
Definition

Certifying Unsolvability using CNF Formulas

Fabian Kruse <fabian.kruse@unibas.ch>

Department of Mathematics and Computer Science, University of Basel

23. Feburary 2023

Introduction Generation Validation Experiments Comparison Conclusion

STRIPS Planning Task

Definition

A STRIPS planning task Π is defined as Π = ⟨VΠ,AΠ, IΠ,GΠ⟩ where
VΠ is a finite set of propositional variables

AΠ is a finite set of actions

IΠ ⊆ VΠ is the initial state

GΠ ⊆ VΠ is the goal

A subset s ⊆ VΠ is called a state of Π. The set of all states of Π is denoted by SΠ.

Certifying Unsolvability using CNF Formulas 2

Introduction Generation Validation Experiments Comparison Conclusion

Certifying Planning Systems

Planner

Plan Validation Tool

Verification Tool

Result

”solvable”

plan π

”unsolvable”

”valid”

”invalid”

”valid”

”invalid”

Certifying Unsolvability using CNF Formulas 3

Introduction Generation Validation Experiments Comparison Conclusion

Certifying Planning Systems

Planner

Plan Validation Tool

Verification Tool

Result

”solvable”

plan π

certificate

”unsolvable” ”valid”

”invalid”

”valid”

”invalid”

Certifying Unsolvability using CNF Formulas 3

Introduction Generation Validation Experiments Comparison Conclusion

Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S

Certifying Unsolvability using CNF Formulas 4

Introduction Generation Validation Experiments Comparison Conclusion

Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S

Certifying Unsolvability using CNF Formulas 4

Introduction Generation Validation Experiments Comparison Conclusion

Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S

Certifying Unsolvability using CNF Formulas 4

Introduction Generation Validation Experiments Comparison Conclusion

Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S

Certifying Unsolvability using CNF Formulas 4

Introduction Generation Validation Experiments Comparison Conclusion

Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S

Certifying Unsolvability using CNF Formulas 4

Introduction Generation Validation Experiments Comparison Conclusion

Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S

Certifying Unsolvability using CNF Formulas 4

Introduction Generation Validation Experiments Comparison Conclusion

Inductive Certificates

Definition

An inductive certificate for planning task Π is
given by a set S ⊆ SΠ of states, such that

IΠ ∈ S

S ∩ SΠ
G = ∅

S is inductive in Π

Theorem

Planning task Π is unsolvable iff there exists an
inductive certificate for Π

”cannot be left”

qv

w

vw

q

qvw

S

Certifying Unsolvability using CNF Formulas 4

Introduction Generation Validation Experiments Comparison Conclusion

Conjunctive Normal Form (CNF)

A finite conjunction of clauses is a formula in conjunctive normal form (CNF).

φ =
∧∨

lit

Widely studied and commonly used in Computer Science

Testing a CNF formula for satisfiability is NP-complete

Certifying Unsolvability using CNF Formulas 5

Introduction Generation Validation Experiments Comparison Conclusion

Conjunctive Normal Form (CNF)

A finite conjunction of clauses is a formula in conjunctive normal form (CNF).

φ =
∧∨

lit

Widely studied and commonly used in Computer Science

Testing a CNF formula for satisfiability is NP-complete

Certifying Unsolvability using CNF Formulas 5

Introduction Generation Validation Experiments Comparison Conclusion

Conjunctive Normal Form (CNF)

A finite conjunction of clauses is a formula in conjunctive normal form (CNF).

φ =
∧∨

lit

Widely studied and commonly used in Computer Science

Testing a CNF formula for satisfiability is NP-complete

Certifying Unsolvability using CNF Formulas 5

Introduction Generation Validation Experiments Comparison Conclusion

Why CNF?

STRIPS problem descriptions are very close to propositional logic

e.g. state s = {v ,w} over variables V Π = {q, v ,w}
described by φs = v ∧ w ∧ ¬q

SAT-solver allow certified verification

But: SAT-solving is NP-complete

However: SAT-solvers are often much more efficient for ”real” problems

Thesis investigates feasibility of CNF formalism

Certifying Unsolvability using CNF Formulas 6

Introduction Generation Validation Experiments Comparison Conclusion

Why CNF?

STRIPS problem descriptions are very close to propositional logic

e.g. state s = {v ,w} over variables V Π = {q, v ,w}
described by φs = v ∧ w ∧ ¬q

SAT-solver allow certified verification

But: SAT-solving is NP-complete

However: SAT-solvers are often much more efficient for ”real” problems

Thesis investigates feasibility of CNF formalism

Certifying Unsolvability using CNF Formulas 6

Introduction Generation Validation Experiments Comparison Conclusion

Why CNF?

STRIPS problem descriptions are very close to propositional logic

e.g. state s = {v ,w} over variables V Π = {q, v ,w}
described by φs = v ∧ w ∧ ¬q

SAT-solver allow certified verification

But: SAT-solving is NP-complete

However: SAT-solvers are often much more efficient for ”real” problems

Thesis investigates feasibility of CNF formalism

Certifying Unsolvability using CNF Formulas 6

Introduction Generation Validation Experiments Comparison Conclusion

Why CNF?

STRIPS problem descriptions are very close to propositional logic

e.g. state s = {v ,w} over variables V Π = {q, v ,w}
described by φs = v ∧ w ∧ ¬q

SAT-solver allow certified verification

But: SAT-solving is NP-complete

However: SAT-solvers are often much more efficient for ”real” problems

Thesis investigates feasibility of CNF formalism

Certifying Unsolvability using CNF Formulas 6

Introduction Generation Validation Experiments Comparison Conclusion

Why CNF?

STRIPS problem descriptions are very close to propositional logic

e.g. state s = {v ,w} over variables V Π = {q, v ,w}
described by φs = v ∧ w ∧ ¬q

SAT-solver allow certified verification

But: SAT-solving is NP-complete

However: SAT-solvers are often much more efficient for ”real” problems

Thesis investigates feasibility of CNF formalism

Certifying Unsolvability using CNF Formulas 6

Introduction Generation Validation Experiments Comparison Conclusion

Why CNF?

STRIPS problem descriptions are very close to propositional logic

e.g. state s = {v ,w} over variables V Π = {q, v ,w}
described by φs = v ∧ w ∧ ¬q

SAT-solver allow certified verification

But: SAT-solving is NP-complete

However: SAT-solvers are often much more efficient for ”real” problems

Thesis investigates feasibility of CNF formalism

Certifying Unsolvability using CNF Formulas 6

Introduction Generation Validation Experiments Comparison Conclusion

Certifying Unsolvability using CNF Formulas

Planner

Plan Validation Tool

SAT-solver

Result

”solvable”

plan π

certificate in CNF

”unsolvable” ”valid”

”invalid”

”valid”

”invalid”

Certifying Unsolvability using CNF Formulas 7

Introduction Generation Validation Experiments Comparison Conclusion

Generate Inductive Certificate Formulas

Formula φS should represent the set of reachable states S

In blind search: all reachable states are expanded

Start with φS := ⊥
During search: append each expanded state s

φS = φS ∨ (
∧
v∈s

v ∧
∧
v /∈s

¬v)︸ ︷︷ ︸
φs

Certifying Unsolvability using CNF Formulas 8

Introduction Generation Validation Experiments Comparison Conclusion

Generate Inductive Certificate Formulas

Formula φS should represent the set of reachable states S

In blind search: all reachable states are expanded

Start with φS := ⊥
During search: append each expanded state s

φS = φS ∨ (
∧
v∈s

v ∧
∧
v /∈s

¬v)︸ ︷︷ ︸
φs

Certifying Unsolvability using CNF Formulas 8

Introduction Generation Validation Experiments Comparison Conclusion

Generate Inductive Certificate Formulas

Formula φS should represent the set of reachable states S

In blind search: all reachable states are expanded

Start with φS := ⊥
During search: append each expanded state s

φS = φS ∨ (
∧
v∈s

v ∧
∧
v /∈s

¬v)︸ ︷︷ ︸
φs

Certifying Unsolvability using CNF Formulas 8

Introduction Generation Validation Experiments Comparison Conclusion

Generate Inductive Certificate Formulas

Formula φS should represent the set of reachable states S

In blind search: all reachable states are expanded

Start with φS := ⊥
During search: append each expanded state s

φS = φS ∨ (
∧
v∈s

v ∧
∧
v /∈s

¬v)︸ ︷︷ ︸
φs

Certifying Unsolvability using CNF Formulas 8

Introduction Generation Validation Experiments Comparison Conclusion

Blind Search

φS = ⊥
qv

w

vw

q

qvw

S

φS describes the inductive certificate since ∀s ∈ S : s |= φS

Certifying Unsolvability using CNF Formulas 9

Introduction Generation Validation Experiments Comparison Conclusion

Blind Search

φS = (q ∧ v ∧ ¬w)

∨ (w ∧ ¬q ∧ ¬v)
∨ (v ∧ w ∧ ¬q)
∨ (q ∧ ¬v ∧ ¬w)

qv

w

vw

q

qvw

S

φS describes the inductive certificate since ∀s ∈ S : s |= φS

Certifying Unsolvability using CNF Formulas 9

Introduction Generation Validation Experiments Comparison Conclusion

Blind Search

φS = (q ∧ v ∧ ¬w)

∨ (w ∧ ¬q ∧ ¬v)

∨ (v ∧ w ∧ ¬q)
∨ (q ∧ ¬v ∧ ¬w)

qv

w

vw

q

qvw

S

φS describes the inductive certificate since ∀s ∈ S : s |= φS

Certifying Unsolvability using CNF Formulas 9

Introduction Generation Validation Experiments Comparison Conclusion

Blind Search

φS = (q ∧ v ∧ ¬w)

∨ (w ∧ ¬q ∧ ¬v)
∨ (v ∧ w ∧ ¬q)

∨ (q ∧ ¬v ∧ ¬w)

qv

w

vw

q

qvw

S

φS describes the inductive certificate since ∀s ∈ S : s |= φS

Certifying Unsolvability using CNF Formulas 9

Introduction Generation Validation Experiments Comparison Conclusion

Blind Search

φS = (q ∧ v ∧ ¬w)

∨ (w ∧ ¬q ∧ ¬v)
∨ (v ∧ w ∧ ¬q)
∨ (q ∧ ¬v ∧ ¬w)

qv

w

vw

q

qvw

S

φS describes the inductive certificate since ∀s ∈ S : s |= φS

Certifying Unsolvability using CNF Formulas 9

Introduction Generation Validation Experiments Comparison Conclusion

Blind Search

φS = (q ∧ v ∧ ¬w)

∨ (w ∧ ¬q ∧ ¬v)
∨ (v ∧ w ∧ ¬q)
∨ (q ∧ ¬v ∧ ¬w)

qv

w

vw

q

qvw

S

φS describes the inductive certificate since ∀s ∈ S : s |= φS

Certifying Unsolvability using CNF Formulas 9

Introduction Generation Validation Experiments Comparison Conclusion

Heuristic Search

qv

w

vw

q

qvw

S

Rw

Sexp

Infinite heuristic values may prune the
search space
→ We don’t expand all reachable states
→ Sexp is not inductive

How to regain inductivity?

Assume we have an inductive set Rsd

for each dead-end sd

Expanded states lead to expanded
states and dead-ends

→ S = Sexp ∪ Rw is inductive

Certifying Unsolvability using CNF Formulas 10

Introduction Generation Validation Experiments Comparison Conclusion

Heuristic Search

qv

w

vw

q

qvw

S

Rw

Sexp

Infinite heuristic values may prune the
search space
→ We don’t expand all reachable states
→ Sexp is not inductive

How to regain inductivity?

Assume we have an inductive set Rsd

for each dead-end sd

Expanded states lead to expanded
states and dead-ends

→ S = Sexp ∪ Rw is inductive

Certifying Unsolvability using CNF Formulas 10

Introduction Generation Validation Experiments Comparison Conclusion

Heuristic Search

qv

w

vw

q

qvw

S

Rw

Sexp

Infinite heuristic values may prune the
search space
→ We don’t expand all reachable states
→ Sexp is not inductive

How to regain inductivity?

Assume we have an inductive set Rsd

for each dead-end sd

Expanded states lead to expanded
states and dead-ends

→ S = Sexp ∪ Rw is inductive

Certifying Unsolvability using CNF Formulas 10

Introduction Generation Validation Experiments Comparison Conclusion

Heuristic Search

qv

w

vw

q

qvw

S

Rw

Sexp

Infinite heuristic values may prune the
search space
→ We don’t expand all reachable states
→ Sexp is not inductive

How to regain inductivity?

Assume we have an inductive set Rsd

for each dead-end sd

Expanded states lead to expanded
states and dead-ends

→ S = Sexp ∪ Rw is inductive

Certifying Unsolvability using CNF Formulas 10

Introduction Generation Validation Experiments Comparison Conclusion

Heuristic Search

qv

w

vw

q

qvw

S

Rw

Sexp

Infinite heuristic values may prune the
search space
→ We don’t expand all reachable states
→ Sexp is not inductive

How to regain inductivity?

Assume we have an inductive set Rsd

for each dead-end sd

Expanded states lead to expanded
states and dead-ends

→ S = Sexp ∪ Rw is inductive

Certifying Unsolvability using CNF Formulas 10

Introduction Generation Validation Experiments Comparison Conclusion

Heuristic Search

qv

w

vw

q

qvw

S

Rw

Sexp

Infinite heuristic values may prune the
search space
→ We don’t expand all reachable states
→ Sexp is not inductive

How to regain inductivity?

Assume we have an inductive set Rsd

for each dead-end sd

Expanded states lead to expanded
states and dead-ends
→ S = Sexp ∪ Rw is inductive

Certifying Unsolvability using CNF Formulas 10

Introduction Generation Validation Experiments Comparison Conclusion

Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV

Certifying Unsolvability using CNF Formulas 11

Introduction Generation Validation Experiments Comparison Conclusion

Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV

Certifying Unsolvability using CNF Formulas 11

Introduction Generation Validation Experiments Comparison Conclusion

Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV

Certifying Unsolvability using CNF Formulas 11

Introduction Generation Validation Experiments Comparison Conclusion

Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV

Certifying Unsolvability using CNF Formulas 11

Introduction Generation Validation Experiments Comparison Conclusion

Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV

Certifying Unsolvability using CNF Formulas 11

Introduction Generation Validation Experiments Comparison Conclusion

Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV

Certifying Unsolvability using CNF Formulas 11

Introduction Generation Validation Experiments Comparison Conclusion

Validation Formula

Idea: Represent the properties of the inductive certificate in a single formula φV

The planner found a valid inductive certificate iff φV unsatisfiable

φV := φinit ∨ φgoal ∨ φinductive

φV is unsatisfiable iff subformulas are
unsatisfiable

φgoal :=φG ∧ φS

=
∧
v∈G

v ∧
∨
s∈S

φs

However: φV is not in CNF → We cannot use SAT-solver on φV

Certifying Unsolvability using CNF Formulas 11

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸

CL

∧
∨
s∈S

φs︸ ︷︷ ︸

DNF

unsatisfiable iff φG︸︷︷︸

CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸

CL

∧
∨
s∈S

φs︸ ︷︷ ︸

DNF

unsatisfiable iff φG︸︷︷︸

CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸

DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸

CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit

→ 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit → 1

φgoal

→ #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit → 1

φgoal → #expanded states

φinductive

→ #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Split up the Formula

Generally: φ ∧
∨

i ψi unsatisfiable iff φ ∧ ψi unsatisfiable ∀i

In our case: φG︸︷︷︸
CL

∧
∨
s∈S

φs︸ ︷︷ ︸
DNF

unsatisfiable iff φG︸︷︷︸
CL

∧ φs︸︷︷︸
CL

unsatisfiable ∀s ∈ S

Trivial SAT-calls, but many:

φinit → 1

φgoal → #expanded states

φinductive → #expanded states × #actions

Certifying Unsolvability using CNF Formulas 12

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula

✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula

→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula

✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula

→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula

✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula

→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula
✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula

→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula
✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula

→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula
✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula
→ relaxes equivalence, but preserves satisfiability

✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula
✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula
→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Transform the Formula

Idea: Transform φV into . . .

. . . an equivalent CNF formula
✗ impractical because of exponential blow-up

. . . an equisatisfiable CNF formula
→ relaxes equivalence, but preserves satisfiability
✓ increases formula size only linearly

φV := φinit ∨ φgoal ∨ φinductive

Use the transformed formula as input to SAT-solver

Certifying Unsolvability using CNF Formulas 13

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Tseitin Encoding

Idea: Substitute all variable pairs with auxiliary variable

simple Tseitin Encoding: e.g. x ↔ (v ∨ w)

(¬x ∨ v ∨ w) ∧ (x ∨ ¬v) ∧ (x ∨ ¬w)
→ substitutes each variable pair

generalized Tseitin Encoding: e.g. x ↔ (
∨

i vi)(
¬x ∨

∨
i vi

)
∧
(∧

i (x ∨ ¬vi)
)

→ can substitute larger subformula at once

→ equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 14

Introduction Generation Validation Experiments Comparison Conclusion

Transformation Comparison

2 4 6 8 10 12 14

50

100

150

200

Number of Variables n

N
u
m
b
er

of
C
la
u
se
s Naive

Simple Tseitin
Generalized Tseitin Transformation of(n∧

i=1

vi

)
∨
(n∧
i=1

wi

)
into an equisatisfiable CNF

Certifying Unsolvability using CNF Formulas 15

Introduction Generation Validation Experiments Comparison Conclusion

Experiments

Split up

FDSp Task & φS−−−−−−→ VerSp

incremental SAT-solver

Transform

FDBC Circuit−−−−→ TransBC
CNF−−→ VerBC

bc2cnf

FDD CNF−−→ VerD

direct transformation

Comparison of blind and hmax

Certifying Unsolvability using CNF Formulas 16

Introduction Generation Validation Experiments Comparison Conclusion

CNF Coverage: blind vs. hmax

FDSp FDBC FDD

0

100

200
187

187

150
133

39
49

81

53

Generation Verification Transformation

FDSp FDBC FDD

0

100

200
219

182
160 158

54
70

113

80

Generation Verification Transformation

Certifying Unsolvability using CNF Formulas 17

Introduction Generation Validation Experiments Comparison Conclusion

Time Comparison

10−1 101 103

10−1

101

103

failed

VERD runtime (in s)

V
E
R
B
C
ru
n
ti
m
e
(i
n
s)

hmax

blind

(a) verification runtime

10−1 101 103

10−1

101

103

failed

certificate size (in MiB)

V
E
R
D
ru
n
ti
m
e
(i
n
s) hmax

blind

(b) verification efficiency

Certifying Unsolvability using CNF Formulas 18

Introduction Generation Validation Experiments Comparison Conclusion

Coverage: blind vs. hmax

FDD FDBDD

0

100

200
187

133
112

81

107

Generation Verification

FDD FDBDD

0

100

200
219

158 163

113

146

Generation Verification

Certifying Unsolvability using CNF Formulas 19

Introduction Generation Validation Experiments Comparison Conclusion

Generation CNF vs. BDD

10−210−1 100 101 102 103
10−2

10−1

100

101

102

103

fa
ile
d

failed

FDD runtime (in s)

F
D

B
D
D
ru
n
ti
m
e
(i
n
s) hmax

blind

(a) time

103 104 105 106
103

104

105

106

fa
ile
d

failed

FDD memory (in KiB)

F
D

B
D
D
m
em

or
y
(i
n
K
iB
)

hmax

blind

(b) memory

Certifying Unsolvability using CNF Formulas 20

Introduction Generation Validation Experiments Comparison Conclusion

Verification CNF vs. BDD

10−1 101 103

10−1

101

103

fa
ile
d

failed

VERD runtime (in s)

V
E
R
B
D
D
ru
n
ti
m
e
(i
n
s)

hmax

blind

(a) time

103 104 105 106
103

104

105

106

fa
ile
d

failed

VERD memory (in KiB)

V
E
R
B
D
D
m
em

or
y
(i
n
K
iB
)

hmax

blind

(b) memory

Certifying Unsolvability using CNF Formulas 21

Introduction Generation Validation Experiments Comparison Conclusion

Conclusion

Inductive Certificates capture unsolvability

Splitting the SAT-calls avoids inefficiency of SAT

Tseitin Encoding allows equisatisfiable transformation to CNF

CNF representation of certificates is practically viable

Exponential scaling of SAT

Certifying Unsolvability using CNF Formulas 22

Questions?

fabian.kruse@unibas.ch

Introduction Generation Validation Experiments Comparison Conclusion

Failures

blind hmax

memory time memory time
FDSp 0 0 5 32
FDBC 0 37 25 34

TransBC 96 1 77 3
FDD 1 53 21 40

Table: Reason for failures during generation in tasks where FD generated a certificate

Certifying Unsolvability using CNF Formulas 24

Introduction Generation Validation Experiments Comparison Conclusion

Failures

blind hmax

memory time memory time
VERSp 144 4 121 7
VERBC 4 0 10 0
VERD 50 0 45 0

Table: Reason for failures during verification in tasks where a certificate was generated

Certifying Unsolvability using CNF Formulas 25

Introduction Generation Validation Experiments Comparison Conclusion

Failures

blind hmax

memory time memory time
FDD 1 53 21 40

FDBDD 54 0 21 35
VERD 50 0 45 0

VERBDD 0 5 0 17

Table: Reasons for failure in tasks that FD solved

Certifying Unsolvability using CNF Formulas 26

	Introduction
	Generation
	Validation
	Experiments
	Comparison
	Conclusion

