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Introduction Generation Validation Experiments Comparison Conclusion

STRIPS Planning Task

Definition

A STRIPS planning task Π is defined as Π = ⟨VΠ,AΠ, IΠ,GΠ⟩ where
VΠ is a finite set of propositional variables

AΠ is a finite set of actions

IΠ ⊆ VΠ is the initial state

GΠ ⊆ VΠ is the goal

A subset s ⊆ VΠ is called a state of Π. The set of all states of Π is denoted by SΠ.
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Certifying Planning Systems

Planner

Plan Validation Tool

Verification Tool

Result

”solvable”

plan π
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”valid”

”invalid”

”valid”

”invalid”
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Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S
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Conjunctive Normal Form (CNF)

A finite conjunction of clauses is a formula in conjunctive normal form (CNF).

φ =
∧∨

lit

Widely studied and commonly used in Computer Science

Testing a CNF formula for satisfiability is NP-complete
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Why CNF?

STRIPS problem descriptions are very close to propositional logic

e.g. state s = {v ,w} over variables V Π = {q, v ,w}
described by φs = v ∧ w ∧ ¬q

SAT-solver allow certified verification

But: SAT-solving is NP-complete

However: SAT-solvers are often much more efficient for ”real” problems

Thesis investigates feasibility of CNF formalism
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Certifying Unsolvability using CNF Formulas

Planner

Plan Validation Tool

SAT-solver

Result

”solvable”

plan π

certificate in CNF

”unsolvable” ”valid”

”invalid”

”valid”

”invalid”
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Generate Inductive Certificate Formulas

Formula φS should represent the set of reachable states S

In blind search: all reachable states are expanded

Start with φS := ⊥
During search: append each expanded state s

φS = φS ∨ (
∧
v∈s

v ∧
∧
v /∈s

¬v)︸ ︷︷ ︸
φs
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Blind Search

φS = ⊥
qv

w

vw

q

qvw

S

φS describes the inductive certificate since ∀s ∈ S : s |= φS
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Heuristic Search

qv

w

vw

q

qvw

S

Rw

Sexp

Infinite heuristic values may prune the
search space
→ We don’t expand all reachable states
→ Sexp is not inductive

How to regain inductivity?

Assume we have an inductive set Rsd

for each dead-end sd

Expanded states lead to expanded
states and dead-ends

→ S = Sexp ∪ Rw is inductive
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Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV
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Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸

CL

∧
∨
s∈S

φs︸ ︷︷ ︸

DNF

unsatisfiable iff φG︸︷︷︸

CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸

CL

∧
∨
s∈S

φs︸ ︷︷ ︸

DNF

unsatisfiable iff φG︸︷︷︸

CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸

DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit → 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit → 1

φgoal → #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit → 1

φgoal → #expanded states

φinductive → #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12



Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula

✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula

→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver
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Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi )(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi )
)

→ can substitute larger subformula at once

→ equisatisfiable CNF
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Transformation Comparison
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Experiments

Split up

FDSp Task & φS−−−−−−→ VerSp

incremental SAT-solver

Transform

FDBC Circuit−−−−→ TransBC
CNF−−→ VerBC

bc2cnf

FDD CNF−−→ VerD

direct transformation

Comparison of blind and hmax
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CNF Coverage: blind vs. hmax
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Time Comparison
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Coverage: blind vs. hmax
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Generation CNF vs. BDD
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Verification CNF vs. BDD
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Conclusion

Inductive Certificates capture unsolvability

Splitting the SAT-calls avoids inefficiency of SAT

Tseitin Encoding allows equisatisfiable transformation to CNF

CNF representation of certificates is practically viable

Exponential scaling of SAT
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Failures

blind hmax

memory time memory time
FDSp 0 0 5 32
FDBC 0 37 25 34

TransBC 96 1 77 3
FDD 1 53 21 40

Table: Reason for failures during generation in tasks where FD generated a certificate
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Failures

blind hmax

memory time memory time
VERSp 144 4 121 7
VERBC 4 0 10 0
VERD 50 0 45 0

Table: Reason for failures during verification in tasks where a certificate was generated
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Failures

blind hmax

memory time memory time
FDD 1 53 21 40

FDBDD 54 0 21 35
VERD 50 0 45 0

VERBDD 0 5 0 17

Table: Reasons for failure in tasks that FD solved
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