
Generation of Domain Abstractions
using Counterexample-Guided

Abstraction Refinement
Bachelor’s thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence Research Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Clemens Büchner

Raphael Kreft

r.kreft@unibas.ch

2019-058-148

June 30, 2022

Acknowledgments

First of all I want to thank Prof. Malte Helmert for the opportunity to work on such an

interesting Bachelor’s Thesis in his research group. Another big thank you goes to Clemens

Büchner for supervising the project. I really appreciated our weekly meetings that were

always a source of valuable feedback and great conversations. Calculations were performed at

sciCORE (http://scicore.unibas.ch/) scientific computing center at the University of Basel.

Abstract

In optimal classical planning, informed search algorithms like A* need admissible heuristics

to find optimal solutions. Counterexample-guided abstraction refinement (CEGAR) is a

method used to generate abstractions that yield suitable abstraction heuristics iteratively.

In this thesis, we propose a class of CEGAR algorithms for the generation of domain ab-

stractions, which are a class of abstractions that rank in between projections and Cartesian

abstractions regarding the grade of refinement they allow. As no known algorithm constructs

domain abstractions, we show that our algorithm is competitive with CEGAR algorithms

that generate one projection or Cartesian abstraction.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Planning Tasks, State spaces and Plans . 3

2.2 Heuristic Functions and Informed Search . 4

2.3 Abstractions . 5

2.4 Domain Abstractions . 6

2.5 Counterexample-Guided Abstraction Refinement 7

3 Constructing Domain Abstractions with CEGAR 8

3.1 Initial Abstraction Selection . 9

3.2 Retrieve Flaws . 10

3.2.1 Find a plan in the abstract state space 10

3.2.2 Find a flaw . 11

3.3 Refinement of the Abstraction . 11

3.3.1 Splitmethod . 12

3.3.1.1 Single Value Split . 12

3.3.1.2 Uniform Random Split . 12

3.3.2 Which fact pairs to consider for refinement 12

3.3.2.1 Split along one flaw assignment 13

3.3.2.2 Split along all flaw assignments 13

3.4 Obtain the heuristic values . 14

3.4.1 Precalculation . 14

3.4.2 On demand computation . 14

4 Benchmarks and Evaluation 15

4.1 Implementation details . 15

4.2 Setup . 16

4.3 Results . 17

4.3.1 Number of States . 18

Table of Contents v

4.3.2 Splitmethod . 19

4.3.3 Which fact pairs to consider for refinement 20

4.3.4 Initial Abstraction Selection . 22

4.3.5 Obtain the heuristic values . 24

4.4 Best Configurations . 25

5 Comparison with CEGAR for Pattern Databases and Cartesian Ab-

stractions 28

5.1 Projections, Pattern Databases and Cartesian Abstractions 28

5.1.1 Projections and Pattern Database Heuristics 28

5.1.2 Cartesian Abstractions . 29

5.2 The competing algorithms . 29

5.2.1 Projection . 29

5.2.2 Cartesian Abstraction . 30

5.2.3 Domain Abstraction . 30

5.2.4 Explicit transition systems . 30

5.3 Results . 31

5.3.1 Conclusion . 33

6 Conclusion and Future Work 34

Bibliography 36

Appendix A Appendix 37

A.1 Commands executed in the comparison benchmarks 37

1
Introduction

Planning is a field in Computer Science that deals with finding plans in different problem

settings. Consider, for example, the logistics task of delivering packages and letters from

their start location to the desired recipients. This problem boils down to finding a sequence

of actions, also called a plan, which must be performed so that, in the end, every package

is at the correct location. Actions in this domain could be: ”load package A into truck X”

or ”drive truck B to City Y”. As every action is associated with costs (e.g. fuel or worker’s

salary), we are interested in finding a plan that minimises the overall costs. Finding such a

cost-optimal plan is the goal of cost-optimal planning.

In planning, a state is a set of variable values describing a situation within the problem con-

sidered. All states that can exist in a problem form the so-called state space. When state

spaces get huge, it is infeasible to find the cheapest plan by brute force. For this matter, a

better approach is to use informed search algorithms like A* (Hart et al., 1968). Informed

search algorithms use a heuristic to guide the search in the most promising directions first.

A heuristic function takes a concrete state as input and estimates the cost of the cheapest

path from this state to the closest goal state.

There are different ways one can develop a heuristic: one possibility is to use expert knowl-

edge about the specific problem to construct a heuristic manually. As this method can be

very time-intensive and, in some instances, not feasible, automated planning deals with how

to create heuristics automatically for domain-independent planning.

One approach in automated planning is to construct and apply abstraction heuristics. Ab-

straction heuristics use abstractions of the original problem to compute heuristic values.

The idea is to estimate solution costs by considering a minor planning task derived from

the original problem. To do so, we use an abstraction function that determines which states

of the original plan’s state space are to be distinguished. The state space induced by this

function has fewer states, called abstract states, and all affected transitions are rewired ac-

cordingly. As a result, an exhaustive search in the induced abstract state space becomes

feasible. Given a state of the original problem, the heuristic value corresponds to the cost

Introduction 2

of an optimal solution starting from this state in the abstract state space.

Abstraction heuristics gain much attention in the planning community and show good per-

formance across various planning problems. While abstraction classes as projections, that

are the abstractions underlying pattern databases(PDB) (Culberson and Schaeffer, 1998),

cartesian abstractions (Seipp and Helmert, 2013) or merge-and-shrink abstractions have

been thoroughly studied in the planning context, there yet exists little work on domain

abstractions (Hernádvölgyi and Holte, 2000). In this thesis, we aim to close this gap by

introducing an algorithm that automatically creates suitable domain abstractions for use in

abstraction heuristics. The algorithm presented follows the counterexample-guided abstrac-

tion refinement(CEGAR) (Clarke et al., 2000) principle, which has also been used in the

context of PDB’s by Rovner et al. (2019) and with Cartesian Abstractions by Seipp and

Helmert (2013). Using CEGAR for generating domain abstraction is motivated by the fact

that CEGAR performed well for the two mentioned abstraction classes.

This thesis presents and evaluates an algorithm that generates domain abstractions following

the CEGAR principle. After explaining the necessary background in Chapter 2, we present

the actual algorithm and its configurations in Chapter 3. After the theoretical comparison of

the different algorithm configurations, Chapter 4 will evaluate all versions of our algorithm

using a benchmark set consisting of 1827 planning tasks from 65 problem domains. The

best performing algorithm for constructing domain abstractions moves on to Chapter 5,

where we compare it to related algorithms that also use the CEGAR principle to construct

abstractions. These related algorithms and abstraction classes will be formally introduced

and compared using the same benchmarks. The final chapter will draw a conclusion and

outline future work.

2
Background

Before this thesis’s central part, we will introduce the terms and concepts that are needed

to understand this contribution. After formally introducing planning tasks and heuristic

functions, we explain the concept of abstractions and how they are used in abstraction

heuristics. Finally, we wrap up this chapter by shedding light on one specific class of ab-

stractions called domain abstractions, which is the class of abstractions we want to construct

with the algorithm presented in this thesis.

2.1 Planning Tasks, State spaces and Plans
We consider classical planning in the SAS+ formalism (Bäckström and Nebel, 1995), which

is a declarative description of planning tasks that uses variables with finite non-empty

domains. This formalism is also internally used by the planning system Fast Downward

(Helmert, 2006), which we used to implement and test the algorithms in this thesis.

Definition 1 (Planning Task) In the SAS+ formalism a planning task Π is a 4-tuple

⟨V, s0, G,A⟩ that consists of the following components:

• A finite set of state variables V . Each variable v ∈ V is associated with a finite

domain Dv. A fact-pair ⟨v, d⟩ assigns a variable v ∈ V to a value d of its domain Dv.

A variable assignment is a set of fact-pairs, at maximum one for each variable. A state

is a set of fact-pairs which contains one ⟨v, d⟩ over all variables v ∈ V . We further use

the notation s(v) = d to denote that the variable v is assigned to d in state s.

• A state s0 which is called the initial state.

• A variable assignment G which denotes the goal conditions. A state s is called a goal

state if G ⊆ s.

• A finite set of actions A, where each action a ∈ A is associated with two variable

assignments, namely the effects eff (a), the preconditions pre(a) and a non negative

cost cost(a) ∈ R+
0 . An action a is applicable in a state s iff s satisfies the preconditions

Background 4

of a, i.e. pre(a) ⊆ s. The application of an action leads to a successor state s′ with

s′(v) = d ∀ fact-pairs ⟨v, d⟩ ∈ eff (a) and s′(v) = s(v) otherwise.

Definition 2 (State Space) The state space or transition system S induced by Π is a

6-tuple S(Π) = ⟨S,A, cost, T , s0, S∗⟩ with the following components:

• A finite set of all possible states S = Dv1 ×Dv2 × · · · ×Dvn .

• The finite set of actions A.

• The cost function cost : A→ R+
0 , as defined in Π.

• A finite set of (state) transitions T ⊆ S ×A× S, where each transition t ∈ T has the

form s
a−→ s′ where s, s′ ∈ S, action a ∈ A applicable in s and s′ is the state that is

the result of the application of a in s.

• The initial state s0, as defined in Π

• A finite set of goal states S∗ = {s ∈ S|s ⊆ G} which consists of all states that agree

with the goal-variable-assignment G from Π.

A state space can be best imagined as a labelled directed graph where the states correspond

to vertices and the transitions correspond to arcs. As the explicit representation of such a

graph is often infeasible in terms of size and thus storage requirements, planning formalisms

are used as compact declarative descriptions of the planning task. As seen in definition 2,

we can derive the explicit transition system from Π.

Given a state space S, a path π is a series of transitions t0, . . . , tn such that si →a si+1 = ti ∈
T for all 0 ≤ i ≤ n, where the state where ti ends is the same as the state where ti+1 starts.

A path π that starts at the initial state s0 and ends at a goal-state s ∈ S∗ is called a plan or

solution. The cost of a plan π is equal the sum of action costs cost(π) =
∑

⟨si,ai,s′i⟩∈π cost(ai).

In optimal classical planning the goal is to find a plan that minimises the cost among all

possible plans. Such a plan is then also called an optimal plan or solution for S .

2.2 Heuristic Functions and Informed Search
Since a planning task Π is a compact description of an equivalent explicit representation of

the same task, namely S(Π), the problem of finding a plan for Π is equivalent to finding

a plan in S(Π). As state spaces usually get very large for most interesting planning tasks,

blind search algorithms such as “Dijkstra’s Algorithm” (Dijkstra, 1959), that exhaustively

explore the state space, are not feasible to use.

A common approach for solving large instances of planning tasks is to use informed search

algorithms that use additional information to guide the search. The premise here is to

expand the most promising states first. One class of informed search algorithms are heuristic

search algorithms.

Heuristic search algorithms use a heuristic function or heuristic h : S → R+
0 ∪ {∞}, that

maps every state s ∈ S to a non-negative number or infinity. This number h(s) estimates the

cost of πs, where πs denotes an optimal plan starting in state s or should be to denote that

Background 5

there is no path from this state to any goal. In the following, we describe some important

concepts related to heuristic functions.

The perfect heuristic h∗(s), s ∈ S returns not an estimate, but the exact cost of the optimal-

plan starting from s, or infinity if no plan exists. The perfect heuristic is often not feasible

to compute and thus often a theoretical construct that is used to describe properties we

want heuristics to have:

A heuristic h is admissible iff h(s) ≤ h∗(s) for all s ∈ S. Such a heuristic never overestimates

the exact optimal plan cost. Admissible heuristics are critical in cost-optimal planning as

heuristic search algorithms like A* (Hart et al., 1968) need admissible heuristics such that

the plans they find are guaranteed to be optimal.

The more informative the heuristic, the better a heuristic search algorithm using it performs.

This intuitively makes sense and means that in addition to being admissible, the heuristic

values h(s) should be as close to the perfect heuristic values h∗(s).

One approach for the construction of a heuristic is to create it domain-specific. That means

that an expert analyses the problem domain and creates a hand-crafted heuristic for the

specific problem domain. In classical planning, we are interested in automatically creating

good heuristics based on the description of the planning task and regardless of the problem

domain. One such approach will be discussed in the following.

2.3 Abstractions
Besides critical paths, landmarks and delete relaxations, current heuristic estimators for

domain-independent classical planning are often based on abstractions. A state space ab-

straction drops distinctions between certain states while preserving the overall state space

behaviour as good as possible. An abstraction of a state-space S is defined by an abstraction

function α that determines which states of the original state space S are distinguished in

the abstraction. The abstraction function α maps states from the original state space to

states of the abstract state space Sα, also called abstract states.

Definition 3 (Induced abstraction) Let S be a state space and let α : S → Sα be a

surjective function. The abstraction of state space S that is induced by α, denoted as Sα is

Sα = ⟨Sα, A, cost, T α, sα0 , S
α
∗ ⟩ with:

• T α = {⟨α(s), a, α(s′)⟩|⟨s, a, s′⟩ ∈ T}

• sα0 = α(s0)

• Sα
∗ = {α(s)|s ∈ S∗}

The idea of abstraction heuristics is to use solution costs in Sα as estimates for the concrete

solution costs in S. The abstraction-induced state space should have a feasible size to be

solved by an exhaustive search algorithm like “Dijkstra’s Algorithm” (Dijkstra, 1959). It

is crucial to note that every state-space abstraction is a homomorphism, meaning they are

structure-preserving. Consequently, the shortest path between two states in S is at least

Background 6

as large as the shortest path between their corresponding abstract images in Sα. This

circumstance makes for the fact that the abstract goal distances used as heuristic values for

search in S are admissible as for example proofed by Hernádvölgyi and Holte (1999). This

property makes abstraction heuristics reasonable for search algorithms such as A*, which

need admissible heuristics to be optimal.

The choice of a good abstraction function α is crucial for the quality of abstraction heuristics.

Every α leads to an admissible and consistent heuristic but most lead to low performing

ones. Another important aspect is the size of Sα. On the one hand, an abstraction α that

induces an abstract state space Sα that is too large makes it infeasible to compute the

abstract solution costs. On the other hand, an abstraction that is too small may not be

informative enough and lead to a longer runtime of the search algorithm.

2.4 Domain Abstractions
Apart from the well-known abstraction class of projections (Culberson and Schaeffer, 1998),

which are the basis of pattern database heuristics, there also exist other abstraction classes,

such as cartesian abstractions (Seipp and Helmert, 2013), that also gain attention in the

planning community. We will get to know both of these and their application for abstraction

heuristics in Chapter 5. For now, we introduce the abstraction class of domain abstractions

that was originally introduced by Hernádvölgyi and Holte (2000).

Definition 4 (Domain abstraction) Consider a planning task Π with variables V =

{v1, . . . , vn}. A domain abstraction α is induced by equivalence relations ∼i, one for each

variable. Each ∼i denotes the equivalence relation for variable vi and is defined on its

domain Di. The equivalence classes of ∼i are called groups of the domain Di. The num-

ber of groups in Di will be denoted as | ∼i | where 1 ≤ | ∼i | ≤ |Di|. We give each

group a unique number between 0 and | ∼i | − 1. Each ∼i induces a surjective function

αi : Di → {1, . . . , | ∼i |} that maps the domain of variable vi to the set of group numbers.

The number of elements in domain Di that are in the same group and share the same group

number g, is denoted as size of group g: ni
g. The abstraction α is defined as α(s) = α(s′) iff

αi(s(vi)) = αi(s
′(vi)) ∀i = 1 . . . n.

The abstraction induced state space Sα has states sα so that for every fact pair vi → x, x ∈
Di of state s, sα has vi →∼i (x).

Here an example given a planning task Π with one variable v1 and a domain abstraction ∼.
Domain abstraction ∼ has ∼1= {(0, 0), (1, 1), (1, 0), (0, 1), (2, 2)}:

D1 = { 0, 1︸︷︷︸
1

, 2︸︷︷︸
2

}

Above, one can depict that the domain abstraction for domain D1, induces two equivalence

classes and hence groups. Giving these groups a number we say, that value 0 and 1 are in

group 0, where value 2 is in group 1. Given an original state s = ⟨1⟩) the abstract state

Background 7

α(s) would be s′ = α(s) = ⟨0⟩).

The example makes clear that domain abstractions simplify the original problem by reducing

each variable’s domain size. Therefore multiple values from an original variable domain Di

are forming groups.

2.5 Counterexample-Guided Abstraction Refinement
In classical planning, we want to obtain good abstractions independent from the problem do-

main. One algorithm framework for the construction of abstractions is the Counterexample-

guided abstraction refinement(CEGAR) principle, which has its roots in model checking for

large systems (Clarke et al., 2000). It has emerged in classical planning, where it is leveraged

to construct abstractions automatically. Two already existing practical applications are the

construction of abstraction heuristics on the basis of projections by Rovner et al. (2019)

and Cartesian abstractions by Seipp and Helmert (2013), both explained in further detail

in Chapter 5.

The general idea is to start with a coarse abstraction α that is iteratively improved in se-

quential refinement steps. The goal of CEGAR is to only refine an abstraction in necessary

places. In the context of planning, this means that given a task S(Π), we first compute

a plan that solves the induced abstract task Sα. The obtained plan is then tested to be

applicable in the original state space S(Π). If not, the information about why the plan is

not applicable, called flaw, is used to refine the abstraction. The refinement makes sure

that the same flaw will not occur again in future iterations. This process is repeated until

a solution for the original task is found, or some termination criteria are met.

As CEGAR is more a principle than a detailed algorithm, it can be used to design algorithms

that can construct abstractions based on different abstraction classes. In planning, CEGAR

does not have to solve the problem completely, e.g. find a plan that is entirely applicable

in the concrete task. It instead can be interrupted at any time to return abstractions that

yield good heuristics.

The choice of the abstraction class is an essential consideration when using CEGAR. Projec-

tions do not allow for fine-grained refinement steps, which is why Pattern Database Heuris-

tics (Culberson and Schaeffer, 1998) such as the previously mentioned ones by Rovner et al.

(2019) combine multiple projections. Domain Abstractions allow for a more fine-grained

refinement, which is why we focus on constructing one domain abstraction in this thesis.

As CEGAR shows diminishing returns, it is beneficial nonetheless to use CEGAR for the

construction of multiple abstractions and combine them admissibly in a canonical heuristic.

3
Constructing Domain Abstractions with CEGAR

Domain abstractions were originally introduced by Hernádvölgyi and Holte (2000). In their

experiments, they state that the abstractions are ”generated randomly” but give no details

about what this means or how their abstractions look. We are also not aware of any other

work that generates domain abstractions. To fill this gap, this chapter introduces our

attempt for the creation of one single domain abstraction. Chapter 4 will then evaluate

the performance of different algorithms-configurations and compare the best of them with

related work in Chapter 5.

In this chapter, we introduce an algorithm that, given a planning task Π, constructs one

single domain abstraction ∼ by leveraging the CEGAR principle explained in section 2.

We first show how the general algorithm for constructing one domain abstraction works.

Next, we introduce different configurations of the same algorithm and compare them on

the theoretical level. Furthermore, we introduce how heuristic values are obtained from the

generated domain abstraction.

We leverage the CEGAR principle to construct a single domain abstraction ∼ for a given

planning task Π. The goal is to construct ∼ such that the abstraction heuristic it induces

yields accurate heuristic values for the search in S(Π). Algorithm 1 depicts the high-level

algorithm, which follows the CEGAR principle, to construct one single domain abstraction.

Given the concrete planning task Π as input, the algorithm first creates an initial abstraction

∼. Based on this initial abstraction created by getInitialDomainAbstraction, we retrieve

exactly one flaw f by obtaining an optimal plan for the abstraction π and then calling the

findFlaw function on it. The flaw contains the information on why the solution found in the

state space induced by the abstraction is not a solution of the original task.

In the next step, the function refineAbstraction uses the flaw and the current abstraction to

refine the abstraction based on the flaw. The returned abstraction is the refined abstraction

which is then used in the next iteration, which starts again by trying to find a flaw in the

now refined abstraction.

This loop continues until one of two situations comes up:

1. No flaw is found by findFlaw . This means that the plan that solved the abstract

task also solved the original task. This plan gets extracted using the extractSolution

function and returned, as no further search is needed.

Constructing Domain Abstractions with CEGAR 9

Algorithm 1 General CEGAR algorithm to construct a domain abstraction. Given a
planning task returns a plan, proves that no plan exists or returns an abstraction of the
task.

Input: Planning Task Π
Output: Domain-Abstraction ∼
∼ ← getInitialDomainAbstraction(Π)
while ¬(terminate()) do

π ← findOptimalAbstractPlan(∼)
if t is ”no trace” then

return task is unsolvable
end if
f ← findFlaw(∼, t)
if f is ”no flaw” then

return extractSolution(π)
end if
∼← refineAbstraction(f,∼)

end while
return ∼

2. Other criteria for termination are met. These conditions are checked inside the

terminate function, which returns a boolean flag, indicating whether another refine-

ment iteration will be started. Some examples for terminating include time limits or

a maximum number of states in the abstraction-induced state space.

In both cases mentioned, the algorithm will break out of the loop and return the refined final

abstraction ∼. After the construction of ∼, the abstraction will be used to obtain heuristic

values that are then used for search. We discuss different ways to obtain heuristic values

from ∼ in Section 3.4.

In the following sections, we discuss the building blocks of this framework in more detail.

Section 3.1 discusses how to initialise the abstraction. Section 3.2 describes how flaws are

obtained based on the current abstraction. Finally, Section 3.3 will deliberate how the

abstraction is refined based on a flaw.

3.1 Initial Abstraction Selection
Our algorithm starts with creating an initial abstraction via the getInitialDomainAbstraction

function. During the work on this thesis, multiple ways of creating initial abstractions were

tested. The tested approaches include 1. the separation of all goal facts in different groups,

and 2. starting with an abstraction that does not distinguish any state (i.e. | ∼i | = 1 for all

i ∈ {1, . . . , n}) and is thus the most trivial abstraction possible. The state-space induced by

the latter abstraction has just one state, which is the initial and goal state simultaneously.

Finally, we decided to implement both approaches in our algorithm to be able to evaluate

the effects of both. In the following we list some reasons for that we think starting with a

coarse abstraction the favourable option:

1. The main reason for our choice is that the split of all goal facts might not be necessary

to get an abstraction with no flaw. For example, this happens when two goalconditions

Constructing Domain Abstractions with CEGAR 10

are symmetrical: Achieving one of the goal conditions always achieves the other one

as well. In contrast to splitting off goal facts, starting from the one-state abstraction

does not introduce any bias to the abstraction or its refinement. It allows for the

refinement to make choices independently.

2. Consider the first iteration of CEGAR, where the optimal trace is the empty trace

which is not a plan for the original task: The flaw, in this case, contains all goal facts

that were not achieved. These will be split anyway.

Another point worth mentioning is that the creation of the initial abstraction is a tradeoff

between time and memory: On one hand, splitting goal facts might be faster in many

problems and avoids the effort to do so within the CEGAR loop. On the other hand,

this approach might require more memory as the abstraction might get ample from the

beginning. In the end, the performance strongly depends on the run’s time and state limits,

as discussed in Chapter 4.

3.2 Retrieve Flaws
The choices the refinement makes are purely based on flaws. From Chapter 2 we already

know what flaws are. In the following section we will explain how our algorithm retrieves

flaws that are then later used to refine the abstraction.

The first step in an iteration of the refinement loop is to use the current abstraction ∼ and

the given original task Π to retrieve a flaw or find that no flaw exists. Therefore we first dis-

cuss how the functions findOptimalAbstractP lan and findF law work, discover the formal

definition of flaws and which different types are differentiated. All algorithm configurations

described in this thesis share the same behaviour regarding these two functions.

3.2.1 Find a plan in the abstract state space
Given the current abstraction, ∼ and the planning task Π the function findOptimalAbstractPlan

performs an exhaustive blind search, Uniform Cost Search to be exact, in the state space

induced by the abstraction to find a path which is an optimal plan for it. It makes sense to

mention that because a blind search is used, abstractions that get too large can lead to a

very long runtime of the refinement loop. More on that in Chapter 4.

The return value of findOptimalAbstractPlan can differ based on whether the abstract state

space is solvable. When the abstraction-induced state space is unsolvable, the original state

space is neither. The reason is that every plan in the original plan is also a plan in the

abstraction, as described in Section 2.3. In that case, the search algorithm will fail to find a

plan and return ”no trace”. This will lead the main algorithm to return ”task is unsolvable”.

When there exists a solution, the exhaustive blind search will find it and return the according

plan. This plan might be empty when the initial abstract state is already a goal state of the

abstraction. For example, this is always the case for the optimal abstract plan for the most

coarse abstraction, described in Section 3.1.

Constructing Domain Abstractions with CEGAR 11

3.2.2 Find a flaw
When a plan has been found for the abstract state space, it is passed on to the findFlaw

function. This function takes the plan π = ⟨a0, . . . , an⟩ as well as the original task Π and

iterates over π. Starting at the initial state s0 ∈ S(Π), the function first tries to apply the

first action a0 by checking whether it is applicable in the initial state: pre(a0) ⊆ s0. If

applicable, action a0 is applied and leads to a successor state. Following the same scheme,

each action ai is checked to be applicable in si and gets applied in that case.

When an action ai is not applicable in si, we call this a precondition flaw. The flaw f

contains the missed facts, e.g. the variable assignments that state s missed so that a would

be applicable in a state s. Hence, f = pre(a) \ {s}.
When all actions a ∈ π have been successfully applied, we check whether the state s where

we ended up is a goal state. When this is not the case, we have a goal flaw. That means

that the state s we ended up with is not a goal state since s ⊇ G . The goal flaw f contains

the variable assignments of s that do not match the ones that would have been needed for

s to be a goal state: f = G \ {s}.
When no flaw could have been found, the optimal plan π for the abstraction induced state

space, found by findOptimalAbstractPlan is also a plan of the state space/task. In that case,

”no flaw” is returned, and the main algorithm will extract the plan and return it.

3.3 Refinement of the Abstraction
If the task is solvable and a flaw has been found, the goal is to improve the current abstraction

based on the found flaw f and the current abstraction ∼, where the goal is that the same

flaw will not occur again once the abstraction is refined. In our algorithmic framework,

the routine refineAbstraction will take care of that. As previously mentioned, we present

different options for refining the abstraction. The general approach considers the flaw f and

the current domain abstraction ∼ to process and return a new, refined domain abstraction.

There are two parts where the refinement, given a flaw f and a domain abstraction ∼ differs:

1. Which and how many fact pairs of the flaw are used for refinement. At minimum one

fact pair must be used. Here we differentiate between all-assignment split and single

assignment split.

2. How the refinement based on one assignment vi → xi ∈ f works. Here we differentiate

SingleValueSplit and UniformRandomSplit

In the following, we will explain the two categories and their options in detail.

Recall that a flaw, whether precondition or goal flaw, is a partial variable assignment that

disagrees with the state s in that the flaw occurred. Because we consider planning tasks

in the SAS+ formalism, each flaw can contain a maximum of one missed assignment per

variable.

When refining the abstraction, our goal is to ensure that the same flaw cannot occur again.

This means we need to move at least one of the variable assignments vi → xi ∈ f in an-

other equivalence class. In our algorithm, we will always move the assignments into a new

Constructing Domain Abstractions with CEGAR 12

equivalence class, never one that already exists. This means we continually increase the do-

main of αi by one for every refinement step on variable vi. Nevertheless, the ”regrouping”

of the domain values in existing equivalence classes is an exciting idea for future research.

Thus, regarding ∼i , s(vi) will no longer be in the same equivalence class as vi → xi ∈ f .

Consequently, action a will no longer be applicable in the abstract state that corresponds

to s. Thus the same flaw will not happen again. Since we now know the split operation’s

requirement, we present different strategies on how to choose the facts to split. The resulting

domain abstraction will have changed local equivalence relations ∼i for every fact pair in

the flaw we choose to split along.

3.3.1 Splitmethod
In this section, we discuss the different approaches to splitting along one fact pair of the

flaw f . There exist two approaches: The Single Value Split as well as the Uniform Random

Split. How to choose the facts we want to split along will be discussed in Subsection 3.3.2.

3.3.1.1 Single Value Split

Given one vi → xi ∈ f and the current domain abstraction ∼ the Single Value Split tech-

nique does the following: in the old abstraction ∼i , xi has equivalence class number ni

and the total number of equivalence classes in | ∼i | = k . Now we introduce a new equiv-

alence class for xi with number k + 1, where only xi is included. Formally that means

∼new
i = (∼i ∪ (xi, xi)) \ {(v, w)|(v, w) ∈∼i, v = xi ∨w = xi} . Note that the old equivalence

class k, xi has been in, will not be empty after this operation. The reason is that, when

equivalence class k would have had just xi included, vi → xi ̸∈ f . The abstract plan could

only apply actions that are applicable if vi → xi, hence this cannot be a flaw.

3.3.1.2 Uniform Random Split

Given vi → xi ∈ f and the current domain abstraction ∼ the Uniform Random Split

technique is doing the following: In the old abstraction ∼i , xi has equivalence class number

v, so αi(xi) = v, and the total number of equivalence classes is | ∼i | = k . Just as in the

single value split we introduce a new equivalence class, which has number k + 1. What we

do now additionally is randomly choosing (ni
v − 1)/2 other values of the equivalence class k

and also move them into the new equivalence class k+1 . Here (ni
v−1) denotes the number

of values in equivalence class v after removing xi from it.

3.3.2 Which fact pairs to consider for refinement
The second category where the algorithms can be configured differently is the choice of

which fact pairs vi → xi ∈ f are used for refinement. In our algorithm, one can choose

between using all vi → xi ∈ f or select one of them. For the selection of one fact pair, one

of three strategies can be chosen.

Constructing Domain Abstractions with CEGAR 13

3.3.2.1 Split along one flaw assignment

Splitting along just one vi → xi ∈ f allows for more controlled refinement of the abstraction,

as every refinement is necessary to ensure that the same flaw will not occur again in future

iterations. When a flaw assigns multiple variables and thus contains multiple fact pairs, we

must pick one. This is where we can apply one of three strategies:

Random pick The first and most straightforward strategy is to choose one variable as-

signment of the flaw uniformly at random.

Pick least refined domain This method involves the rating of each vi → xi ∈ f accord-

ing to how refined the domain of the according variable vi is at the moment. Based on the

old abstraction ∼, we choose the local equivalence relation ∼i, which is the least refined so

far, e.g. has the minimal number of equivalence classes. Formally we choose the domain of

variable k so that argmini| ∼i | = k. When multiple variable assignments have the same

rating, we pick one uniformly at random.

Pick maximal refined domain As in the previous approach, each vi → xi ∈ f gets rated.

This time we rate each fast pair according to how many new abstract states the refinement

of ∼i would introduce. Based on the old abstraction ∼, we choose the local equivalence

relation ∼i for that the refinement would introduce a minimum new number of new abstract

states, which is equivalent to choosing ∼i that has the maximum number of groups and thus

has been refined most often. Formally we choose k so that argmax i| ∼i | = k. Note that

the size of a domain plays no role but rather the number of groups. When multiple variable

assignments have the same rating, one is uniformly random chosen out of it.

3.3.2.2 Split along all flaw assignments

If we split along all vi → xi ∈ f , this means we apply the procedure explained in Section

3.3.1 to all ∼i where vi → xi ∈ f . Splitting all fact pairs is strictly not necessary for cor-

rectness but is an intuitive technique which proves to be rather successful, as we will see in

the next chapter.

When splitting all facts, the resulting domain abstraction can grow significantly in size.

When a maximum number of states is given, this can lead to missed refinement potential, as

in this case, the refinement is aborted, and the old abstraction is returned. This is the same

problem that arises when splitting all goal facts as described in Section 3.1. Furthermore,

we risk increasing the abstraction size significantly while having the risk of making decisions

that are just side effects of other flaws.

To mitigate this problem, we check whether the abstraction would get too many states after

refinement. When it does, we switch to the single flaw refinement described above and check

whether the abstraction gets too big this time.

Constructing Domain Abstractions with CEGAR 14

3.4 Obtain the heuristic values
Once the algorithm for the construction of one domain abstraction is finished and returned

the final domain abstraction ∼, the goal is to obtain heuristic values h(s) for all s ∈ S where

S is the set of all states in S(Π). As we have just one domain abstraction, there is just one

heuristic function based on the abstraction ∼ we must consider.

Given a state s ∈ S, we first get the according abstract state for s, denoted as α(s). The

heuristic value that is returned by an abstraction heuristic corresponds to cost(π) where π

is an optimal plan starting from α(s) in the abstraction induced state space Sα. There are

two ways to obtain the abstract goal distances:

3.4.1 Precalculation
The first and, at the same time, most common approach to obtain heuristic values is the

precomputation of all abstract goal distances. For every abstract state of the abstraction

induced state space Sα, the cost of the optimal plan to the closest goal state is computed

and stored in a lookup table in memory. This happens before the actual search starts.

This is done via a backward search using “Dijkstra’s Algorithm” (Dijkstra, 1959) starting

from all goal states of the abstraction. The result is a lookup table containing the optimal

path’s cost to the closest abstract goal state for every abstract state, or ∞ if no goal state

is reachable from the given abstract state.

3.4.2 On demand computation
Or also called on the fly is the second approach and needs no precomputation but obtains

abstract goal distances on the fly. Every time we need cost(π) for an abstract state sα we

have not yet calculated, we start a forward search using Uniform Cost Search in the abstract

state space starting from sα. The result is then stored in a lookup table to prevent double

calculation of the same value, which is unnecessary.

To make the access of the lookup table efficient, an index for every abstract state is needed.

In fact, the index is also used throughout the implementation; everywhere, identifying ab-

stract states is necessary. For example, the duplicate checking in the blind search algorithms

used by CEGAR and the precomputation need to identify the states that have already been

expanded.

For identifying abstract states in a domain abstraction, we introduce a perfect hash function

that returns a unique hash-value for every abstract state. This hash-function, inspired by

the perfect hash function used for PDB heuristics, will be shown in the next section.

4
Benchmarks and Evaluation

Before we compare our algorithms to other abstraction heuristics, this section compares

different configurations of our algorithm. After we mention some implementation details

that are worth noting, we explain the benchmark setup in Section 4.2 and follow up with

the presentation and evaluation of the benchmark results in Section 4.3. All algorithms

in this section were implemented and benchmarked in the domain-independent classical

planning system Fast Downward (Helmert, 2006).

4.1 Implementation details
A perfect hash function is a hash function that maps distinct elements of some set X to a

set of integers with no collisions. In our implementation an efficient way to identify abstract

states is vital and needed in different places e.g. the data-structures used for search in the

abstraction or for efficiently accessing the lookup-table of heuristic values. We introduce a

perfect hash function for domain abstractions that is inspired by perfect hash functions for

pattern databases.

For domain abstractions, our perfect hash function maps each abstract state sα of an abstract

state space Sα to an integer in the range from 0 to |Sα|, which denotes the number of states

in Sα.
As defined in Chapter 2, an abstract state sα of an abstract state space Sα, that is induced
by a domain abstraction ∼ is represented as a set of fact pairs that map each variable vi to

a group of ∼i, denoted as g . This number is also denoted as abstract variable assignment

or sα(i) = gi where gi ∈ {0, . . . | ∼i | − 1}.
Given an abstract state sα, the hash is calculated in the following way:

• Let ∼= ⟨∼1, . . . ,∼k⟩ be a domain abstraction for a planning task with k variables one

for each variable.

• for each i = 1 . . . k we pre-compute Ni =
∏i−1

j=1 | ∼j |.

Benchmarks and Evaluation 16

hash(sα) =

k∑
i=1

Nisα(i)

This operation is very fast and can be completed in O(k), where V is the number of variables

in the planning task.

Another specificity of the Implementation we want to mention is the handling of situations,

when the refinement algorithm does find a a plan for the original task. In such a case

our algorithm depicted in Algorithm 1 aborts the refinement and returns the plan. In

our implementation, we do not abort the refinement but log when a solution was found

during refinement, as the logging is sufficient for performance comparison. Because of the

abstraction size limit we explain in Section 4.3 such a scenario is unlikely to happen and

thus not relevant for our analysis.

The last specificity of our algorithm comes to play when it uses all fact pairs of a flaw for

refinement. Normally the algorithm aborts the refinement when an abstraction is too large

after a refinement step and uses the previous abstraction. When using all fact pairs of a

flaw for refinement, the algorithm instead tries to split using one fact-pair before it aborts.

This makes sure that the size limit is maximum exploited.

4.2 Setup
To get a meaningful result for algorithm performance, we use a set of 1827 tasks from 65

different domains of International Planning Competitions(1998-2018). For each run, the

algorithms have an overall time limit of 30 minutes for abstraction construction and search.

Furthermore, we set a memory limit of 2 GB. For the comparison of our algorithms we are

mostly interested in the following criteria, that we can extract from our experiments:

Coverage number of tasks solved by the algorithm. This is a good metric for the overall

performance of the algorithm. We want algorithm to solve as many tasks as possible.

Total time time required to solve a task(heuristic construction and search). The less time

an algorithm needs to solve the tasks, the better. This is also a very good metric

for the overall performance of the algorithm that considers the balance of search- and

heuristic construction.

Initial heuristic value the initial heuristic value h(s0). It gives us an idea of how good

an abstraction images the original task. Usually we want this value to be as high as

possible, since for abstraction heuristics it holds that h(s0) ≤ h ∗ (s0).

Expansions until the last jump the number of expansions until the last layer of an A*

search. This gives us an idea of how good the heuristic guides the search algorithm.

The fewer expansions the more informative is the heuristic.

Search time time required to solve a task(just search)

Precomputation time the time required to pre-compute the heuristic values for the ab-

straction. For algorithms that obtain the heuristic values on the fly this value will

Benchmarks and Evaluation 17

be zero. From this metric we can see when the precomputation of heuristic values is

feasible or rather an obstacle.

As we will see in our experiments, these metrics can show a high pairwise correlation. For

example expansions until last jump and search time are usually strongly coupled.

4.3 Results
Our analysis has two goals: first, we want to get an overview how each adjustable parameter

of our algorithm tends to influence the performance. We do a parameter-wise evaluation

as the number of adjustable parameters in our algorithm would lead to a number of overall

configurations infeasible to compare to each other. This is also the reason why results for

each parameter do not include the full range of all possible configurations. Instead, the

data that a benchmark plot is based on consists of data from algorithm configurations that

we think are representative. Hence there could exist a configuration that performs very

good, but we did not find it. Of course the configurations used are explained in necessary

places. Generally, our analysis considers a large number of experiments, which makes us

confident that our results give a good direction of which configurations work well. Secondly,

we will consider the two algorithm configurations that performed best in our experiments

and compare them in detail in Section 4.4. This completes the more general overview over

the parameters by showing two configurations performing well.

Finally,, it is crucial to note that the benchmark results for ”total time”, ”expansions until

the last jump”, and ”initial heuristic value” in contrast to ”coverage” are just calculated

based on the planning tasks that all of the algorithm configurations could solve. Possible

implications of that are explained in the subsections when needed. Anyway, this restriction

does not exist for the pairwise comparison of two configurations for ex shown in figure 4.4

as each data-point shown represents one task.

Recall the strategies for different parameter choices explained in more detail in Chapter 3:

Domain Abstraction size limit : once the domain abstraction we construct reaches this

limit, the algorithm will abort the abstraction construction. The limit is given in terms

of the number of states in the abstraction-induced State Space. It is important to note

that the size limit is not automatically the size of the abstraction in the end. It is

rather a good proxy for it when the step size of size limit values is chosen appropriately.

How is one Fact splitted : This option determines how the domain of a variable gets

refined based on a fact pair. Namely we can choose between Uniform Random Split

and Single Value Split.

How many Facts are split : Given a flaw, we either choose to split according to just one

fact pair of the flaw or to all of them. When choosing to split just one fact, there are

three different methods. As the method we refer to as minStatesGain performs best,

we used this one for all benchmarks where applicable.

Initial Abstraction selection : determines the domain abstraction that the refinement

starts with. This corresponds to the domain abstraction returned by the method

Benchmarks and Evaluation 18

getInitialDomainAbstraction. We choose the most coarse abstraction possible or split

as many goal facts as possible.

How are the heuristic values obtained : whether the abstract goal distances and thus

the heuristic values are calculated on-demand or are pre-computed in an exhaustive

backward search.

The following sections will consider each of the adjustable parameters one by one to compare

the performance influence of each regarding the metrics described in Section 4.2.

4.3.1 Number of States
Early experiments during the work on this thesis showed that implementing a time limit

of even a few seconds, yielded poor results with coverage of 300 up to 400. As it turned

out the reason was that even within this short time, the refinement loop generated an

abstraction, that was so fine, that obtaining the heuristic values took a very long time. This

is why we decided to implement a size limit for abstractions in terms of maximum abstract

states a range of 256 - 10000. Between a limit of 256 and 2048, the values we tested are

256 = 28, 29, . . . 211 and after that 3000, 4000, . . . 10000. This enables us to have a more

detailed insight in the lower range, which is important as in this range the performance of

our abstraction heuristics varies the most. The following plot shows the coverage of different

algorithm configurations for a range of maximal states between 256 and 16000. For each

number of maximal states we included the coverage of many different configurations to make

the impression more general.

Figure 4.1: Coverage of different algorithms by varying abstraction size limits.

From Figure 4.1 we depict that the highest coverage is achieved with between 1000 - 6000

states where 1024 and 4000 size limit yield the best performing configurations overall. The

figure also shows that different other parameter choices for example which split-method we

use, yield its best results at different abstraction size limits. Nevertheless it is clear that the

best coverage for all configurations can be achieved when choosing a limit between 1000 -

6000 states. In the following we explain why this is the case by looking at the expansions

Benchmarks and Evaluation 19

until last jump and the total time of two algorithm-configurations that are equal except for

the size limit:

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-2048 (lower for 1 tasks)

d
aP

re
co
m
p
-5
00
0
(l
ow

er
fo
r
27
0
ta
sk
s)

expansions-until-last-jump

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-2048 (lower for 491 tasks)
d
aP

re
co
m
p
-5
00
0
(l
ow

er
fo
r
22
5
ta
sk
s)

total-time

Figure 4.2: Comparison by Left: expansions until last jump, Right: total time

Consider the plots in Figure 4.2. They show that with increasing abstraction size, the total

time needed to solve the tasks increases, while the informativeness of the heuristic increases

with abstraction size. This indicates a trade-off between informativeness of an abstraction

and the time needed to solve a task. Our analysis showed that the refinement loop for the

abstraction sizes we use is very fast, thus not the limiting factor in terms of computational

effort. Rather, the main time of solving a task is spent at obtaining the heuristic values.

On the one hand larger abstractions make exhaustive search more time intensive the time

of obtaining heuristic values increases with abstraction size. On the other hand a larger

and thus more refined abstraction makes the heuristic more informative, which leads to less

expansions and thus a shorter search. Our experiments show that a good balance regarding

this trade-off is reached in a limit between 1000 - 6000 states, which shows best performance

for this parameter.

4.3.2 Splitmethod
In this subsection, we compare algorithm configurations by the choices one can make on

how to split the domain of a variable based on a fact pair v → x ∈ f . How both approaches

work is described in Section 3.3.1.

Recall the information shown in figure 4.1. Now the distinction of the configurations becomes

important: orange coloured dots denote algorithm configurations that use Uniform Random

Split, where the blue dots show configurations using the Single Value Split method. As we

can clearly see, the coverage of the algorithms using Uniform Random Split, is constantly

lower across the whole range of size limits. This difference is also visible in terms of time

and expansions:

Consider figure 4.3.2 where we compare two configurations that have the same configuration

except from the split-method they use. It becomes apparent, that in most tasks the con-

figuration using Single Value Split needs less time and less expansions. We can derive that

Benchmarks and Evaluation 20

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-2048 (lower for 331 tasks)

d
aP

re
co
m
p
-2
04
8-
U
n
if
or
m

(l
ow

er
fo
r
15
7
ta
sk
s)

expansions-until-last-jump

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-2048 (lower for 407 tasks)

d
aP

re
co
m
p
-2
04
8-
U
n
if
or
m

(l
ow

er
fo
r
29
3
ta
sk
s)

total-time

Figure 4.3: Comparison of split methods by Left: expansions until last jump, Right: total
time

overall, configurations using Single Value Split are superior in terms of time and informa-

tiveness of the heuristic. This observation supports the data we have about the coverage of

both methods. One reason for the better performance of using Single Value Split is that it

just modifies the affected variable domain of v in necessary places, while Uniform Random

Split randomly modifies it in other places which seems to be not a good commitment to

make. To be clear, there are problem domains where Uniform Random Split performs bet-

ter, either due to the randomness or the problem structure, but as we are interested in the

overall behaviour of the algorithms for this parameter, we can conclude that Single Value

Split tends to perform much better. In all of our experiments, we just had one configuration

using Uniform Random Split that performed better than any of the configurations using

Single Value Split.

4.3.3 Which fact pairs to consider for refinement
This subsection describes how the choice of parameter 3 that determines how many facts

of a flaw are used in refining the domain abstraction influences the performance. The first

option is to choose one fact-pair of a flaw and the second to choose all fact-pairs. When

selecting the first option, one can further decide how to pick the one fact-pair when there

are more than one.

We distinguish maxRefinedDomain, minRefinedDomain and random. The best-performing

method will be compared to the configuration where all fact-pairs are used for refinement.

The analysis of figures 4.3.3 and 4.3.3 tells us, that the method maxRefinedDomain performs

best regarding coverage in most tasks. The same result when looking at expansions until last

jump and the time. One reason for this could be that by refining a domain that has already

the highest number of equivalence classes, the number of abstract states does not increase

that much. This leads to more refinement steps and thus a more informative heuristic.

Next we compare the maxRefinedDomain method that picks one fact to split with con-

figurations that split all facts. Please note that the following figures do not include the

experimental data from algorithms that use Uniform Random Split but otherwise a bunch

Benchmarks and Evaluation 21

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-2048-random (lower for 198 tasks)

d
aP

re
co
m
p
-2
04
8-
m
ax
R
efi

n
ed
D
om

ai
n
(l
ow

er
fo
r
32
3
ta
sk
s)

expansions-until-last-jump

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-2048-maxRefinedDomain (lower for 331 tasks)

d
aP

re
co
m
p
-2
04
8-
m
in
R
efi

n
ed
D
om

ai
n
(l
ow

er
fo
r
18
6
ta
sk
s)

expansions-until-last-jump

Figure 4.4: Compare maxRefinedDomain with random(left) and minRefinedDomain(right)
by expansions until last jump

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-2048-maxRefinedDomain (lower for 423 tasks)

d
aP

re
co
m
p
-2
04
8-
m
in
R
efi

n
ed
D
om

ai
n
(l
ow

er
fo
r
26
8
ta
sk
s)

total-time

Figure 4.5: Compare maxRefinedDomain with minRefinedDomain(right) by total time

of configurations for each abstract size limit. Figure 4.6 shows the coverage of a lot of differ-

ent algorithm configurations. Algorithm configurations that split just one fact are denoted

in orange, whereas algorithms that split all facts are painted in blue.

It is clear to see, that all almost configurations we tested in our experiments perform better

by a coverage of about 20, when they split all facts. Figure 4.7 shows correlating results,

as algorithms that spit all facts consistently show less overall expansions, which means that

the heuristic quality is higher. We can conclude that fixing all facts in CEGAR for domain

abstractions seems like a good idea and generally leads to a more informative heuristic that

yields better coverage. This is also supported by the comparison of expansions and time of

two algorithm configurations, where one of them splits all facts, while the other uses the

maxRefinedDomain method, as denoted in figure 4.3.3.

One possible reason why splitting all facts is performing better, might be that the assign-

ments in a precondition or goal flaw are semantically connected as they were missing all

together when trying to apply and action in the abstract state space. Also the refinement

Benchmarks and Evaluation 22

Figure 4.6: Coverage of algorithms splitting one fact vs splitting all facts

Figure 4.7: Expansions until last jump of algorithms categorised by how many facts are
splitted and how heuristic values are obtained

tends to refine the abstraction more in one iteration. It is more efficient to split all fact

pairs instead of one since the effort to find an optimal plan in the abstraction needs to be

done just once to refine more domains instead of just one. To sum up, splitting all facts of

a flaw yields tends to have better overall performance than splitting just one fact.

4.3.4 Initial Abstraction Selection
Next, we explore the effect of the initial abstraction choice on the performance. Here the

algorithm allows the choice between the most coarse abstraction and an abstraction that

has as many goal facts as possible split.

We start with a view of the coverage data, depicted in Figure 4.9.This figure does not contain

any data of configurations that use Uniform Random Split or split just one fact. Up to a

maximum abstraction size of 2000 states, algorithms that use an initial abstraction with

goals split are superior. After that, most configurations that use a coarse initial abstraction

Benchmarks and Evaluation 23

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-2048 (lower for 300 tasks)

d
aP

re
co
m
p
-2
04
8-
sv
-m

in
S
ta
te
G
ai
n
(l
ow

er
fo
r
24
3
ta
sk
s)

expansions-until-last-jump

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-2048 (lower for 398 tasks)

d
aP

re
co
m
p
-2
04
8-
sv
-m

in
S
ta
te
G
ai
n
(l
ow

er
fo
r
29
1
ta
sk
s)

total-time

Figure 4.8: Comparison with 2048 state limit by Left: expansions until last jump, Right:
total time

Figure 4.9: Coverage of algorithms categorised by what initial abstraction is used

have better coverage. This observation suggests the conclusion that splitting goals initially

especially makes sense when having harsh space limits. In contrast, the decision to split

goal facts initially loses its advantage when abstractions can get larger. We think that in

this case, the configurations that did not split goals initially have more freedom where to

refine the abstraction. In contrast, the other configurations that split goal facts initially will

reach the space limit faster and probably miss essential refinement steps concerning action

preconditions rather than the goal. When just focusing on configurations that precompute

heuristic values, we observe that configurations with an abstraction size limit up to 5000

states have the highest coverage when using the initial abstraction with goal facts split.

The observation regarding coverage correlates with the geometric mean of total time (Figure

4.10). We depict that configurations, where the other parameters are fixed and use the

initial abstraction with as many goals as possible split need more time to solve the tasks.

Our experiments also showed that the expansions until the last jump are usually a little

lower for abstractions that do an initial goal split, but very close. Combined with the

Benchmarks and Evaluation 24

Figure 4.10: Total time of algorithms categorised by what initial abstraction is used

observation that the search time is lower for coarse abstraction configurations, we can derive

that obtaining the heuristic values takes longer for configurations that use initial goal split

abstractions. This suggests a trade-off between the accuracy of the heuristic and the time

to get the heuristic values. Higher heuristic values suggest longer paths in the abstraction.

This lead to a higher runtime of exhaustive search algorithms operating in that abstraction

as they must consider more search nodes. Another reason could be that splitting goal facts

builds an abstraction with longer paths but misses information in the important places.

Overall we can see that algorithm configurations that use the most coarse abstraction tend

to have a better performance in terms of time and coverage. While this is the case especially

for abstraction size limits of 4000 or more, the initial goal split seems to work well for lower

size limits.

4.3.5 Obtain the heuristic values
The last parameter one can adjust is how to obtain heuristic values after the construction of

the abstraction is finished. This has less to do with the actual algorithm for the construction

of domain abstractions. Nevertheless different configurations seem to yield differences in

performance regarding this parameter.

Here one can choose between the precomputation of heuristic values or to obtain them on

demand. In practice algorithms that use abstraction heuristics such as pattern databases

usually precompute the heuristic values as it has shown to be more efficient.

Regarding the coverage, we can see that, most of the best performing configurations when

we take the coverage as measure, obtain their heuristic values on demand. Our guess is,

that this has something to do with the previously mentioned trade-off between accuracy

and the time needed to obtain heuristic values. This is supported by the observation that

precomputation methods with a low number of states perform very good which indicates

that the precomputation of the heuristic values seems to be the bottleneck for higher size

limits. Further looking at the configurations that use initial goal split we see, that the perfor-

mance of configurations using precomputation is much more stable around a coverage of 760.

Benchmarks and Evaluation 25

Figure 4.11: Coverage of algorithms categorised by how heuristic values are obtained

Overall we see that the trade-off for configurations obtaining heuristic values on demand, is

perfect around a size limit of 4000 states whereas the performance of the precomputation

configurations is best for around 1000 states and tends to decrease afterwards.

Taking the total time into account (Figure 4.10), we can see that the time for obtaining

heuristic values on demand grows much faster. Regarding the coverage in the higher size

limit range, these results are somewhat counter-intuitive as the time is generally lower for

the configurations that use precomputation. Our best guess is that the precomputation of

heuristic values took very long for the most challenging instances, such that the according

algorithms did not get the chance to run the search for long. Hence they have less chance

to find a solution.

Another reason for this behaviour is that the implementation of the precomputation is not

efficient enough, so having all h-values during a search does not compensate the early start

advantage of the on-demand computation.

Since the method how we obtain heuristic values does not affect the quality of a heuristic

we omit the according comparison in this section.

In summary, even though configurations that obtain heuristic values on demand tend to

better when it comes to coverage, we expect this to change once the precomputation is

implemented more efficiently, regarding the much better total time needed. Nevertheless

configurations in the lower abstraction limit range are also well performing and definitely

the better choice when tasks need to be solved fast.

4.4 Best Configurations
After we have evaluated the performance of our algorithm according to each each parameter

separately, we now want to show the two best performing configurations, namely DAOTF

and DAprecomp. The configuration of both can be depicted from table ??.

As we can see, these are two mostly different configurations. The reason why they are so

different is, that configurations that pre-compute their heuristic values seem to work best

when goals are initially split. This agrees with the analysis of this parameter in Section

Benchmarks and Evaluation 26

DAOTF DAprecomp

Abstractionsize limit 4000 1024
Split method Single Value Split Single Value Split
Initial abstraction most-corse goals splitted
How many facts to split all all
Obtain heuristic values on demand precomputed

Table 4.1: Details of best-performing configurations

4.3.4 as abstractions using initial goal split tend to perform better when having just a

low abstraction size limit as it is the case here. This is a very good example that a general

performance tendency of a parameter might not hold in general for all possible configuration

combinations. In general we can observe that the configurations achieving a good balance

between informativeness of the heuristic and time needed to obtain the heuristic values tend

to have the best performance. We can use the performance analysis for each parameter as

orientation for a configuration and we will get good results with a high probability, but this

depends also on the exact setting for each parameter as DAprecomp shows.

After this remark on general best configurations, we will compare the performance of

DAprecomp and DAOTF in detail.

DAOTF DAprecomp

Coverage 768 765
Total Time(geometric mean) 5.33 2.26

Table 4.2: Coverage and geometric mean of total time for best configurations

A view on table 4.2, shows that DAOTF reaches a little-bit more coverage at the cost of

worse mean time.

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-1024-gs (lower for 79 tasks)

d
aO

T
F
-4
00
0
(l
ow

er
fo
r
40
8
ta
sk
s)

expansions-until-last-jump

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-1024-gs (lower for 500 tasks)

d
aO

T
F
-4
00
0
(l
ow

er
fo
r
22
4
ta
sk
s)

total-time

Figure 4.12: Comparison by Left: expansions until last jump, Right: total time

Our analysis of the figures 4.4 and 4.4 further shows that even though the expansions until

last jump are lower for DAOTF , the search time is higher. This shows that the heuristic

is more informative than DAprecomp but needs more time to obtain its heuristic values.

Benchmarks and Evaluation 27

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-1024-gs (lower for 642 tasks)

d
aO

T
F
-4
00
0
(l
ow

er
fo
r
48

ta
sk
s)

search-time

105 106 107

105

106

107

daPrecomp-1024-gs (lower for 411 tasks)

d
aO

T
F
-4
00
0
(l
ow

er
fo
r
18
5
ta
sk
s)

memory

Figure 4.13: Comparison by Left: search time, Right: memory

Thus also the total time to solve a task is better for DAprecomp because it over weighs the

benefit of a more informative heuristic. Nevertheless, both algorithms were able to achieve

a comparable coverage, where the one algorithm achieves this by searching very fast and the

other by having a more informed heuristic with a good balance between the time needed to

obtain heuristic values.

5
Comparison with CEGAR for Pattern Databases

and Cartesian Abstractions

In the last two chapters, we discussed and evaluated a new method to create domain ab-

stractions for abstraction heuristics. This chapter will compare the best-performing config-

urations of our algorithm to other methods that create abstraction heuristics based on other

abstraction classes.

As mentioned in Chapter 3, we are unaware of any algorithm that constructs domain ab-

stractions. Even the paper that introduced domain abstractions (Hernádvölgyi and Holte,

2000) just generated them randomly and did not specify how. This is why we compare our

algorithm with abstraction heuristics that work with other abstraction classes, namely pro-

jections and Cartesian abstractions. The abstraction heuristics we compare our work with

also use the CEGAR principle to construct the abstractions. First, we will compare against

the PDBnadd and PDBadd algorithms that correspond to the algorithms by Rovner et al.

(2019), which are Pattern Database Heuristics that use multiple projections. Secondly,

we will compare with an abstraction heuristic based on one single Cartesian abstraction

introduced by Seipp and Helmert (2013).

Section 5.1 will introduce the underlying theory behind the algorithms we compare with

our work. Next, Section 5.2 will present the algorithms and configurations we use in our

benchmarks. Finally, we will discuss the benchmark results in Section 5.3.

5.1 Projections, Pattern Databases and Cartesian Abstractions
Projections and Cartesian abstractions are closely related to domain abstractions. While

domain abstractions are a proper generalisation of projections, Cartesian abstractions are

a proper generalisation of domain abstractions. In the following, we briefly introduce both

abstraction classes and compare them to domain abstractions on a theoretical level.

5.1.1 Projections and Pattern Database Heuristics
Pattern database heuristics, are abstraction heuristics, that are induced by the abstraction

class of projections (Culberson and Schaeffer, 1998). Given a planning task Π with variables

Comparison with CEGAR for Pattern Databases and Cartesian Abstractions 29

V , a projection αP : S 7→ Sα is induced by a subset of the variables P ⊆ V which is also

called a pattern. Two states s, s′ ∈ S are mapped to the same abstract state sα ∈ Sα if

they agree on the values of all variables in P . Formally this means that αP (s) = αP (s
′) iff

s(p) = s′(p) for all p ∈ P .

In a projection, a variable either is irrelevant or gets considered completely. It is easy to

see, that domain abstractions are a proper generalisation of projections, where projection is

a domain abstraction ∼= {∼1, . . . ,∼n} with | ∼i | = 1 for p /∈ P and | ∼i | = |Di| in case

p ∈ P .

Pattern Database heuristics compute abstract goal distances in Sα and store them into a

lookup table in memory, also called a pattern database. Like in other abstraction heuristics,

these are then used to estimate goal distances in S.

5.1.2 Cartesian Abstractions
Cartesian Abstractions for planning (Seipp and Helmert, 2013) were first explicitly intro-

duced with the idea of using the CEGAR principle and are a proper generalisation of domain

abstractions. They are more general than domain abstractions and allow for fine-grained

abstraction refinement in the places where needed. They achieve this by allowing to refine

domains in a specific part of the planning task while other areas stay untouched. Each

abstract state can define individual domains for the variables in the planning task. This

allows for a very flexible refinement of the abstraction.

To explain this more formally we refer to the definition by Seipp and Helmert (2013): we

are given a planning task Π with variables V = ⟨v1, . . . , vn⟩ and their associated domains

D1, . . . , Dn. In a planning task a set of states is called Cartesian if it has the form C1×· · ·×Cn

where Ci ⊆ Di for all 1 ≤ i ≤ n. An abstraction is called Cartesian if all its abstract states

are Cartesian sets. For an abstract state sα = C1 × · · · × Cn we define Di,sα = Ci ⊆ Di as

the set of variables that variable vi can have in abstract state sα .

We can see that every abstract state of the abstraction-induced state space can define indi-

vidual domains for each variable. This makes Cartesian abstractions a proper generalisation

of domain abstractions, as domain abstractions are a particular case of Cartesian abstrac-

tions, where the domain of each variable vi is equal in all abstract states.

5.2 The competing algorithms
This chapter will present the four algorithms that will be compared using the A* search

algorithm in Section 5.3. All algorithms construct abstraction heuristics using the CEGAR

principle, making the benchmarks more comparable. The exact commands and parameters

that were used to run these algorithms can be found in the appendix.

5.2.1 Projection
The first two algorithms that participate in the comparison are the algorithms PDBnadd and

PDBadd that correspond to the according algorithms by Rovner et al. (2019), both creating

a collection of multiple patterns. These patterns are then combined into one admissible

Comparison with CEGAR for Pattern Databases and Cartesian Abstractions 30

abstraction heuristic. The difference between the two algorithms is that PDBadd constructs

additive patterns, whereas the patterns that PDBnadd constructs are not additive. Two

patterns P1 and P2 are disjoint when P1 does not contain any variable of P2. Two disjoint

patterns are additive when no variable in P1 is correlated with any variable in P2. They never

occur together in the effects of any action a, and neither does one occur in the preconditions

and the other in the effects of the same action. To have an up-to-date comparison, we chose

the best-performing configurations of these algorithms.

Furthermore, we will compare with a third algorithm PDBsinglePattern or PDBSP for short,

that constructs just one pattern using the CEGAR algorithm by Rovner et al. (2019).

We compare domain abstractions with different pattern database heuristics that first use one

abstraction and second use multiple abstractions. This is because the grade of refinement of

a projection is a shortcoming and is why PDBs in practice often use multiple abstractions.

As we want a complete overview of CEGAR performance for different abstraction classes,

we also include a configuration that uses one projection.

5.2.2 Cartesian Abstraction
We use the algorithm from the work where Cartesian abstractions were introduced (Seipp

and Helmert, 2013). As for PDBs, the algorithm uses the CEGAR principle to construct

one or multiple cartesian abstractions. We will use a configuration where just one Cartesian

abstraction is constructed since we also construct one domain abstraction. Furthermore, a

domain abstraction has no benefit regarding the refinement grade, as was the case for Pattern

Databases. From now on, we will denote this algorithm as CARTESIANsingleAbstraction

or short CARTESIANSA.

5.2.3 Domain Abstraction
The configurations of our algorithm we selected to compete are the ones we found best-

performing in our evaluation in Chapter 4. The first configuration will be denoted asDAOTF

and is the configuration that achieves a maximum coverage and obtains the heuristic values

on the fly. Since we do not just compare the coverage but also the total time, we also selected

a configuration with high coverage and an excellent performance regarding total time and

expansions. This configuration will be denoted as DAprecomp and precomputes the heuristic

values. Both configurations are described in detail in Section 4.4.

5.2.4 Explicit transition systems
A domain abstraction or, more specifically, its equivalence relations apply to the whole state

space equally. Hence there is no need to store an explicit representation of the abstract state

space during refinement or precomputation. We instead implemented a black box interface

that, based on an action or abstract state, computes the predecessors or successors of the

given state. On the one hand, this makes the implementation easier and saves memory. On

the other hand, an explicitly stored transition system could save computation time when

implemented efficiently. Despite the refinement loop being very fast, even without an explicit

Comparison with CEGAR for Pattern Databases and Cartesian Abstractions 31

transition system, it would make sense for the precomputation of heuristic values. This is

currently the main bottleneck of those configurations of our algorithm that precompute

the heuristic values. A more efficient precomputation would allow a higher abstraction-size

limit, which might lead to better performance.

In contrast, constructing a Cartesian abstraction using CEGAR requires an explicit transi-

tion system as every abstract state has its own domains for each variable.

5.3 Results
For the comparison of the algorithms presented above, we are using the same Benchmark

setup as described in Chapter 4. In this section, we first compare the methods that construct

just one abstraction. Secondly, we compare those with the methods that construct multiple

abstractions.

CARTESIANSA DAOTF DAprecomp PDBSP

coverage 791 765 764 761

Table 5.1: Covergae of all algorithms compared

Table 5.3 shows that the overall performance of algorithms using one abstraction is compa-

rable. As we can see, CARTESIANSA has the best coverage, whereas the other algorithms

have lower coverage by about 20 and just apart by max 5. For a more detailed analysis, we

will look at the pairwise comparison of the algorithms.

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-1024-gs (lower for 421 tasks)

p
d
b
C
E
G
A
R
-S
in
gl
eP

at
te
rn

(l
ow

er
fo
r
23
7
ta
sk
s)

expansions-until-last-jump

10−1 100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

105

106

107

108

daPrecomp-1024-gs (lower for 110 tasks)

C
ar
te
si
an
C
E
G
A
R
-S
in
gl
eP

at
te
rn

(l
ow

er
fo
r
53
7
ta
sk
s)

expansions-until-last-jump

Figure 5.1: Comparison of DAprecomp with CARTESIANSA and PDBSP by expansions
until last jump

Consider Figures 5.3 and 5.3. Combined with the coverage data, our analysis shows increas-

ing coverage with increasing abstraction class complexity while the time needed to solve

a task decreases. One exception is DAOTF , where the time is higher because it does not

precompute the heuristic values as the other algorithms do. It makes sense that the more

complex abstraction classes as CEGAR can do a more specified refinement that just refines

parts of the abstraction that are necessary and not the domain of all variables as domain

Comparison with CEGAR for Pattern Databases and Cartesian Abstractions 32

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-1024-gs (lower for 174 tasks)

p
d
b
C
E
G
A
R
-S
in
gl
eP

at
te
rn

(l
ow

er
fo
r
53
5
ta
sk
s)

total-time

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

daPrecomp-1024-gs (lower for 475 tasks)

C
ar
te
si
an
C
E
G
A
R
-S
in
gl
eP

at
te
rn

(l
ow

er
fo
r
25
0
ta
sk
s)

total-time

Figure 5.2: Comparison of DAprecomp with CARTESIANSA (right) and PDBSP (left)
by total time

abstractions do. In the same fashion, domain abstractions allow for a finer abstraction

refinement than pattern databases, where every refinement step at least doubles the ab-

straction size. Consequently, more complex abstractions have a more efficient and accurate

refinement that leads to more tasks solved and to more informative heuristics, as we can

see in the plots denoting the expansions until the last jump, which are a good proxy for the

informativeness of a heuristic.

Regarding the time, more complexity usually means more time spent on the refinement,

which affects CARTESIANsingleAbstraction the most.

We also see that the algorithms DAprecomp and PDBSP are much more similar regard-

ing the time they need to solve a task, search time and coverage. Generally, this is a

lower improvement than we expected. However, we think that a more efficient imple-

mentation of the precomputation of heuristic values in DAprecomp might lead to a more

significant gap between the two algorithms. Another explanation for the segregation of

CARTESIANsingleAbstraction from the other two could be the difference of the abstraction

classes. Domain Abstractions as well as Pattern Databases make global decisions whereas

Cartesian abstractions can focus their specificity on the parts of the State Space it matters

the most. Overall we conclude that the performance of CEGAR algorithms for constructing

domain abstractions is located in the area between Cartesian abstractions and projections,

which is what we expected.

Now that we compared the algorithms that just construct one abstraction, we will look at

the two algorithms that use the CEGAR principle to construct multiple projections.

PDBadd PDBnadd

coverage 862 900

Table 5.2: Covergae of all algorithms compared

Table 5.3 clearly shows that the algorithms PDBadd and PDBnadd have significantly higher

coverage than the other algorithms. When we additionally consider the results of Seipp and

Helmert (2013), that use multiple cartesian abstractions, we can conclude that constructing

Comparison with CEGAR for Pattern Databases and Cartesian Abstractions 33

multiple abstractions with CEGAR seems to work significantly better than just using one

abstraction. We think this is the case because multiple distinct abstractions for the same

task can be more informative than one big abstraction that has the same overall number of

states. Moreover, the search in multiple small abstractions is often speedy, while searching

in an abstraction gets more complicated with increasing abstraction size over linearly. Be-

cause domain abstractions, regarding their refinement grade lay in between projections and

Cartesian abstractions we expect the construction of multiple domain abstractions to yield

a comparable improvement in performance, especially regarding the coverage.

5.3.1 Conclusion
From the results, we can conclude that multiple abstractions benefit the performance of

the abstraction heuristics. As Cartesian abstractions and Projections show better perfor-

mance when constructing multiple abstractions, we think this would also benefit domain

abstractions. When comparing the algorithms for all three abstraction classes that use one

abstraction, we see that with increasing refinement grade that the abstraction class allows,

the coverage increases. At the same time, the total-time increases with abstraction complex-

ity. Overall our algorithm for domain abstractions performs as we expected when compared

to other CEGAR algorithms that construct other abstraction classes where its performance

and behaviour regarding time, coverage and informativeness of the heuristic lies between

CEGAR for projections and Cartesian abstractions. We conclude that CEGAR is a descent

algorithm for the construction of domain abstractions and has the potential when we would

use multiple abstractions.

6
Conclusion and Future Work

This chapter summarises this thesis and briefly recalls what we presented. Furthermore, we

give an outlook on future work and present ideas on how the presented algorithms can be

improved or expanded.

Our analysis in Chapter 4 showed that for most unsolved tasks, the algorithm runs out

of memory. Analysis of hard problem instances showed that the A* search and not the

abstraction construction is the reason for that. One way to resolve this problem is to make

the heuristic more informative, guiding the search algorithm better towards the goal.

As we saw in Chapter 5, constructing multiple abstractions with CEGAR yielded far better

results in terms of coverage. Thus we think the construction of multiple domain abstractions

would improve performance significantly. Moreover, other interesting ideas exist to improve

the existing algorithm for constructing just one abstraction. One idea is to evaluate the

effect of changing the number of facts in a flaw used for refinement. We only distinguish

between choosing just one fact or all of them. We want to make it possible to split an

arbitrary portion of the facts. Furthermore, expanding the amalgam of methods to pick a

fact pair of a flaw for refinement could be interesting.

Another recently presented approach that could improve the construction of domain ab-

stractions is to find not just one optimal plan in the abstraction and fix the flaw that occurs

for it but to find all existing optimal plans and fix the flaw of each one. (Speck and Seipp,

2022). This approach showed to be successful for Cartesian abstractions, and we expect it

would also benefit the construction of domain abstractions using CEGAR.

As we have seen in Chapter 4, the coverage of methods using on-demand calculation of

heuristic values tends to be higher. We were surprised by this result as the state-of-the-art

abstraction heuristics all precompute the heuristic values. We suspect that a more efficient

implementation of the precomputation, namely using an explicit transition system, could

yield significantly better performance for those configurations.

We have shown a CEGAR algorithm that constructs domain abstractions and yields promis-

ing results comparable with related algorithms constructing one projection or Cartesian ab-

straction. However, our algorithm could not match the coverage of techniques that construct

a diverse set of abstractions and combine them by using cost-partitioning methods. As is

the case for pattern databases and Cartesian abstractions, we believe that switching from

Conclusion and Future Work 35

the construction of one to multiple domain abstractions would be highly beneficial.

Overall, we conclude that CEGAR is a promising approach to constructing domain abstrac-

tions and believe that the algorithm presented in this thesis can be extended to yield better

coverage and more informative heuristics.

Bibliography

Christer Bäckström and Bernhard Nebel. Complexity Results for SAS+ Planning. Compu-

tational Intelligence, 11(4):625–655, 1995.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-Guided Abstraction Refinement. In Proceedings of the 12th International

Conference on Computer Aided Verification, pages 154–169. Springer, 2000.

Joseph C. Culberson and Jonathan Schaeffer. Pattern Databases. Computational Intelli-

gence, 14(3):318–334, 1998.

Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik, 1(1):269–271, 1959.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

Malte Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

István T. Hernádvölgyi and Robert C. Holte. PSVN: A Vector Representation for Production

Systems. Technical Report TR-99-04, School of Infomation Technology and Engineering,

University of Ottawa, 1999.

István T Hernádvölgyi and Robert C Holte. Experiments with Automatically Created

Memory-Based Heuristics. In Proceedings of the 4th International Symposium on Ab-

straction, Reformulation, and Approximation, pages 281–290. Springer, 2000.

Alexander Rovner, Silvan Sievers, and Malte Helmert. Counterexample-Guided Abstraction

Refinement for Pattern Selection in Optimal Classical Planning. In Proceedings of the

Twenty-Ninth International Conference on Automated Planning and Scheduling, pages

362–367, 2019.

Jendrik Seipp and Malte Helmert. Counterexample-Guided Cartesian Abstraction Refine-

ment. In Proceedings of the Twenty-Third International Conference on Automated Plan-

ning and Scheduling, pages 347–351, 2013.

David Speck and Jendrik Seipp. New Refinement Strategies For Cartesian Abstractions. In

Proceedings of the Thirty-Second International Conference on Automated Planning and

Scheduling, pages ”348–352”, 2022.

A
Appendix

A.1 Commands executed in the comparison benchmarks
In the following one can depict the exact strings that were used to run the algorithms based

on projections. The first two using multiple abstractions and the third one using just one:

PDBnadd :

a s t a r (cpdbs (mu l t i p l e c e ga r (max pdb size =1000000 ,

max c o l l e c t i o n s i z e =10000000 , pat te rn generat ion max t ime=

i n f i n i t y , tota l max t ime=100 , s t a gn a t i o n l im i t =20,

b l a c k l i s t t r i g g e r p e r c e n t a g e =0.75 ,

e n ab l e b l a c k l i s t o n s t a g n a t i o n=true , random seed=2018 ,

v e rbo s i t y=normal , u s e w i l d ca rd p l an s=f a l s e)) , v e rbo s i t y=s i l e n t

)

PDBadd :

a s t a r (cpdbs (d i s j o i n t c e g a r (u s e w i l d ca rd p l an s=true , max time=100 ,

max pdb size =1000000 , max c o l l e c t i o n s i z e =10000000 , random seed

=2018 , v e rbo s i t y=normal)) , v e rbo s i t y=normal)

PDBsinglePattern :

a s t a r (pdb(c ega r pa t t e rn (max pdb size =1000000 ,max time=100 ,

u s e w i l d ca rd p l an s=true , v e rbo s i t y=normal , random seed=2018)))

For the algorithm based on Cartesian abstractions we chose the following configuration to

run:

CARTESIANsingleAbstraction :

a s t a r (cegar (subtasks=[o r i g i n a l ()] , max t rans i t i on s=i n f i n i t y ,

max time=900))

Appendix 38

To run the algorithm based on domain abstractions we used the following strings to configure

the search. One for the best version using precomputation of heuristic values and the best

configuration taht obtains heuristic values on demand:

DAotf :

a s t a r (domain abst ract ion (p r e c a l c u l a t i o n=f a l s e , max states =4000 ,

i n i t i a l g o a l s p l i t=f a l s e))

DAprecomp :

a s t a r (domain abst ract ion (p r e c a l c u l a t i o n=true , max states =1024 ,

i n i t i a l g o a l s p l i t=true))

August 2021

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Assesor: __

Name Student: __

Matriculation No.: __

With my signature I declare that this submission is my own work and that I have fully
acknowledged the assistance received in completing this work and that it contains no
material that has not been formally acknowledged. I have mentioned all source materials
used and have cited these in accordance with recognised scientific rules.

Place, Date: _______________________ Student: ____________________________

Will this work be published?

� No

� Yes. With my signature I confirm that I agree to a publication of the work (print/digital)

in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, I agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: ___

Place, Date: _______________________ Student: ____________________________

Place, Date: _______________________ Assessor: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis .

Generation of Domain Abstractions using Counterexample-Guided Abstraction Refinement

Prof. Malte Helmert

Raphael Kreft

2019-058-148

Lörrach, 30.06.2022

Lörrach, 30.06.2022

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Planning Tasks, State spaces and Plans
	2.2 Heuristic Functions and Informed Search
	2.3 Abstractions
	2.4 Domain Abstractions
	2.5 Counterexample-Guided Abstraction Refinement

	3 Constructing Domain Abstractions with CEGAR
	3.1 Initial Abstraction Selection
	3.2 Retrieve Flaws
	3.2.1 Find a plan in the abstract state space
	3.2.2 Find a flaw

	3.3 Refinement of the Abstraction
	3.3.1 Splitmethod
	3.3.1.1 Single Value Split
	3.3.1.2 Uniform Random Split

	3.3.2 Which fact pairs to consider for refinement
	3.3.2.1 Split along one flaw assignment
	3.3.2.2 Split along all flaw assignments

	3.4 Obtain the heuristic values
	3.4.1 Precalculation
	3.4.2 On demand computation

	4 Benchmarks and Evaluation
	4.1 Implementation details
	4.2 Setup
	4.3 Results
	4.3.1 Number of States
	4.3.2 Splitmethod
	4.3.3 Which fact pairs to consider for refinement
	4.3.4 Initial Abstraction Selection
	4.3.5 Obtain the heuristic values

	4.4 Best Configurations

	5 Comparison with CEGAR for Pattern Databases and Cartesian Abstractions
	5.1 Projections, Pattern Databases and Cartesian Abstractions
	5.1.1 Projections and Pattern Database Heuristics
	5.1.2 Cartesian Abstractions

	5.2 The competing algorithms
	5.2.1 Projection
	5.2.2 Cartesian Abstraction
	5.2.3 Domain Abstraction
	5.2.4 Explicit transition systems

	5.3 Results
	5.3.1 Conclusion

	6 Conclusion and Future Work
	Bibliography
	A Appendix
	A.1 Commands executed in the comparison benchmarks

