search space in opposite direction. This process is

called regression, which makes use of backwards-applicable actions.
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Definition 12. Let s be a state and a an action.

We say that a is backwards-applicable in s iff there exists a state s′ with s′[a] = s.

Applying an action in different states might lead to the same successor state.

Therefore, the predecessor of a state s via an action a is described by a set of states.

The set of predecessors of state s via action a is defined as:

[a]s = {s′ | a is applicable in s′, s′[a] = s}

Definition 12 allows us to define the regression of a set of states via actions.

Definition 13 (regression). Let Π be a planning task, S ⊆ SΠ a set of states and a ∈ AΠ an action.

The set [a]S = {s′ | a applicable in s′, s′[a] ∈ S} is called the regression of S with a.

Similarly, let A ⊆ AΠ be a set of actions. The regression of S with A is given by [A]S =
⋃

a∈A[a]S.

3.3 Inductive Certificate
The basis for unsolvability certificates presented in this work is the concept of inductive sets, which

are state sets closed under action application.

Definition 14 (inductive set). Let Π be a planning task and S ⊆ SΠ a set of states. The set S is

called inductive in Π if S[AΠ] ⊆ S, that is, all action applications in a state in S lead to a state in S.

Inductive sets are impossible to leave, since if a state in S is reached, all further action applications

still stay in S. This property makes them useful for unsolvability certificates, because if an inductive

set contains no goal state, it would be impossible to reach a goal state from any state in the set. In

particular, if the inductive set contains the initial state and no goal state, there can not exist a plan

for the planning task. This is summarized in the definition of an inductive certificate.

Definition 15 (inductive certificate). Let Π be a planning task. An inductive certificate for Π is given

by a set S ⊆ SΠ of states, such that

1. IΠ ∈ S

2. S ∩ SGΠ = ∅

3. S is inductive in Π

To highlight the difference between inductive certificates and the upcoming backwards inductive cer-

tificates, inductive certificates will sometimes be called forward inductive certificates.

Further, the notion of inductive sets can be extended to a regression perspective. Here, inductive sets

describe sets that cannot be entered from the outside.

Definition 16 (backwards inductive set). Let Π be a planning task and S ⊆ SΠ a set of states. The

set S is called backwards inductive iff for all states s ∈ S and backwards-applicable actions a we have

[a]s ⊆ S

A crucial topic for inductive certificates is their representation. Because the set of states required for

the certificates tend to be very large, we would like to represent them compactly and efficiently. For

this thesis, we will use propositional CNF formulas to represent an inductive certificate.

Since inductive certificates are defined as a set of states, we first need to observe how to relate propo-

sitional formulas and state sets. Propositional formulas describe a logical condition. If a state satisfies

this condition, then they are a member of the set described by the formula.
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Definition 17 (states of φ). Let φ be a propositional formula over the variables V Π of a STRIPS

planning task Π. The formula φ represents the set states(φ) of states of Π as:

states(φ) = {sI | I : V Π → {⊤,⊥}, I |= φ}, where sI = {v | I(v) = ⊤} (3.1)

For instance, consider the formula φ = ((¬v ∧ w) ∨ q) over the set of variables V = {v, w, q}. By

examining the models of formula φ, we see that for example the states {w}, {q} and {w, q} are states

represented by φ, whereas for example the state {v, w} is not. Notice that any variable that is not

occurring in a formula can be assigned either ⊤ or ⊥. If we consider the formula φ = v over V = {v, w},
then states(φ) = {{v}, {v, w}}.
With the help of Definition 17, we can relate state sets S and S′ represented by formulas φ and ψ as

follows: S ⊆ S′ iff φ |= ψ.

Further, if a formula φ describes a set of states that is an inductive certificate, we call it an inductive

certificate formula.

Definition 18 (inductive certificate formula). Let Π be a STRIPS planning task. An inductive certifi-

cate formula for Π is a propositional formula φ with vars(φ) ⊆ V Π such that states(φ) is an inductive

certificate for Π.

To validate the generated certificate, we will need to formulate the progression or regression of a set

of states. Symbolic search and SAT-planning introduce additional variables V Π′
= {v′ | v ∈ V Π} to

define a transition relation τa over the variables in V Π ∪ V Π′
for each action a ∈ AΠ:

τa =
∧

vp∈pre(a)

vp ∧
∧

va∈add(a)

v′a ∧
∧

vd∈(del(a)\add(a))

¬v′d ∧
∧

v∈V Π\(add(a)∪del(a))

(v ↔ v′) (3.2)



4
Methods

For the following, we consider a planning task Π = ⟨V Π, IΠ, AΠ, GΠ⟩, where we assume that Π is

unsolvable. Further, let S be an inductive certificate for Π, so S is an inductive set of states that

contains the initial state and no goal state. Inductivity of S implicitly partitions the search space in

two areas: a first area that contains all states in S consisting of all reachable states and the complement

of S, denoted by S, describing a set of states that are unreachable. Similar to describing S as a set of

states that can not be left, we can describe S informally as a set of states that can not be entered, i.e.

there exists no path from the initial state IΠ to a state s ∈ S. Similar arguments as before give rise

to a second class of inductive certificates called backwards inductive certificates.

Definition 19 (backwards inductive certificates). Let Π be a planning task. A backwards inductive

certificate for Π is given by a set Sback ⊆ SΠ of states such that

1. IΠ /∈ Sback

2. SGΠ ⊆ Sback

3. Sback is backwards inductive in Π

I

a

b

c

d

e

f

h

j

k

l

m

G

S
S

Figure 4.1: Forward and backwards inductive certificate for an unsolvable task
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Figure 4.1 shows the graph of search space induced by an unsolvable planning task. Notice that S

is an inductive certificate since it is inductive, contains the initial state I and no goal state (in this

case G). The existence of S directly implies unsolvability of the underlying planning task, as shown

in Proposition 1 in Eriksson, Röger, and Helmert (2017).

Similar, we can see that S is a backwards inductive certificate according to Definition 19. In the

following, we will establish that the existence of S, is equivalent to unsolvability of the task as well.

Additionally, we will show that it is always possible to obtain a backwards inductive certificate from

a forward inductive certificate. As demonstrated by Eriksson (2019a), inductive sets and backwards

inductive sets are closely related.

Theorem 1 (Eriksson, 2019a, Theorem 4.2). Let S be a set of states. S is inductive iff S is backwards

inductive.

The following theorem shows that backwards inductive certificates can be used to certify unsolvability

of a planning task.

Theorem 2 (soundness and completeness of backwards inductive certificates). Given a STRIPS plan-

ning task Π = ⟨V Π, AΠ, IΠ, GΠ⟩. There exists a backwards inductive certificate for Π iff Π is unsolvable

Proof. We need to show soundness and completeness of backwards inductive certificates:

Soundness: Assume that there exists a backward inductive certificate Sback for planning task Π. By

Theorem 1, we have that Sind := Sback is forward inductive. Further, from GΠ ⊆ Sback it follows

that Sind ∩ GΠ = ∅ and because of IΠ /∈ Sback we have IΠ ∈ Sind. Therefore, Sind is a forward

inductive certificate. Notice that Eriksson, Röger, and Helmert (2017) showed that there exists a

forward inductive certificate iff a planning task is unsolvable, which directly implies unsolvability of Π.

Completeness: Assume that planning task Π is unsolvable. To prove completeness, we have to

show the existence of a backward inductive certificate according to Definition 19. As before, we use

the result of Eriksson, Röger, and Helmert (2017) and deduce the existence of a forward inductive

certificate Sind. In the following, we will show that Sind is a backwards inductive certificate.

1. Because Sind is an inductive certificate, we have that IΠ ∈ Sind. In particular, we have that

IΠ /∈ Sind

2. By definition of a planning task we know that SGΠ

is always non-empty and since Sind is induc-

tive, we have that Sind ∩ SGΠ

= ∅. Therefore, the set SGΠ

must be fully contained in Sind.

3. Since Sind is inductive, it follows with from Theorem 1 that Sind is backwards inductive in Π.

Therefore, Sind is a backwards inductive certificate for Π.

Theorem 2 proofs that backwards inductive certificates are sound and complete by themselves. How-

ever, this is not a surprise: the definition of a set complement gives us that all states which are not

a set are in its complement and vice versa. Concluding with the results from Theorem 1, we can

establish that a set is an inductive certificate iff its complement is a backwards inductive certificate.
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Theorem 3 (complement of certificate is certificate). Given a STRIPS planning task Π = ⟨V Π, AΠ, IΠ, GΠ⟩
and S a set of states. S is an inductive certificate iff S is a backwards inductive certificate.

Proof. Let S be an inductive certificate for Π. By Definition 15 the set S has the following properties.

1. IΠ ∈ S

By basic set operations, this holds iff IΠ /∈ S.

2. S ∩GΠ ⊆ ∅
Again, by basic set operations, this holds iff GΠ ⊆ S.

3. S is an inductive set

By Theorem 1, we have that S is inductive iff S is backwards inductive.

In particular, S is a backwards inductive certificate according to Definition 19 iff S is an inductive

certificate.



5
Theory

In this chapter, we will investigate the use of CNF formulas to formalize inductive certificates. At

first, we will look into different queries that we require to be supported efficiently by CNF formulas.

This is particularly important from a theoretical standpoint, as it will form the base argument for a

practical use of the formalism. In this part, we will be faced with the fact that satisfiability checks for

CNF formulas are NP-complete and hence we have to adjust our definition of efficiency. In a second

step, we will look into how uninformed search algorithms such as blind search can generate inductive

certificates. Since we generally can not directly obtain a formula in CNF, we will investigate different

approaches that allow us to derive a final CNF formula.

5.1 Queries
One of the core aspects of inductive certificates is the way of choosing a formalism that is able to

represent huge sets of states compactly. There is a wide range of different formalisms available, such as

BDD’s and Horn formulas, all with their respective advantages and disadvantages. BDD’s for example

allow a compact and canonical representation that supports bounded disjunctions and conjunctions,

but not arbitrary conjunctions. The difficulty arises from choosing a suitable representation that allows

reasonably fast operations.

To make use of a formalism, it should be possible to support a range of different query operations

needed for construction and verification of the certificates. For this, we consider a formalism to be

suitable for certificate representation if it supports certain operations efficiently. We will evaluate

efficiency under the following notion: a formalism supports an operation efficiently if it can perform

the operation in time polynomial in the size of the formula.

This thesis will focus on formulating certificates using CNF formulas. Further, we consider the STRIPS

formalism for formulating a planning task, which also makes use of proportional variables taking on

only the values true or false. As we have seen in Definition 17, we can easily obtain a set of states

defined by a specific propositional formula φ by investigating the models of φ. CNF are a particular

instance of propositional formulas, and hence we can also represent state sets in CNF. Although CNF

formulas generally do not allow efficient testing whether a given assignment is satisfying, they support

useful operations such as model testing, renaming and conjunction of literals efficiently. Furthermore,

because of the popularity of SAT-competitions, there is a wide range of SAT-solvers available for

verification.
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In the following, we will analyze different queries and whether CNF formulas can efficiently support

it. The list of queries is based on Theorem 4.4 in Eriksson (2019a), which establishes that inductive

certificates can be verified efficiently for any formalism, if the formalism efficiently supports MO, CE,

SE, ∧BC, CL and RN≺, which are defined and explained below.

Formula φ is considered to be an instance of a propositional formula over a variable set V , and the

corresponding set vars(φ) describes the variables occurring in formula φ. The size of the representation

is denoted by || φ ||.
The results are taken from Darwiche and Marquis (2002). Additionally, we provide a brief reasoning

for each operation.

• Model Testing (MO)

Given formula φ and truth assignment I, test if I |= φ

We can test whether I |= φ by simply evaluating the interpretation I. As with any propositional

formula, evaluating an assignment can be done in linear time.

Therefore, MO is supported efficiently.

• Consistency (CO)

Given formula φ, test whether φ is satisfiable

As mentioned earlier, CO describes the famous SAT problem. We will discuss what this means

for our efficiency analysis in Chapter 5.2.

CO is not supported efficiently.

• Clausal Entailment (CE)

Given formula φ and clause ϕ, test whether φ |= ϕ

Notice, that φ |= ϕ is equivalent to testing whether the CNF formula φ ∧ ¬ϕ is inconsistent.

Since CO is not supported, CE is not efficiently supported either.

• Sentential Entailment (SE)

Given formulas φ and ψ, test whether φ |= ψ

Since ψ is a CNF formula, ψ =
∧

i ci, where ci are the clauses of ψ. Then (φ |= ψ) is equivalent

to (φ ∧ ¬ψ) being inconsistent. Therefore, (φ ∧ ¬ψ) ≡ (φ ∧
∨

i ¬ci) is inconsistent iff φ ∧ ¬ci
inconsistent for each ci. Hence, this reduces to a number of CE checks.

Therefore, SE is not supported efficiently.

• Bounded Conjunction (∧BC), General Conjunction (∧C)

Given formulas φ1, . . . , φn, construct a formula representing φ1 ∧ · · · ∧ φn

In order to construct the conjunction of n CNF formulas, we simply have to merge the clause sets.

As this can be done by simply conjoining n formulas, ∧B and ∧BC are supported efficiently.

• Conjunction of Literals (CL)

Given a conjunction φ of literals, construct a formula representing φ

Each literal is a clause and hence their conjunction is a CNF formula.

CL is supported efficiently.

• Renaming (RN), Renaming consistent with order (RN≺)

Given formula φ and an injective variable renaming r : vars(φ) → V ′, construct formula repre-

senting φ[r] i.e. φ where each variable v is replaced by r(v)
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We can rename any CNF formula in linear time in || φ || by simply iterating over it and renaming

each occurrence individually. In particular, we can rename in any order.

RN and is supported efficiently.

With exception to CO, CE and SE, all required queries are supported efficiently by CNF formulas.

5.2 Efficiency despite SAT
Although CNF formulas support many queries efficiently, they have an important drawback: they do

not support CO and following from that also neither CE nor SE. Consistency is generally known

as the Boolean Satisfiability Problem (SAT) and is prominently shown to be the first problem to be

NP-complete (Cook, 1971).

For our purposes and under the assumption that P ̸= NP, this means, that CNF formulas are not

able to support consistency checks efficiently. Therefore, we will investigate whether propositional

formulas in conjunctive normal form are a suitable formalism to represent inductive certificates, under

the restriction to disregard their inefficiency regarding consistency checks.



6
Application to search algorithms

With the aim of generating plans for a planning task, planning systems commonly use a search mecha-

nism to traverse the induced transition system. Graph search generally starts at one state and explores

new states by applying actions to states seen previously. This is referred to as expanding states. The

open list keeps track of which states should be expanded next and at each step in the search process,

states are taken out in order to be expanded. Although not always necessary, some search algorithms

also employ a closed list that stores already expanded states. In that case, states are only expanded if

they are not in the closed list, which avoids expanding the same state multiple times.

The most prevalent search algorithms can be categorized in three families: breadth-first, depth-first

and best-first search. Most notably, they differ in which order states in the open list are expanded.

Breadth-first search expands states in the open list in LIFO order. Therefore, the search space is

expanded layer by layer in the sense that at first states adjacent to the starting state are expanded.

Then iteratively the states immediately adjacent to those states and so forth. Hence, breadth-first

search explores the search space in a wave-formation. In contrast to that, depth-first search expands

states in FIFO order, where most recently detected states are expanded first. This approach creates a

more wide-spread and branched-out search-space.

Best-first search expands the most promising states in the open list according to a specific rule. For

instance, uniform cost search assigns each state the cost of reaching it from the initial state. Hence,

states that can be reached cheaply from the initial state are expanded first and since states are ordered

by cost, this guarantees that once a solution is found, it is optimal. Commonly, best-fist search is

implemented as heuristic search, where a heuristic is used as an estimate for the distance to the

closest goal in combination with other information as the cost of reaching the state. This is the most

prominent variant of best-first search, as it allows for a large variety of different flavors depending on

the heuristic used.

Often, search algorithms make use of pruning, a powerful technique that helps to reduce the search

space that must be explored. Common applications include the use of heuristics: under certain con-

ditions, we can trust the judgment of a heuristic that a state will not lead to a goal state and simply

omit to expand the state without missing out on potential solutions.

Generally, a planning system determines that a planning task is unsolvable once it has explored all

states reachable from the starting point without ever reaching a goal state. Because pruning techniques

potentially prevent the planning system to actually explore every single reachable state, this adds a

layer of complexity to the process of proving unsolvability. We therefore have to look into methods

that allow us to represent unexplored states fairly accurate.
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In a first step, we will focus on blind search approaches which do not make use of pruning and examine

how they can create certificates. Later on, we will augment this approach to be capable of representing

unvisited states.

6.1 Blind Search
Blind search algorithms explore the search space by expanding states from the open list and stop when

they reached a goal state. They are considered to be ”blind”, since they don’t make use of heuristics

and pruning to speed up the search. More specifically, blind search is a best-fist search algorithm where

the open list is ordered only according to the cost of reaching a state, without taking into consideration

if an expanded state is actually useful for the search.

A progressive blind search starts at the initial state IΠ of a planning task Π. From there on, it generates

and inserts all possible successor states using the applicable actions into the open list, in other words:

it expands that state. The search continues until a goal state is expanded, or until all reachable states

have been expanded and no goal state was reached. The set of all reachable states S from IΠ has three

remarkable properties: it contains the initial state, it is inductive and if the task is unsolvable, it does

not contain any goal states. Hence, it is an inductive certificate.

In the following, we look into how blind search can construct inductive certificate formulas.

Since blind search only expands a single state s at each iteration, we can easily generate a formula

that describes all reachable states during the search as follows.

Initially, we start with the empty clause φ = ⊥ and then simply update φ after expanding state s

according to the update rule shown in Equation 6.1.

φ := φ ∨ (
∧
v∈s

v ∧
∧
v/∈s

¬v) (6.1)

Adding a new state to φ can be done in time linear in | V Π |, since the formula added contains a literal

for every variable in V Π.

This procedure generates a formula φ by simply appending each visited state using a disjunction. The

resulting formula represents all visited states, in the sense that each state visited is a model of φ. If

SR is the set of all reachable state, then states(φ) = SR.

Notice that by disjoining visited states, φ is naturally generated as a disjunction of cubes. In fact, this

is a normal form called disjunctive normal form and can be understood as the opposite to CNF in the

sense that conjunctions and disjunctions are switched. Since modern SAT-solvers require their input

to be in CNF we have to modify φ following one of two approaches: we could aim to transform φ from

disjunctive into conjunctive normal form. However, this approach is only feasible if we allow introducing

auxiliary variables during the transformation. We will revisit this approach in Chapter 7.2.1.

On the other hand, we could aim to generate a formula that is in CNF by construction. A natural way

to achieve this focused on backwards inductive certificates. Backwards inductive certificates make use

of the set of states which are not reachable by the initial state. In that sense, they can be interpreted

as the dual of regular inductive certificate and can be used to derive formulas that represent state sets

in conjunctive form immediately.

We can derive a formula φb representing the backwards inductive certificate similarly as before: initially,

we start with the empty cube φb = ⊤ and update φ′ according to Equation 6.2.

φb := φb ∧ (
∨
v∈s

¬v ∨
∨
v/∈s

v) (6.2)
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Notice that φb is in conjunctive normal form by construction.

Further, we could obtain φb by generating φ first: Since φ describes all reachable states, its negation

describes all states that are unreachable from the initial state IΠ. Since φ is a DNF formula we derive

the CNF formula φb by simply negating φ.

Theorem 3 gives us that ¬φ describes a backwards inductive certificate, and by Theorem 2 we have a

sound and complete tool at our disposal.

6.2 Heuristic Search
Heuristics can play an important role in the process of finding a plan for a planning task. During search,

the planning system makes use of information provided by a heuristic to guide the search towards a goal

state. There is a huge variety of different heuristics that are used in state-of-the-art planning systems,

such as relaxation heuristics, merge-and-shrink heuristics or heuristics based on landmarks. While

heuristics usually are used to minimize search time, they serve a different purpose for the detection of

unsolvable planning tasks. Heuristics work by associating a numerical value to a state that represents

an estimate distance from that state to a goal state. If a heuristic determines that a goal is unreachable

from a state, it is associated with an infinite heuristic value, which symbolizes that it is of no use to

further expand the state. Therefore, assigning an infinite heuristic value corresponds to pruning the

search tree. We call states with an infinite heuristic value dead-end.

In this chapter, we look into how inductive certificates can be generated for a specific class of heuristics.

As blind search expands every reachable state, the set of expanded states corresponds to the set of

reachable states. Naturally, the set of reachable states is inductive. If it does not contain any goal

state it is an inductive certificate as the initial state must always be expanded during search.

In heuristic search, we often end up pruning states because they are classified as a dead-end by the

heuristic. Although this accelerates the search process as we do not expand all reachable, we lose

inductivity: not all reachable states are actually expanded, and hence the set of expanded states Sexp

is not an inductive certificate.

Before we investigate how to obtain an inductive certificate when we make use of pruning, we introduce

the following heuristic properties.

Definition 20 (safety and consistency). Let h be a heuristic and s a state.

We call h safe if it only assigns an infinite heuristic to state s if no goal is reachable from s.

We call h consistent if h(s) ≤ h(s[a]) + cost(a) for all states s and all applicable actions a, where

cost : A→ R+
0 assigns each action a cost.

For the following, we will assume that heuristic h is safe and consistent. As we see later on, with these

properties we are able to obtain an inductive certificate by representing un-expanded states.

Let us at first consider the case, where only a single state sd is declared a dead-end. If we assume, that

we can represent the set Rsd of all reachable states from sd we can regain inductivity: since states in

Sexp only lead to states in Sexp∪{sd} and sd only leads to states in Rsd , the set Sexp∪Rsd is inductive.

An example is shown in Figure 6.1. Further, it always contains the initial state and because h safe,

it can not contain a goal. Additionally, since h is consistent, no state reachable from sd has a lower

heuristic value and therefore, Sexp ∪Rsd is an inductive certificate.

Similarly, we can derive an inductive certificate formula: if we can represent the set Rsd with formula

φsd , then the disjunction of φsd and φexp, representing the set of expanded states, is an inductive

certificate formula.
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Figure 6.1: Example of search space in which a heuristic considers sd as dead-end

However, in practice we won’t always be able to represent Rsd exactly, but rather make use of an

inductive over-approximation. An inductive over-approximation is sufficient, because still Sexp only

leads to states in itself or the inductive over-approximation and hence their union is inductive as well.

In what follows, we will extend this approach to the case of multiple dead-end states. If a heuristic h

is safe and consistent, then the union of all sets Rsd for all dead-ends sd is inductive and contains no

goal state.

The following theorem shows the connection between these heuristic properties and the set of all

dead-ends Sinf , that is, the states s with h(s) = ∞.

Theorem 4 (Eriksson, 2019a, Theorem 7.1). Given a heuristic h, let Sinf be the set of state s ∈ SΠ

with h(s) = ∞.

a) If h is safe, Sinf contains no goal state.

b) If h is consistent, Sinf is inductive.

Theorem 4 provides the foundation for certifying unsolvability in the case of heuristic search: for a

safe and consistent heuristic h, the set Sinf ∪ Sexp is an inductive certificate for Π. Therefore, if we

can represent the set Sinf with a formula φinf , we acquire an inductive certificate formula.

Heuristics have certain criteria under which they label a state as dead-end. Although multiple heuristics

are safe and consistent, we have to examine different heuristics separately and investigate how they

can produce an inductive certificate formula.

In the following, we will look into how the family of delete relaxation heuristics can generate inductive

certificates. Despite the fact that this heuristic family consists of multiple heuristics, we can analyze

them as one, because they label a state as dead-end under the same condition.

6.2.1 Delete Relaxation
During search, it sometimes makes sense to look into an altered planning task in which the delete

effects of all actions have been removed. This allows to interact with a simplified version of the

planning task to generate information that can be used in the original planning task. Several different

heuristics like h+, hmax, hadd, hFF and hLM−cut(e.g. (Bonet and Geffner, 2001), (Hoffmann and Nebel,

2001)) compute their values on this altered task and are summarized as the family of delete relaxation

heuristics. The following definition formalizes the idea of removing delete effects of an action, which

results in the delete relaxation of a planning task.
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Definition 21 (delete relaxation). Let Π = ⟨V Π, AΠ, IΠ, GΠ⟩ be a STRIPS planning task. The delete

relaxation of Π is the planning task ΠR = ⟨V Π, AR, IΠ, GΠ⟩ where AR contains an altered action aR

for each a ∈ AΠ such that pre(aR) = pre(a), add(aR) = add(a) and del(aR) = ∅.

Delete relaxations have an interesting and useful property: applying an arbitrary action in any state

can never lead to a state with fewer variables, but only to a state with the same or more variables.

This property arises immediately from the fact that the delete-effect of an action in a delete relaxation

is always empty. Therefore, once a variable is true, it will be true for all of its successors. Although

states in a delete relaxation can therefore be considered monotonic, this does not mean that it is

necessarily possible to reach a state with all variables. Hence, it is reasonable to introduce the notion

of unreachable variables.

Definition 22 (unreachable variable). Let Π = ⟨V Π, AΠ, IΠ, GΠ⟩ be a STRIPS planning task, ΠR =

⟨V Π, AR, IΠ, GΠ⟩ its delete relaxation and s a state over the variables in ΠR. A variable v ∈ V Π

is called unreachable in ΠR from state s, if it is impossible to reach a state s′ from s that con-

tains v. Further, we define the set of unreachable variables from state s as UR
s := {v ∈ V Π |

v is unreachable from s}.

Since the states are monotonic in a delete relaxation, we can easily determine the set UR
s for any state

s with the following procedure:

1. Insert all variables of state s into V R
s , the set of all reachable variables from s

2. Check if there is any unmarked, applicable action aR to the set V R
s . If there are none, return

UR
s := V Π\V R

s

3. Take an action aR that was found in step 2, insert the variables add(aR) into V R
s , and mark aR

as applied

4. Jump to step 2

It is easy to see that V R
s is the set of all reachable variables from state s, as variables are inserted into

V R
s only if there are reachable by some action sequence. From this set, we can simply derive the set

of unreachable variables UR
s as the set of all variables that are not contained in V R

s .

Using the set UR
s , we can now define an inductive set in the original task Π:

Theorem 5 (Eriksson, 2019a, Theorem 7.2). Given UR
s for some state s, the set SR

s = {s′ ⊆ V Π |
s′ ∩ UR

s = ∅} is inductive in Π.

Although delete relaxation heuristics can be quite different regarding heuristic guidance during search,

they are identical when it comes to detecting dead-ends: a dead-end state sd is detected as such by

any delete relaxation if UR
sd

contains at least one goal variable. This is very natural as this simply

means that at least one goal variable is unreachable from state sd, hence there can not exist a plan

that traverses sd. If U
R
sd

contains a goal variable, then the set SR
sd

contains no goal state. In particular,

SR
sd

is an inductive over-approximation of the inductive set Rsd containing all reachable states from

dead-end sd.

We can describe the set SR
sd

accurately by the formula φsd in Equation 6.3.

φsd =
∧

v∈UR
sd

¬v (6.3)
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Additionally, we derive formula φinf representing the set Sinf as follows:

φinf =
∨

sd is a dead-end

φsd

Therefore, we can represent the set of all reachable states from IΠ for delete relaxation heuristics with

φexp ∨ φinf .

Whereas forward inductive certificates express the over-approximation of the set of reachable states

from dead-end sd with the set that does not contain any unreachable variable, backwards inductive

certificate express this from a regression perspective: a state s is unreachable from dead-end sd, if it

contains any unreachable variable UR
sd

from sd.

If we denote the set of unreachable states from sd with SR
sd
, we can express this set with formula φsd

as depicted in Equation 6.4.

φsd =
∨

v∈UR
sd

v (6.4)

Similarly, we can derive a formula φinf representing the backwards inductive sets for each dead-end.

φinf =
∧

sd is a dead-end

φsd

Notice that φsd ≡ ¬φsd and φinf ≡ ¬φinf . Furthermore, φinf is in CNF by construction and φsd only

requires CL, which is supported efficiently by CNF.

Since a part of the delete relaxation heuristic computation already includes a relaxed reachability

analysis, UR
sd

and therefore SR
sd

and SR
sd

can be generated with no additional overhead. Theorem 6

captures these results.

Theorem 6. Given a state sd that is detected as dead-end by a delete relaxation heuristic. The formula

φsd representing the set SR
sd

can be constructed efficiently using CL. Further, we can generate φinf by

using CL a number of times.

This chapter showed specifically how to generate a formula that represents the set of reachable states

in the case of blind search. For hmax, we are able to generate a formula that represents all expanded

states and additionally all reachable states from each pruned state.
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Validation Formulas

During search, the planner explores the state space with the aim of finding a plan for the underlying

planning task. The planning system does not know in advance if a given planning task is solvable

or not, and hence tries to determine if a plan exists. If the planning system finds a plan, it can be

used as a certificate itself. In the event that the planning system comes to the conclusion that the

given planning task is unsolvable, it returns a propositional formula as a certificate. This formula

is an inductive validation formula representing the properties of an inductive or backwards inductive

certificate according to Definition 15 and Definition 19 respectively.

In the following, we will investigate how such a formula, developed as a representative of the generated

inductive certificate, can be constructed. We want to construct the formula such that we can validate

it later with the help of a SAT-solver. Since SAT-solvers require a CNF formula as input, we will

develop different approaches that enable us to use SAT-solvers for validation.

7.1 Generating Validation Formulas
An inductive certificate is given by a state set S, that satisfies the properties defined in Definition 15

or Definition 19. To construct a formula representing a forward or backwards inductive certificate, we

have to consider their individual properties. As a reminder of these properties, an overview is given in

Table 7.1.

forward backward

I ∈ S I /∈ S

S ∩G ⊆ ∅ G ⊆ S

S[A] ⊆ S [A]S ⊆ S

Table 7.1: Overview of properties of forward and backwards inductive certificates

Since we would like to represent the set-based properties as a propositional formula, we translate them

with the help of Definition 17 into formulas.

In what follows, we write φX to denote a propositional formula that represents a state set X i.e. the

models of φX represent states in X. Using the connectives ∧ for ∩, ¬ for complement, we can express

the composite set expression.
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This is formalized with the use of an interpretation function I which maps set expressions to logical

formulas.

I(X) : = φX where X is represented as φX

I({IΠ}) : =
∧

v∈IΠ

v ∧
∧

v′ /∈IΠ

¬v′

I(SGΠ

) : =
∧
v∈g

v

I(∅) : = v ∧ ¬v for some v ∈ V Π

I(S) : = ¬I(S)

I(S ∩ S′) : = I(S) ∧ I(S′)

I(a) : =
∧

vp∈pre(a)

vp ∧
∧

va∈add(a)

v′a ∧
∧

vd∈(del(a)\add(a))

¬v′d ∧
∧

v∈V Π\(add(a)∪del(a))

(v ↔ v′)

In the following, we will use the formulas φIΠ , φGΠ and φa to represent the corresponding interpretation

functions.

Additionally, we denote the forward inductive formula with φS . Notice, that φS can be constructed as

described in Chapter 6: for blind search, we append every reachable state to φS using Equation 6.1.

In the case of delete relaxation heuristics, we additionally have to represent the set of pruned states

for each dead-end. We do this by appending an over-approximation of the reachable states from a

dead-end according to Equation 6.3.

With the help of these formulas, we can express the properties of forward inductive certificates as

presented in Table 7.1.

• IΠ ∈ S

check φIΠ |= φS which is equivalent to checking that φIΠ ∧ ¬φS unsatisfiable

Since φIΠ is a simple conjunction of literals and in particular mentions every variable v ∈ V Π,

this check can be computed efficiently.

• GΠ ∩ S ⊆ ∅
check φGΠ ∧φS |= φ∅ which is equivalent to testing that φGΠ ∧φS ∧¬φ∅ unsatisfiable. Since the

negation of the empty set formula evaluates to true, we can omit it. There we are left to check

if φGΠ ∧ φS is unsatisfiable

• S[AΠ] ⊆ S

check ∀a ∈ AΠ : φS ∧ φa |= φS′ which is equivalent to φS ∧ φa ∧ ¬φS′ being unsatisfiable

In conclusion, we derive 2 + #actions subformulas that need to be verified. Notice that because we

want every subformula to be verified as unsatisfiable, we can construct a formula that represents all

three properties by simply building the disjunction over all subformulas as follows:

φS = (φIΠ ∧ ¬φS) ∨ (φGΠ ∧ φS) ∨

( ∨
a∈AΠ

(φS ∧ φa ∧ ¬φS′)

)
(7.1)

It can easily be seen that Equation 7.1 is satisfiable if and only if at least one of the subformulas is

satisfiable. Hence, it is unsatisfiable iff every subformula is unsatisfiable.

Therefore, Equation 7.1 can be used to validate any unsolvable planning task, as it is unsatisfiable iff

the set of states S indeed is an inductive certificate according to Definition 15.
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For that reason, we call the formula in Equation 7.2 a forward inductive validation formula and refer

to it with φV

Notice however, that the validation formula is not in CNF and can therefore not yet be validated in

a SAT-solver. We will investigate different approaches to validate the formula with a SAT-solver in

Chapter 7.2.

Similarly to the forward inductive validation formula, we can derive a corresponding formula for

backwards inductive certificate formulas.

For the following, the formula φS represents the set of all unreachable states S, where φS was generated

according to Equation 6.2.

• IΠ /∈ S

check φIΠ ̸|= φS which is equivalent to checking that φIΠ |= ¬φS ≡ φIΠ ∧ φS is unsatisfiable

• GΠ ⊆ S

check φGΠ |= φS which is equivalent to φGΠ ∧ ¬φS being unsatisfiable

• [AΠ]S ⊆ S

check ∀a ∈ AΠ : φS
′ ∧ φa |= φS which corresponds to φS

′ ∧ φa ∧ ¬φS being unsatisfiable

By constructing the disjunction of the subformulas we obtain a backwards inductive validation formula

φV presented in Equation 7.2.

φS = (φIΠ ∧ φS) ∨ (φGΠ ∧ ¬φS) ∨

( ∨
a∈AΠ

(¬φS ∧ φa ∧ φS
′)

)
(7.2)

Because of the identity ¬φS ≡ φS , the inductive validation formulas presented in Equation 7.1 and

Equation 7.2 are equivalent. Although it seemed to be useful at first to generate the formula φS

representing the set of reachable states S as its dual in the form of φS , the approaches turn out to be

identical. This is consistent with our prior results, summarized in Theorem 3 and hence both of these

formulas can be used as certificates for unsolvable planning tasks. For simplicity, we will only refer to

one of the approaches, but notice that they can be used interchangeably.

7.2 Verifying Validation Formulas
In Chapter 7.1, we investigated how to derive an inductive validation formula that acts as a certificate

for unsolvable planning tasks. We can construct the formula by expressing the properties of forward

and backwards inductive certificates using propositional formulas for the set of reachable states, the

initial state, the set of goal states and the set of actions given by a planning task. Constructing the

disjunction of the resulting subformulas yields the inductive validation formula presented earlier in

Equation 7.1.

φV := (φIΠ ∧ ¬φR) ∨ (φGΠ ∧ φR) ∨
( ∨
a∈AΠ

(φR ∧ φa ∧ ¬φR′)
)

(7.3)

Assume that a planning system comes to the conclusion that a presented planning task is unsolvable

and returns a certificate in the form of a formula, as in Equation 7.3. Instead of trusting the judgement

of the planning system, we are now able to validate whether the decision of the system was reached

correctly or not.

As we have seen before, Equation 7.3 expresses the properties of an inductive certificate iff the formula

is unsatisfiable. In that case, we know that the initial state is part of an inductive set that does not
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contain any goal state. The existence of such a set immediately proves unsolvability of the planning

task by Theorem 4.3 in Eriksson (2019a).

Therefore, we can validate the certificate, and with that the work of the certifying planning system,

by testing the inductive validation formula φV for unsatisfiability in a SAT-solver of our choice.

However, φV is not in CNF, and hence we have to investigate how we can reformulate the formula

before validating it. For this, we will consider two approaches:

the first approach transforms formula φV into a CNF formula. Here we will observe, that equivalent

transformation cause an exponential blow-up and hence are not practical for our usage. Hence, we will

look into a transformation algorithm that relaxes the guarantee of an equivalent transformation but

still preserves all satisfying assignments. We will investigate the transformation approach more deeply

in Chapter 7.2.1.

The second approach avoids transforming the φV by exploiting the structure of the formula. The idea

is inspired by a simple observation: a formula ψ =
∨

i ψi, where ψi represents a subformula of ψ, is

unsatisfiable iff every subformula ψi of ψ is unsatisfiable.

In the following, we will describe how we obtain much simpler subformulas from formula φV in Equa-

tion 7.3. For this, we will revisit the three properties of inductive certificates. Further, we will denote

the forward inductive certificate formula representing the set of reachable states S constructed accord-

ing to Equation 6.1 by φS . Remember that after visiting all reachable states, φS is of the following

form: φS =
∨

s∈S(
∧

v∈s v ∧
∧

v/∈s ¬v).
The formula representing the initial and the goal states are denoted as φIΠ and φGΠ respectively, the

formula representing the transition for an action a according to Equation 3.2 is referred to as φa and

the formula of the empty set as φ∅.

• IΠ ∈ S

φIΠ |= φS which corresponds to φIΠ ∧ ¬φS being unsatisfiable

Notice that φS is in DNF, and that we can transform a negation of a DNF formula to CNF in

linear time in the size of the formula by simply negating each literal and switching between ∧
and ∨. Because φIΠ is a full assignment, SAT-solver can efficiently check for unsatisfiability by

simple unit propagation.

• GΠ ∩ S ⊆ ∅ (φGΠ ∧ φS) |= φ∅. This is equivalent to φGΠ ∧ φS being unsatisfiable

Because φS is a large disjunction over cubes, φGΠ ∧ φS unsatisfiable iff φGΠ ∧ φs unsatisfiable

for all s ∈ S. Since φGΠ is in CNF already, we are left with the following validation checks:

∀s ∈ S : check φGΠ ∧ φs unsatisfiable

Notice, again, that φs mentions every variable and hence can be checked for unsatisfiability

efficiently.

• S[AΠ] ⊆ SR

∀a ∈ AΠ : ((φS ∧φa) |= φS′) which is equivalent to checking that φS ∧φa ∧¬φS′ is unsatisfiable

Notice that φa is already in CNF because (v ↔ v′) ≡ ((v ∨ ¬v′) ∧ (¬v ∨ v′)). Similar as before,

¬φS′ can be transformed to CNF in linear time, and by splitting up the calls for φS , we derive

the following checks:

∀a ∈ AΠ,∀s ∈ S : check φs ∧ φa ∧ ¬φS′ unsatisfiable

This check can again be done efficiently, because this formula is a full assignment.

As seen above, we can split up the calls to the verifier and obtain much simpler formulas instead. The

split allows us to completely avoid transforming the formula φV into CNF. This does not only safe a
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lot of effort in transformation time and memory, but also has a second important advantage: although

we have to do many CO checks, they can be done efficiently because each formula is a full assignment.

7.2.1 Transforming the formula
In contrast to splitting up the formula and testing many subformulas for unsatisfiability, we can

transform the formula in Equation 7.1 into a CNF formula. This leaves us with a single satisfiability

check in CNF.

Transforming a propositional formula φ into CNF is commonly done with the use of De Morgan’s law

and the distributive property. In the following, v, w, q are propositional variables.

De Morgan’s Law Distributive property

¬(v ∨ w) ⇐⇒ (¬v) ∧ (¬w) (v ∧ (w ∨ q)) ⇐⇒ ((v ∧ w) ∨ (v ∧ q))

¬(v ∧ w) ⇐⇒ (¬v) ∨ (¬w) (v ∨ (w ∧ q)) ⇐⇒ ((v ∨ w) ∧ (v ∨ q))

Table 7.2: Overview of De Morgan’s law and distributive property

Let us consider formula φ in DNF shown in the Equation 7.4.

φ := (v1 ∧ v2 ∧ v3 ∧ v4) ∨ (w1 ∧ w2 ∧ w3 ∧ w4) (7.4)

If we would like to transform a formula in DNF into CNF, we have to apply the distributive property

presented in Table 7.2 multiple times. This allows us to obtain the following equivalent formula in

CNF.

(v1 ∨ w1) ∧ (v1 ∨ w2) ∧ (v1 ∨ w3) ∧ (v1 ∨ w4)

∧ (v2 ∨ w1) ∧ (v2 ∨ w2) ∧ (v2 ∨ w3) ∧ (v2 ∨ w4)

∧ (v3 ∨ w1) ∧ (v3 ∨ w2) ∧ (v3 ∨ w3) ∧ (v3 ∨ w4)

∧ (v4 ∨ w1) ∧ (v4 ∨ w2) ∧ (v4 ∨ w3) ∧ (v4 ∨ w4)

(7.5)

Constructing an equivalent CNF formula out of a DNF formula can be achieved easily, by simply

building the disjunction over all variable pairs of the two subformulas. However, we transformed the

compactly written formula φ to a much longer formula. Two formulas with four variables each are

transformed into a formula with 16 clauses. In particular, Equation 7.5 has a lot more conjunctions

than the number of disjunctions in φ. It is easy to see that in the case of n formulas with k variables

each, a transformation yields kn conjunctions. Unfortunately, this is not practical for our purposes, as

we tend to deal with very large formulas.

But not all hope is lost: there exist efficient algorithms that can transform any formula into a CNF

formula that is not equivalent to the original formula, but still preserves all satisfying assignments.

This property is called equisatisfiable.

Definition 23 (equisatisfiable). Let φ and ψ be propositional formulas over a set of variables V . The

formulas φ and ψ are equisatisfiable if φ is satisfiable iff ψ is satisfiable.

Notice that the set of equivalent formulas is a subset of the set of equisatisfiable formulas: if two

formulas are equivalent, they are also equisatisfiable, but not necessarily the other way around. The

property of equisatisfiable is especially useful if we introduce auxiliary variables. If we know that we

can preserve all satisfying assignment through a series of transformation steps, we can recover a model

of the original formula by discarding the auxiliary variables.
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Consider the case where we have two propositional formulas φ and ψ over the variable set V ∪ V A,

where V = {v, w} is a set of propositional variables and V A = {x} is a set of auxiliary variables.

Further, assume that we have introduced auxiliary variables in only one of them, let’s say in ψ, and

still have the property of φ and ψ being equisatisfiable. Table 7.3 shows the equisatisfiable formulas φ

and ψ with a list of their satisfying assignments.

φ := (v ∨ w) ψ := (x ∧ (¬x ∨ v ∨ w) ∧ (¬v ∨ x) ∧ (¬w ∨ x))

{v 7→ T,w 7→ F} {v 7→ T,w 7→ F, x 7→ T}

{v 7→ F,w 7→ T} {v 7→ F,w 7→ T, x 7→ T}

{v 7→ T,w 7→ T} {v 7→ T,w 7→ T, x 7→ T}

Table 7.3: Equisatisfiable formulas φ and ψ with their models

However, notice that φ and ψ are not equivalent, as can be seen by the following counterexample: the

assignment {v 7→ T,w 7→ F, x 7→ F} is a model for φ as the assignment to the unmentioned auxiliary

variable x can simply be ignored. However, it is not a satisfying assignment for ψ, as can be seen in

Table 7.3.

7.2.2 Tseitin Transformation
Satisfiability preserving transformations form the basis of polynomial translation algorithms from any

propositional into a CNF formula, such as the Tseitin transformation (Tseitin, 1983). The Tseitin

transformation is a tool to transform an arbitrary combinatorial logic circuit into an equisatisfiable

propositional formula in conjunctive normal form. Although it is possible to transform any logic circuit

into an equisatisfiable CNF formula, we will restrict ourselves to propositional formulas. Propositional

formulas are a special case of a logic circuits as circuits may have multiple outputs, whereas formulas

only have one output: if interpreted, they either evaluate to true or false.

The Tseitin transformation, also referred to as Tseitin Encoding, introduces a new variable xi for

each subformula φi with the idea, that the newly introduced variable represents the value of the cor-

responding subformula. Depending on the structure of subformula φi, we can make use of different

pre-calculated CNF formulas to represent a 1-to-1 correspondence between φi and xi. We can express

this correspondence as a propositional formula as follows: xi ↔ φi. By simply building the conjunc-

tion of all pre-calculated CNF formulas together with the substitute variable of the entire formula, we

obtain an equisatisfiable formula φT−CNF in CNF. Since all pre-calculated CNF formulas are of fixed

size, the resulting formula φT−CNF only grows linearly in the size of the original formula φ. This

makes it a very useful tool, as it avoids the exponential blow-up described above, and hence can be

used for an efficient transformation from DNF to an equisatisfiable CNF.

The following equation describes how a disjunction of two proportional variables v and w are trans-

formed into CNF while introducing a new variable x representing the conjunction.

x↔ (v ∨ w) ≡ (x→ (v ∨ w)) ∧ ((v ∨ w) → x)

≡ (¬x ∨ v ∨ w) ∧ (¬(v ∨ w) ∨ x)

≡ (¬x ∨ v ∨ w) ∧ ((¬v ∧ ¬w) ∨ x)

≡ (¬x ∨ v ∨ w) ∧ (¬v ∨ x) ∧ (¬w ∨ x)

(7.6)
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Similarly, we can derive expressions for other common subformulas. Some examples are presented in

Table 7.4.

Subformula CNF Equivalent

x↔ (v ∨ w) (¬x ∨ v ∨ w) ∧ (¬v ∨ x) ∧ (¬w ∨ x)

x↔ ¬(v ∨ w) (x ∨ v ∨ w) ∧ (¬v ∨ ¬x) ∧ (¬w ∨ ¬x)

x↔ (v ∧ w) (x ∨ ¬v ∨ ¬w) ∧ (v ∨ ¬x) ∧ (w ∨ ¬x)

x↔ ¬(v ∧ w) (¬x ∨ ¬v ∨ ¬w) ∧ (v ∨ x) ∧ (w ∨ x)

x↔ ¬v (¬v ∨ ¬x) ∧ (v ∨ x)

Table 7.4: Common subformulas and their equivalent CNF formula

Following the derivation in Equation 7.6, we can extend the substitution rules to formulas with three,

as can be seen in Equation 7.7.

x↔ (v ∨ w ∨ q) ≡ (¬x ∨ v ∨ w ∨ q) ∧ (¬v ∨ x) ∧ (¬w ∨ x) ∧ (¬q ∨ x) (7.7)

In particular, we easily obtain pre-calculated subformulas for every fixed number of variables n.

x↔
n∨

i=1

vi ≡

(
¬x ∨

n∨
i=1

vi

)
∧

(
n∧

i=1

(¬vi ∨ x)

)
(7.8)

Similarly, we can derive expressions for differently structures subformulas, as seen in Table 7.4. These

substitution formulas, as presented in Equation 7.8, allow transforming formulas with large disjunction

into CNF very compactly. A disjunction of n variables can be transformed into a CNF formula with

n+ 2 conjunctions, where one clause mentions all variables, n clauses mention only two variables and

the final clause only consists out of the substitution variable x. Notice that the final clause is very

important, since only that clause actually represents that the original formula must hold. All other

clauses simply represent a substitution of a variable for a formula. For instance, consider Equation 7.6.

The formula only represents that variable x is true iff (v∨w) is true, but does not represent the formula

(v ∨ w) itself.
With the substitution rules presented in Table 7.4 and their respective generalizations to larger subfor-

mulas, we can transform a large variety of formulas already. As an example, we will revisit Equation 7.4.

φ := (v1 ∧ v2 ∧ v3 ∧ v4) ∨ (w1 ∧ w2 ∧ w3 ∧ w4)

In a first step, we will introduce a new variable for each subformula. Notice, that we can make use of

the generalized substitution formulas as φ represent a disjunction of two formulas with four variables

each.

x1 ↔ (v1 ∧ v2 ∧ v3 ∧ v4)

x2 ↔ (w1 ∧ w2 ∧ w3 ∧ w4)

x3 ↔ (x1 ∨ x2)

In this case, x3 corresponds to the entire formula φ. By simply building the conjunction of all these

substitutions and the substitution variable for φ, we obtain a transformed and equisatisfiable version

of the original formula:

(x1 ↔ (v1 ∧ v2 ∧ v3 ∧ v4)) ∧ (x2 ↔ (w1 ∧ w2 ∧ w3 ∧ w4)) ∧ (x3 ↔ (x1 ∨ x2)) ∧ x3
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Each substitution can now be transformed into CNF using pre-calculated subformulas resulting in the

formula shown in Equation 7.9.

(¬x1 ∨ v1 ∨ v2 ∨ v3 ∨ v4) ∧ (x1 ∨ ¬v1) ∧ (x1 ∨ ¬v2) ∧ (x1 ∨ ¬v3) ∧ (x1 ∨ ¬v4)

∧(¬x1 ∨ w1 ∨ w2 ∨ w3 ∨ w4) ∧ (x1 ∨ ¬w1) ∧ (x1 ∨ ¬w2) ∧ (x1 ∨ ¬w3) ∧ (x1 ∨ ¬w4)

∧(¬x3 ∨ x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ x3

(7.9)

Notice, that the generalized substitution rules allow us to transform large disjunctions/conjunctions

very efficiently. We only introduce a single auxiliary variable to present the disjunction/conjunction,

whereas the simple Tseitin transformation would introduce additional auxiliary variables for each pair

of literals.

In summary, we derived two different CNF formulas from the original formula φ presented in Equa-

tion 7.4. Transforming φ into an equivalent CNF formula resulted in an impractical blow up of clauses.

Therefore, we utilized the Tseitin transformation to obtain an equisatisfiable formula in CNF by in-

troducing auxiliary variables. This transformation preserves satisfiability of the original formula and

increases the formula size only linearly.

A comparison between the two transformations regarding the number of clauses in the resulting CNF

formula can be seen in Figure 7.1. In particular, we distinguish between the simple and generalized

Tseitin transformation.
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The Tseitin transformation is a powerful algorithm that allows to transform arbitrary propositional

formulas into an equisatisfiable CNF formulas. In particular, it offers a way to translate the inductive

validation formula φV into a suitable form for a SAT-solver. As we only care about if the validation

formula is satisfiable and do not actually look for a satisfying assignment, the Tseitin transformation

is a very useful tool for our purposes.
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Experimental Setup

To evaluate the methods presented in this work from a practical standpoint, we extended the Fast

Downward planning system (Helmert, 2006) to be able to generate backwards inductive certificates

formulated as CNF formulas. For the scope of this thesis, we restricted ourselves to A∗ search combined

with blind search and the delete relaxation hmax. We used three separate approaches to generate the

final CNF formula: the first approach avoids any transformation of the formula into CNF. Instead, it

checks for unsatisfiability of the inductive validation formula by testing each subformula independently.

In the second approach, we focused on minimal overhead in the Fast Downward planning system, by

generating certificates as boolean circuits and using the transformation tool bc2cnf introduced by

Junttila and Niemelä (2000). The translation is based on the Tseitin transformation and utilized to

transform the generated propositional formula into conjunctive normal form. This transformation tool

allows us to convert boolean circuits into CNF using simple Tseitin transformations. In the third

approach, we implemented a version of the Tseitin transformation directly into Fast Downward. This

allows to avoid reading and writing potentially large files and exploit the structure of the formulas

generated by the planning system. Further, this approach does not translate a formula, but immedi-

ately writes a CNF.

Independent of how the CNF formulas are generated, in a last step, they can be validated using state-

of-the-art SAT-solvers. For the transformation based approaches, we used the Kissat SAT-solver and

for the approach breaks the formula into more practical pieces we use CaDiCal, both developed by

Biere, Fazekas, et al. (2020). For the evaluation, we used the experiment benchmark assembled and

described in more detail in Eriksson (2019a) consisting exclusively of unsolvable planning problems.

The benchmark is publicly available (Eriksson, 2019b). Further, we utilized the Downward Lab toolkit

(Seipp et al., 2017) as a framework for running the experiments.

The experiments are run on a cluster consisting of Intel Xeon E5-2660 2.2 GHz processors. The

planning system was given 3584 MiB memory and 30 minutes time. We used the same memory limit

for the translation tool bc2cnf and for validating the certificates with the SAT-solvers, but adjusted

the time limit to 60 minutes for bc2cnf and 4 hours for the SAT-solvers. Although this would mean,

that the bc2cnf approach has technically 60 minutes more time, bc2cnf did not once fail because

the time restriction. In fact, it never needed more than two minutes transformation time, but is much

more restricted by the memory limitation. The three steps generation, transformation and verification

all use a single CPU core.
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8.1 SAT-Solver
To validate the certificates generated through one of the two transformation based approaches, we use

a SAT-solver called Kissat (Biere, Fazekas, et al., 2020). Kissat is not only the main track winner of

the 2020 SAT competition, but also placed first on a different branch focusing on unsatisfiable instances.

For our experiments, we will use the 2020 version that was submitted to the SAT competition 20202, as

it has a proven record in working with unsatisfiable formulas. The solver has an option to target such

formulas, and we will make use of that option for the experiments. Otherwise, we will run Kissat on

default configurations.

To validate the formulas that are part of the split-up approach, we use CaDiCal, another SAT-solver

by Biere, Fazekas, et al. (2020). We decided against the use of Kissat for this, because it currently

does not fully support the incremental interface IPASIR3. This interface provides an API to the SAT-

solver and additionally provides useful functionalities. In particular, it allows to solve a series of similar

formulas efficiently by remembering parts of the formula. Since the split-up approach would otherwise

require us to read-in a potentially long formula countless times, it is only reasonable to utilize the

provided interface.

Modern SAT-solver require a specific input format called DIMACS CNF. This format is a specific

textual representation of a CNF formula and will be mentioned a few times in Chapter 9.

2 https://satcompetition.github.io/2020/
3 https://github.com/biotomas/ipasir

https://satcompetition.github.io/2020/
https://github.com/biotomas/ipasir
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Experimental Results

We tested the generation of inductive validation formulas and the following verification through the

SAT-solvers Kissat and CaDiCal on the benchmark mentioned in Chapter 8. For this, we ran the

following configurations in Fast Downward:

• blind: A* search guided by a blind heuristic. States are expanded according to their cost from

the inital state.

• hmax: A* search guided by the hmax heuristic. States are expanded according to their heuristic

value and the cost of reaching the state.

To analyze the overhead caused by the generation of the inductive validation formulas, we also ran

an unaltered version of Fast Downward and denote it in the following by FD. The first version that

certifies unsatisfiability by splitting the formula into simpler CNF formulas is denoted by FDSp, the

second approach utilizing bc2cnf is referred to as FDBC and its transformation algorithm is denoted

by TransBC. Finally, FDD stands for the third approach that makes use of an implemented Tseitin

transformation. The corresponding verifiers are indicated by VERSp , VERBC and VERD. Overall, all

three approaches have certain characteristics that make them advantageous from a specific perspective

in comparison to the others.

In the following sections, we will describe parts of the implementation, and examine the results of the

generation and validation of the certificates and finally summarize the results.

9.1 Implementation
If the augmented version of Fast Downward comes to the conclusion that a presented planning task

is unsolvable, it must create a forward or backwards inductive validation formula. We decided to

implement the certificate from a backwards inductive view. The backwards inductive validation formula

consists out of the following subformulas:

• formulas φR and φR
′ representing the set of unreachable states and their successors

• formula φIΠ representing the initial state

• formula φGΠ representing the goal states

• formula φa representing the transition induced by each action a
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Instead of validating the validation formula in Equation 7.2 after a CNF transformation in one step,

FDSp shows unsatisfiability of each subclause as shown in Chapter 7.2. More specifically, FDSp does

not generate the validation formula itself, but rather a compact task description and the backwards

inductive certificate formula. In a second step, a targeted verifier VERSp produces subformulas that

are validated immediately.

Notice that FDBC uses bc2cnf to transform the formula into DIMACS CNF format. This permits

FDBC to generate a relatively compact formula. Since bc2cnf requires Boolean Circuits as input, we

write each subformula as a gate and later on generate the inductive validation formula by simply using

the connectives ”∨” and ”∧”. The generation process is over after we have written all formulas in the

required style.

FDD avoids writing a temporary file to be translated into DIMACS CNF, by simply transforming the

formula immediately. Here, we utilized the generalized substitution formulas presented in Equation 7.8,

where we introduced an auxiliary variable for each state, each property and the final formula as is

described in the following. Here we will denote the union of the set of expanded states and the set of

dead-end formulas with SR.

• xi ↔ (
∨

v∈si
¬v ∨

∨
v/∈si

v) for each state si ∈ SR

• xR ↔
∧

si∈SRxi

• xIΠ ↔ (
∧

v∈IΠ v ∧
∧

v′ /∈IΠ ¬v′)

• xinit ↔ (xR ∧ xIΠ)

• xGΠ ↔
∧

v∈GΠ v

• xgoal ↔ (¬xR ∧ xGΠ)

• x′i ↔ (
∨

v∈s′i
¬v ∨

∨
v/∈s′i

v) for each state s′i ∈ S′
R

• xR′ ↔
∧

i x
′
i

• for each action a:

xa ↔ (
∧

vp∈pre(a) vp ∧
∧

va∈add(a) v
′
a ∧

∧
vd∈(del(a)\add(a)) ¬v′d ∧

∧
v∈V Π\(add(a)∪del(a))(v ↔ v′))

• xactions ↔
∨

a∈AΠ xa

• xind ↔ (¬xR ∧ xR′ ∧ xactions)

• xV ↔ (xinit ∨ xgoal ∨ xind)

• xV

Notice that we can easily write the final equijunction in xa as a CNF formula by using (v ↔ v′) ≡
(v ∨ ¬v′) ∧ (¬v ∨ v′). The resulting substitution step was omitted here for sake of clarity.

The last formula in the list xV has an important role. Only that literal actually represents the

backwards inductive validation formula. Without it, we would have only introduced auxiliary variables

for subformulas, but not a validation formula.

The unsolvability certificate is only generated once the planning system comes to the conclusion that

the task is unsolvable. If we begin writing the formula during search, we would introduce overhead in

the case of a solvable task. In that case, the planning system obviously would not need the certificate.
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After the search is concluded, we iterate over all visited states and begin to generate the formulas

described above.

In the case of blind search, each visited state has a direct impact on the validation formula: we

append the negation of the visited state to the formula representing the unreachable states. Because

blind search does not use any pruning techniques, this approach is valid and produces a formula that

accurately represents the set of unreachable states.

For hmax, this is different, since it makes use of pruning by determining that a state is a dead-end.

In that case, the state is not expanded and hence its successors are not considered in the inductive

validation formula. Therefore, if we encounter a dead-end while iterating over the visited states, we

determine the set of unreachable variable with the procedure described in Chapter 6. Notice that to

avoid overhead during the actual search, we don’t save the unreachable variables that have been found

in the calculation of the heuristic values. Instead, we recalculate them after the search terminated,

which on one hand allows for a memory efficient search, but on the other hand requires additional

computation after its termination.

The conjunction of the negated unreachable variables, as presented in Equation 6.3, can then be

used to describe the dead-end state in the formula. For backwards inductive certificate formulas, this

expression is simply negated before appending it.

FD FDSp VERSp FDBC TransBC VERBC FDD VERD

3unsat(30) 15 15 5 15 5 5 10 10
bag-barman(20) 12 12 0 8 0 0 8 0
bag-gripper(25) 3 3 0 3 0 0 2 2
bag-transport(29) 7 7 1 6 2 1 6 3
bottleneck(25) 10 10 4 9 5 4 8 6
cave-diving(25) 7 7 2 7 4 4 7 5
chessboard-pebbling(23) 5 5 2 5 2 2 4 3
diagnosis(13) 4 4 1 4 1 1 2 2
document-transfer(20) 5 5 1 5 3 2 5 3
mystery(9) 2 2 0 1 0 0 1 0
nomystery(150+24) 34 34 0 18 0 0 16 0
pegsol(24) 24 24 14 24 16 16 24 19
pegsol-row5(15) 5 5 1 5 3 3 4 4
rovers(150+20) 10 10 0 8 0 0 6 0
sliding-tiles(20) 10 10 0 10 0 0 10 0
tetris(20) 10 10 5 5 5 5 5 5
tpp(30+25) 24 24 3 17 7 6 15 9
total(697) 187 187 39 150 53 49 133 81

Table 9.1: Coverage overview for blind search

9.2 Generation
The three certifying planning systems FDSp, FDBC and FDD have overall great success in the genera-

tion of certificates. Table 9.1 and Table 9.2 present on overview of the coverage of all three approaches.

For both blind search and hmax, FDSp is most successful. FDSp is able to generate a certificate for all

tasks where FD is able to determine the task as unsolvable for blind search, whereas FDBC and FDD

manage to produce a certificate in 80% and 71% respectively. For hmax we observe very similar results,

as FDSp, FDBC and FDD are able to generate a certificate in 83%, 73% and 72% of cases respectively.
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FD FDSp VERSp FDBC TransBC VERBC FDD VERD

3unsat(30) 15 10 5 10 10 5 10 10
bag-barman(20) 8 8 0 8 0 0 8 0
bag-gripper(25) 2 2 0 2 0 0 2 2
bag-transport(29) 6 6 1 6 2 1 6 3
bottleneck(25) 21 17 10 16 12 11 16 14
cave-diving(25) 7 7 2 7 5 5 7 5
chessboard-pebbling(23) 5 5 2 5 2 2 4 3
diagnosis(13) 5 5 4 5 4 4 5 4
document-transfer(20) 7 7 3 6 5 4 6 5
mystery(9) 2 2 0 1 0 0 1 0
nomystery(150+24) 59 41 1 27 4 4 27 12
pegsol(24) 24 24 12 24 18 16 24 20
pegsol-row5(15) 5 5 2 5 3 3 4 4
rovers(150+20) 15 15 0 9 3 3 9 7
sliding-tiles(20) 10 10 0 10 0 0 10 10
tetris(20) 5 5 5 5 5 5 5 5
tpp(30+25) 23 23 6 14 7 7 14 9
total(697) 219 182 54 160 80 70 158 113

Table 9.2: Coverage overview for hmax

blind hmax

memory time memory time
FDSp 0 0 5 32
FDBC 0 37 25 34

TransBC 96 1 77 3
FDD 1 53 21 40

Table 9.3: Reason for failures during generation in tasks where FD generated a certificate

However, we need to be a bit more careful: FDBC only has a valid certificate after TransBC transformed

the received boolean circuit into DIMACS CNF, and hence we won’t compare the output of FDBC to

the other two approaches. The results a very different if we consider TransBC instead, which was able

to successfully generate a certificate in 28% for blind search and 36% for hmax of the cases where FD

was able to determine the planning task as unsolvable.

Because of extensive file writing, both FDD and FDBC mainly fail due to time, which can be seen

in Table 9.3. In both cases hmax fails much more often to memory than blind search, which can

be explained by the additional computation needed. Furthermore, FDSp does not fail once for blind

search and mostly for time in the case of hmax. Since writing to the file-system is often time-consuming,

timeouts are probably due to extensive writing.

However, notice that TransBC fails almost exclusively due to memory, as TransBC is based on the

simple Tseitin transformation, which introduces an auxiliary variable for each subformula. Because

of that, the simple transformation is relatively memory inefficient in comparison with the generalized

transformation employed in FDD as hinted towards in Figure 7.1.

When it comes to the overall time consumption of the three certifying algorithms, we observe a similar

pattern. In all cases, we have that FDSp is the fastest, FDBC comes second and FDD is the slowest

as can be seen in Figure 9.1a, Figure 9.1b and Figure 9.1c. Additionally, we have to consider that the

transformation in TransBC requires significant time as well. Typically, the transformation takes about

4 − 6 as longer than FDBC itself. Notice, however, that all considered methods impose moderate to

considerable overhead to the planning system.
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Figure 9.1: Overview of Generation time of FDSp FDD and FDBC and comparison of certificate size
for FDD and FDBC

As writing the file is comparatively time-consuming, the results are understandable. FDSp only gener-

ates two small files containing a task description and a backwards inductive certificate formula, whereas

FDBC and FDD both produce a representation of the validation formula, which is typically much larger

as it contains information about each action, the initial and goal states. In particular, FDBC produces

a relatively compact description of the validation formula to transformed using TransBC. On the other

hand, FDD produces a valid DIMACS CNF already, and is hence expected to be larger than the other

files.

Whereas FDD produces certificates with an average size of 4GiB ranging up to around 20GiB and

the certificates generated by FDSp have a similar size with an average of 3.7GiB, this is very different

for TransBC. TransBC produces certificates with an average size of 57MiB. One reason for this is the

high number of memory failures of TransBC presented in Table 9.3, because TransBC simply fails for

instances that are too large to transform. On the other hand, FDD and FDSp are able to generate

much larger certificates. without failing.
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However, as mentioned before, it makes sense to compare the output of TransBC instead of the output

of FDBC. A comparison of the respective DIMACS CNF can be found in Figure 9.1d. We can see that

FDD is able to generate certificates that are in most cases smaller than the certificates produced by

TransBC.

The memory consumption of all three approach is for the most part identical. In total, we observe

deviations between FDSp, FDBC and FDD of less than 0.01%. This is only natural, since all approaches

are based on the same search algorithm and none of them needs to store much exclusive information.

Furthermore, there are interesting observations when comparing blind search to hmax. Almost always,

the certificates of hmax are smaller than for blind search due to the fact that the detection of dead-ends

allows us to prune the search tree, as is presented in Figure 9.2a. Dead-ends permit space reduction

in two ways: by pruning the search space at a dead-end we decrease the set of expanded states, which,

depending on the number of dead-ends determined, reduces the number of explicitly written states in

the certificate drastically. In most cases, hmax was able to reduce the number of states that need to

be expanded. This reduced the number of expansions, sometimes only marginally and ranging up to a

factor of multiple thousands. Only if hmax does not report any dead-ends, both approaches expanded

all reachable states. In that case, the resulting certificate files trivially have the same size, as from an

unsolvability perspective, hmax behaves identical to blind search.

Additionally, although not nearly as impactful, if hmax encounters a dead-end, we need to represent

the inductive set SR
sd

of reachable states from the dead-end instead of the state itself. For hmax we use

an over-approximation of the set SR
sd

presented in Equation 6.3. This expression is based on the set

of unreachable variables and can be represented compactly. Therefore, even if a dead-end might not

have any successors, we save space in comparison to blind search.
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Figure 9.2: Certificate size comparison of blind search and hmax. Memory of FDD

However, the space reduction comes at a price: the heuristic hmax requires additional computation to

determine the set of unreachable variables for each dead-end. A comparison of the memory consump-

tion of FDD and FD is shown in Figure 9.2b. Notice that because of the identical memory consumption

of the three approaches, we chose to show this for only one of them. The large memory deviation be-

tween blind search and hmax is due to the fact that in order for hmax to generate the representation of

SR
sd
, we have to recalculate the set of unreachable variables for all dead ends sd after the unsolvability

judgement.
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In fact, almost always when both blind search and hmax were able to produce an inductive certificate,

hmax is more memory intense. Only in few cases, hmax is as memory efficient as blind search, most

likely due to no dead-ends in the search space.

Despite the larger memory consumption, in most cases, hmax fails far less due to memory exhaustion

than blind search as can be seen in Table 9.3. This is due to pruning: in a planning task with many

dead-end states, pruning permits hmax to keep a relatively low memory profile in comparison with

blind search, as hmax has to keep far fewer states in memory at the same time.

9.3 Verification
Despite similar results in the generation of inductive certificates, we observe significant differences

when it comes to verification.

Out of the generated certificates, VERSp was able to verify 20% and 30%, VERBC verified 87% ad

92% for blind search and hmax and VERD managed to verify 71% for both search algorithms within

limits. All verified certificates are valid.

blind hmax

memory time memory time
VERSp 144 4 121 7
VERBC 4 0 10 0
VERD 50 0 45 0

Table 9.4: Reason for failures during verification in tasks where a certificate was generated

The verification of both heuristics mainly fails due to the memory exhaustion as can be seen in

Table 9.4. One explanation for the high number of failures of VERSp is on one hand the very high

generation rate of FDSp and on the other hand the reason that the entire ”transformation” from

certificate formula into many small subcalls takes place in the VERSp. Additionally, the verifier needs

to store a large formula in memory in addition to the high number of calls to the SAT-solver. The

high number of memory exhaustion for FDD could be explained by the size of the validation formulas,

as the certificates are on average quite large, whereas the low failures of VERBC are due to the high

number of failures of TransBC.

Although VERD has a comparatively high number of failures, it is still by far the most applicable, as

it was capable of certifying around 48% of all tasks in which FD determined unsolvability, whereas

VERSp was able to validate about 23% and VERBC around 29%.

Figure 9.3a and Figure 9.3b show the verification time of VERBC and VERSp in comparison with

VERD. Both VERBC and VERSp are in all cases significantly slower than VERD.

Comparing the verification time as a function of the size of the certificate size for both VERBC and

VERD gives us an overview about the effectiveness of the verifiers. From Figure 9.4 we can deduce a

positive correlation between validation formula size and required time to validate it and additionally

we can see that generally VERD is far more effective. One reason for this is the use of the simple versus

the generalized Tseitin transformation. Keep in mind that in the majority of cases the certificate of

FDD is smaller, as seen in Figure 9.1d, which makes this result even more impressive.

9.4 Summary
The experimental evaluation of the certifying approaches based on CNF certificates yields interesting

results. Although both FDD and FDBC are able to generate a formula in the majority of cases, the



Experimental Results 41

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

5
·1

04

failed

VERD runtime (in s)

V
E
R

B
C
ru
n
ti
m
e
(i
n
s)

hmax

blind

(a) Verification time of VERD vs VERBC

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

fa
il
ed

failed

VERD runtime (in s)

V
E
R

S
p
ru
n
ti
m
e
(i
n
s)

hmax

blind

(b) Verification time of VERD vs VERSp

Figure 9.3: Verification time as a function of the certificate size
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Figure 9.4: Verification time as a function of the certificate size for VERD and VERBC

success of FDBC rapidly decays. Because FDBC does not actually produce a validation formula in

CNF but only a description of it, it needs to do a transformation step before being able to validate the

formula. Unfortunately, this transformation is unsuccessful in most cases. In total, FDBC and TransBC

are able to generate a validation formula in about 30% of cases, whereas FDD succeeded in 70%. In

contrast to that, FDSp is able to generate a certificate in 90% of cases. Comparing the certificate size

yields that FDSp generates the smallest certificates, whereas TransBC produces in the majority of cases

the largest. Although VERBC was able to verify around 90% of the generated certificates, the is result

is diminished by the small number of generated certificates to begin with. VERSp has only a very

small verification rate of around 23% and is therefore for the most part not suitable. On the other

hand, VERD validated around 70% of the presented certificates and was able to certify around 48% of

all unsolvability judgments of FD. Hence, FDD performed best under the considered approaches and

is therefore the preferred choice of the three.
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Comparison

In this chapter, we will compare the developed methods with the BBD based inductive certificates from

Eriksson, Röger, and Helmert (2017). For this, we will use FDD as a representative for the approach

of expressing inductive certificates with CNF formulas. As we have seen in Chapter 9, FDD has an

overall higher number of successful generations and validations of the certificate and is generally the

best performing out of the three approaches FDSp, FDBC and FDD.

In contrast to FDD, the inductive certificates developed in Eriksson (2019a) is represented by BDD’s

and is therefore denoted by FDBDD.

Analogous to FDD, FDBDD is also implemented as an extension of Fast Downward. This allows for

a direct comparison between the two formalism CNF and BDD, whereas otherwise results might be

diluted by employing different planning systems. Additionally, both FDD and FDBDD make use of the

same argument for unsolvability: inductive sets. Despite these similarities between the two, FDBDD

does not produce a validation formula in CNF, hence we will use two separate verifiers: We can validate

FDBDD with a validation tool developed for this specific purpose. As before, FDD is validated with

Kissat.

We compare the two approaches from a number of different perspectives. Following the list of important

properties of certificate developed in Eriksson, Röger, and Helmert (2017), we focus on a general

applicability, efficient generation and verification. Furthermore, we will investigate differences between

the two approaches in their certificate size and the efficiency of the verifier with respect to the certificate

size.

10.1 Generation
Both FDD and FDBDD are relatively similar when it comes to a general applicability of certificates:

FDD is able to generate an inductive validation formula in about 72% of all cases where FD terminated

with an unsolvability judgement, whereas FDBDD is successful in 60% for blind search and 74% for

hmax, as can be seen in Table 10.1. Depicted in Table 10.2, we can see that FDD fails almost always

due to time for blind search, whereas FDBDD fails exclusively due to memory. This is in contrast to

hmax where both certifying approaches fail in about one part to memory and about two parts due to

time.

In almost all cases where both algorithms produce a certificate, FDBDD creates smaller files, as is

presented in Figure 10.1. In some cases, in particular when comparing certificates for hmax, we

observe a difference of an order of magnitude. However, the certificate size scales linear, meaning that



Comparison 43

blind hmax

FD FDD VERD FDBDD VERBDD FD FDD VERD FDBDD VERBDD

3unsat(30) 15 10 10 10 10 15 10 10 10 10
bag-barman(20) 12 8 0 4 4 8 8 0 4 4
bag-gripper(25) 3 2 2 2 2 2 2 2 2 2
bag-transport(29) 7 6 3 6 5 6 6 3 6 5
bottleneck(25) 10 8 6 8 8 21 16 14 17 15
cave-diving(25) 7 7 5 6 6 7 7 5 6 6
chessboard-pebbling(23) 5 4 3 4 4 5 4 3 4 4
diagnosis(13) 4 2 2 2 2 5 4 4 5 5
document-transfer(20) 5 5 3 4 4 7 6 5 6 6
mystery(9) 2 1 0 1 1 2 1 0 1 1
nomystery(150+24) 34 16 0 4 4 59 27 12 33 25
pegsol(24) 24 24 19 24 24 24 24 20 24 24
pegsol-row5(15) 5 4 4 4 3 5 4 4 4 4
rovers(150+20) 10 6 0 4 3 15 9 7 11 8
sliding-tiles(20) 10 10 0 10 10 10 10 10 10 10
tetris(20) 10 5 5 5 5 5 5 5 5 5
tpp(30+25) 24 15 9 14 12 23 14 9 15 12
total(697) 187 133 81 112 107 219 158 113 163 146

Table 10.1: Coverage comparison of FDD and FDBDD regarding generation and verification
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Figure 10.1: Comparison of certificate size of FDD and FDBDD

blind hmax

memory time memory time
FDD 1 53 21 40

FDBDD 54 0 21 35
VERD 50 0 45 0

VERBDD 0 5 0 17

Table 10.2: Reasons for failure in tasks that FD solved

if FDBDD generates a large certificate, the certificate generated by FDD is proportionally similar. One

reason for this is, that BDD’s support a very compact description of a formula, whereas FDD does not

simplify the validation formula itself. As BDD’s represent propositional formula in most cases more

compactly, the difference in certificate size is expected. Additionally, since file writing takes up a large

portion of the generation process, it is no surprise that we see similar results in the time comparison

depicted in Figure 10.2a: FDD needs almost always more time than FDBDD. Despite similar success
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Figure 10.2: Comparison of FDD and FDBDD

in the generation, both approaches fail on different problem instances, as can be seen in Figure 10.2a.

In the case where FDBDD is able to generate a certificate, FDD fails exclusively for hmax, and FDBDD

almost always fails for blind search. This could be due to the fact that adding a state to a BDD takes

linear time, but is still not as performant as appending a state as CNF formula.

However, FDD and FDBDD are vastly different when it comes to memory consumption. Generally, we

observe a large deviation between the two approaches. Whereas memory consumption for hmax is in

most cases relatively balanced, FDD has a strong memory advantage for blind search. A comparison

of FDBDD and FDD is presented in Figure 10.2b. The difference in memory consumption can be

explained by the use of BDD’s: whereas reduced BDD’s permit a compact description, their generation

and reduction is memory intense. In particular, FDBDD creates a BDD for each expanded state and

for each dead-end. Since blind search does not determine any dead-ends, FDBDD needs to generate a

BDD for each reachable state. Since FDD does not require additional computation for blind search, it

is much more performant. In fact, as can be seen on the right side of Figure 10.2b, FDD is often able

to generate a certificate in cases where FDBDD fails. Furthermore, FDBDD needs to store the entire

BDD in memory and can only write it out after every state is represented through the BDD, whereas

FDD is able to write the formula continuously. As both FDD and FDBDD rely on the same reachability

analysis for dead-end formulas, they are in most cases similar for hmax.

10.2 Verification
While FDD and FDBDD are at least somewhat similar regarding the generation of certificates, the

verification yields different results. VERD was able to successfully verify 67% of cases where FDD

generated a formula, whereas VERBDD verified 90% of the generated certificates by FDBDD within

time limit. All verified certificates by VERD and VERBDD are valid. The validation of FDD fails

exclusively because of memory, while on the contrary VERBDD rarely fails at all. If it fails, however,

it is always because of time.
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Figure 10.3: Comparison of VERD and VERBDD

Generally, we observe a similar behavior when it comes to verification time: short and long verification

times coincide. In Figure 10.3a we can see that VERD is often faster than VERBDD: although they

are relatively even when it comes to blind search, VERD is faster in 85% of cases where both methods

are able to verify their respective certificate. Particularly when both verifiers required a small amount

of time, VERD has the advantage. Furthermore, in cases where VERD is slower, we often observe only

a minor discrepancy, whereas VERBDD is often multiple orders slower.

The memory consumption of VERD and VERBDD is a bit more mixed: similar as with time, VERD

is more performant for less intensive verification processes and has a lower memory consumption in

about 60% of cases, where both approaches finished the validation process. However, as can be seen

in Figure 10.3b, the memory usage of VERD scales badly. Tasks where both approaches require a lot

of memory are always more intense for the CNF based method. One explanation for this might be the

NP-completeness when testing CNF formulas for satisfying assignments, whereas for BDD’s we can

generally test for satisfying assignments in polynomial time.

If we compare the runtime of the verifier as a function of the certificate size, we gain insight into the

efficiency of the two different verifiers. An overview is given in Figure 10.4. Given the larger certificates

and the overall faster verifying time, it is no surprise that VERD is much more efficient. Generally,

VERD almost always able to stay on the lower part of the graph, especially for smaller certificates,

which implies great efficiency of VERD for smaller tasks. On the contrary, VERBDD is in the majority

of in the center of the chart, which corresponds to a comparatively low verification efficiency. However,

VERD does not scale as well as VERBDD does, which can be deduced by the plots in Figure 10.4.

10.3 Summary
The experimental evaluation provides a reasonable argument for the use of CNF formulas as a repre-

sentation of inductive certificates in comparison with the BDD based approach presented in Eriksson

(2019a).

Generally, FDD is able to keep up and sometimes even surpass FDBDD both in generation and veri-

fication. FDD outperforms FDBDD minorly in general applicability and significantly in memory con-

sumption for blind search in the generation.
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Figure 10.4: Runtime comparison of VERD and VERBDD as a function of the certificate size

Regarding certificate size and runtime of the planner FDD is in most cases only marginally worse

than its contestant. When it comes to the validation of the certificate, VERD is able to keep up with

VERBDD up to a certain point. Although VERD is in most cases much faster during the verification

and for small certificates more performant with regard to memory, VERD generally does not scale

as good as VERBDD. Certificates that require more memory or more time for both approaches, are

verified with less memory by VERBDD.

Furthermore, VERBDD is far more general: it is capable of validating almost all generated certificates,

whereas VERD is unable to verify about a third.

Therefore, FDD and VERD are able to outperform FDBDD and VERBDD only for certificates that

require not too much memory to validate. Although CNF formulas are generally able to keep up with

and even outperform the BDD formalism in some aspects, currently FDBDD and VERBDD remain the

preferred choice.



11
Conclusion

In this thesis, we investigated the use of CNF formulas as a representation of inductive certificates for

certified planning.

At first, we looked into how blind search is able to generate a formula representing all reachable states.

By construction, this formula is in disjunctive normal form, and therefore we considered generating that

formula from a regression perspective: representing the set of unreachable states allows us to obtain

a CNF formula directly. With the help of this formula, we can introduce the notion of backwards

inductive certificates. Similar to forward inductive certificate, their existence proofs unsolvability of

the planning task. Although this seemed helpful at first, we derived that these two inductive certificates

are actually equivalent.

Expressing the conditions of a forward or backwards inductive certificate as a single propositional

formula allowed us to progress. The formula itself expresses the conditions of an inductive certificate

in the sense that the planning task is unsolvable iff the formula is unsatisfiable. However, this is formula

is not in CNF. To show unsatisfiability of the formula and therefore validate the certificate, we made

use of (certifying) SAT-solvers that enable us to validate the formula in a certifying algorithm itself.

Hence, we only have to translate the certificate into CNF and do not need to additionally develop a

certifying verifier on our own.

As the inductive validation formula is not a CNF formula, we investigated two approaches: the first one

exploits the fact that the formula is a disjunction of CNF formulas and hence it shows unsatisfiability

by showing unsatisfiability of each disjunct. The second one transform the formula into CNF. However,

as equivalence transformation are usually impractical and because we don’t care about how but if the

formula is satisfiable, we looked into satisfiability preserving transformations. For this, we utilized the

Tseitin transformation, after which we finally derived a CNF formula as certificate.

We then extended this approach to delete relaxation heuristics, where instead of expanding all reachable

states, we make use of pruning. However, not expanding dead-end states leads to lose inductivity of the

certificate and thereby its completeness guarantee. By showing how to find and inductive set for each

dead-end, we regained inductivity since all expanded states lead to expanded states and dead-ends and

dead-ends are inductive.

The experimental evaluation compared three different approaches and shows a general applicability of

the developed methods. Finally, we compared the best performing implementation with a BDD based

certifying planning system. Although the CNF representation was able to keep up with the BDD

approach regarding generation and outperform it in some aspects of the verification, it generally was

only capable of matching the performance of the established approach up to a certain degree.
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11.1 Future Work
One of the main drawbacks of CNF bases certificates in comparison with state-of-the-art certifying ap-

proaches is the comparatively low validation rate. Whereas the established certifying planning system

based on BDD’s can be verified in almost all cases where a certificate was generated, our approach

was only able to validate every second certificate. Most often, the validation failed due to memory and

hence it would be interesting to investigate more memory efficient certificates. For this, future work

might look into simplifying the inductive certificate formula, as it is currently generated by explicitly

appending each expanded state. On one hand, we could simplify the formula by only appending an

equivalent but simpler representation by grouping states. For example, instead of appending the two

formula φ1 = w ∧ ¬v and φ2 = w ∧ v individually, we could instead append φ1,2 = w ∧ (¬v ∨ v) ≡ w,

which allows representing the two states much more compactly.

Similar, we could consider utilizing BDD’s internally. As BDD’s support important queries efficiently,

we could make use of BDD’s as an intermediate tool. Once we have derived a BDD expressing the

inductive certificate, we could use it to generate a CNF formula from this reduced binary decision

diagram. As the canonical representation of BDD’s is based on reductions, these would correspond

to simplification steps such as unit propagation in the resulting CNF formula. This would allow for

potentially more compact certificate formulas in CNF. As the reduction is more memory intense than

simply writing each state to the certificate, we would lose the memory efficiency of the current gener-

ation process, however we would potentially benefit from smaller certificate files and fewer generation

time. Additionally, this could speed up the validation and allow us to efficiently certify more complex

tasks.

Alternatively, we could consider the use of preprocessing tools for SAT-solvers. As the explicit represen-

tation introduces potential redundancies in the formula, a preprocessing tool would allow transforming

a DIMACS CNF into an equisatisfiable but potentially simpler one.
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Junttila, T. A. and Niemelä, I. (2000). Towards an Efficient Tableau Method for Boolean Circuit Sat-

isfiability Checking. In: Computational Logic – CL 2000; First International Conference. Springer,

Berlin, pp. 553–567.

McConnell, R. M. et al. (2011). Certifying algorithms. In: Computer Science Review 5.2, pp. 119–161.

Seipp, J. et al. (2017). Downward Lab. url: https://doi.org/10.5281/zenodo.790461.

Tseitin, G. S. (1983). On the Complexity of Derivation in Propositional Calculus. In: Automation of

Reasoning: 2: Classical Papers on Computational Logic 1967–1970. Berlin, Heidelberg: Springer,

pp. 466–483.

Vardi, M. Y. (2014). Boolean satisfiability: theory and engineering. In: Communications of the ACM

57.3, p. 5.

https://doi.org/10.5281/zenodo.790461


Declaration on Scientific Integrity 
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis: 

Name Asse sor: ________________________________________________________ 

Name Student: ________________________________________________________

Matriculation No.: ________________________________________________________

With my signature I declare that this submission is my own work and that I have fully 
acknowledged the assistance received in completing this work and that it contains no 
material that has not been formally acknowledged. I have mentioned all source materials 
used and have cited these in accordance with recognised scientific rules.

Place, Date: _______________________ Student: ____________________________

Will this work be published? 

No 

Yes. With my signature I confirm that I agree to a publication of the work (print/digital) 
in the library, on the research database of the University of Basel and/or on the 
document server of the department. Likewise, I agree to the bibliographic reference in 
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: _________________________________________________________

Place, Date: _______________________  Student:   ____________________________

Place, Date: _______________________  Assessor:   ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis 


	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Related Work
	3 Background
	3.1 Propositional Logic
	3.2 Planning Tasks
	3.3 Inductive Certificate

	4 Methods
	5 Theory
	5.1 Queries
	5.2 Efficiency despite SAT

	6 Application to search algorithms
	6.1 Blind Search
	6.2 Heuristic Search
	6.2.1 Delete Relaxation


	7 Validation Formulas
	7.1 Generating Validation Formulas
	7.2 Verifying Validation Formulas
	7.2.1 Transforming the formula
	7.2.2 Tseitin Transformation


	8 Experimental Setup
	8.1 SAT-Solver

	9 Experimental Results
	9.1 Implementation
	9.2 Generation
	9.3 Verification
	9.4 Summary

	10 Comparison
	10.1 Generation
	10.2 Verification
	10.3 Summary

	11 Conclusion
	11.1 Future Work

	Bibliography

