Generation of Domain Abstractions using Counterexample-Guided Abstraction Refinement

Bachelor's Thesis – Raphael Kreft

Cost-Optimal Classical Planning

22.07.2022

Planning task $\Pi = \langle V, s_0, G, A \rangle$ with

- A set of state variables V where each v ∈ V is associated with a finite, non-empty domain.
 o State = total assignment for V
- A state s_0 which is called the initial state
- A variable assignment *G* which denotes the goal conditions
- A finite set of actions A, where each action $a \in A$ is associated with:
 - two variable assignments, namely Effects
 eff(a) and Preconditions pre(a)
 - Non negative costs $cost(a) \in \mathbb{N}_0$

Planning task $\Pi = \langle V, s_0, G, A \rangle$ with

- A set of state variables V where each v ∈ V is associated with a finite, non-empty domain.
 o State = total assignment for V
- A state s_0 which is called the initial state
- A variable assignment *G* which denotes the goal conditions
- A finite set of actions A, where each action $a \in A$ is associated with:
 - two variable assignments, namely Effects
 eff(a) and Preconditions pre(a)
 - Non negative costs $cost(a) \in \mathbb{N}_0$

Example:

All packages are at start location

Trucks are in their base

Planning task $\Pi = \langle V, s_0, G, A \rangle$ with

- A set of state variables V where each v ∈ V is associated with a finite, non-empty domain.
 o State = total assignment for V
- A state s_0 which is called the initial state
- A variable assignment *G* which denotes the goal conditions
- A finite set of actions A, where each action $a \in A$ is associated with:
 - two variable assignments, namely Effects
 eff(a) and Preconditions pre(a)
 - Non negative costs $cost(a) \in \mathbb{N}_0$

Example:

All packages are at their final destination

It does not care where the trucks are

Planning task $\Pi = \langle V, s_0, G, A \rangle$ with

- A set of state variables V where each v ∈ V is associated with a finite, non-empty domain.
 o State = total assignment for V
- A state s_0 which is called the initial state
- A variable assignment *G* which denotes the goal conditions
- A finite set of actions A, where each action $a \in A$ is associated with:
 - two variable assignments, namely Effects
 eff(a) and Preconditions pre(a)
 - Non negative costs $cost(a) \in \mathbb{N}_0$

Example:

Action load(packageA, truckA)

- Preconditions: packageA and truckA
 must be in same location
- Effects: position of packageA is set to truckA

Example Statespace

 $V = \{package, truck\},\$ dom(package) = {L,R,T}, dom(truck) = {L, R} $A = \{load, unload, move\}$

Heuristics

$h: S \to \mathbb{R}_0^+ \cup \{\infty\}$

- Estimate optimal goal distance for all states
- o "Guides" a search algorithm
- Handcrafted possible: ex. Manhatten distance
- Many methods to derive automatically

Abstraction Heuristics

 $h^{\alpha}(\{package \rightarrow L, truck \rightarrow L\}) = 2$

Generation of Domain Abstractions using Counterexample-Guided Abstraction Refinement

Bachelor's Thesis – Raphael Kreft

Evaluation and Comparison

Conclusion and Future Work

Domain Abstractions

And other abstraction classes

Abstraction Classes

Projections

Domain Abstractions

Cartesian Abstractions

projection on variable *package*

Abstraction Classes

Projections

Domain Abstractions

Cartesian Abstractions

Abstraction Classes

Cartesian Abstractions

Counterexample-guided Abstraction Refinement

22.07.2022

Constructing Domain Abstraction using CEGAR

Motivation, Algorithm and Parameters

Flaws

 $V = \{package, truck\},\$ dom(package) = {L,R,T}, dom(truck) = {L, R} $s_0 = \{truck \rightarrow L, package \rightarrow L\}$ $G = \{package \rightarrow R\}$ $A = \{load, unload, move\}$

Initial Domain Abstraction:

dom(*package*) = {L, R, T} $dom(truck) = {L, R}$

Flaws

Let *s* be the state where flaw occurred:

Precondition Flaw: $f = pre(a) \setminus \{s\}$ Goal Flaw: $f = G \setminus \{s\}$

22.07.2022

Old Abstraction:

dom(package) = {L, R, T} dom(truck) = {L, R}

New Abstraction:

dom(package) = {L, R, T} dom(truck) = {L, R}

1. Initial Abstraction Selection

Goal Facts initially splitted

dom(package) = {L, R, T} dom(truck) = {L, R}

2. How many facts to split

Given a flaw with multiple missed assignments: $f = \{v_1 \rightarrow 1, v_4 \rightarrow 3\}$

<u>Use one FactPair</u>

- Choose one fact pair of flaw fex. $v_1 \rightarrow 1$
 - 1. Uniformly at Random
 - 2. Max refined domain
 - 3. Least refined domain

Use all FactPairs

- Use all fact pairs for refinement
- Implementation: Split as many as possible

3. How to split according to one assignment

Given the flaw from example before: $f = \{package \rightarrow R\}$

<u>Single Value Split</u>

dom(package) = {L, R, T} dom(truck) = {L, R}

- Only move missed value(R) in a new equivalence class
- This was the method used in the Refinement Example

Uniform Random Split

dom(package) = {L, R, T} dom(truck) = {L, R}

- Additionally missed-value(R), choose other values from same equivalence class uniformly at random
- Move 50% of old equivalence class to new one

4. Abstraction Size Limit

- Equals the product of the number of equivalence classes for each variable domain
- Influences the effort of:
 - Refinement Loop (Find solution in abstract state space)
 - Obtain Heuristic Values

On Demand
 Precomputation

Evaluation

Best Configurations and Comparison to others

Setup

- Algorithms Implementated in Planning System Fast Downward
- Setup Experiments with Downward Lab
- Experiments performed on SciCore(Infai2 Cluster)
- Set of 1827 tasks from 65 different problem domains

For Each Task

- Overall Time Limit: 30min
- Overall Memory Limit: 3.5GB

Performance Evaluation per Parameter!

Maximum Abstraction Size

Split Method

- Single Value Split is superior in terms of covergae, time and informativeness
- Configurations using Uniform Random Split performed worse in nearly all cases

How many FactPairs to split

- One: Max refined domain is best
- In General splitting all facts is superior

How many FactPairs to split

• Same picture for coverage

 Better to split all facts of a flaw (beneficial + faster refinement)

Initial abstraction

- Up to a 2000 statelimit initial goal split better
- Else most coarse abstraction superior
 - Initial goal split good idea when less refinement opportunities

Obtain Heuristic values

- Mostly depends on statelimit
- Up to 2000 States and after 16000 States precomputation is superior
- Else "On demand" yields best performing configurations
 - Tradeoff between search time and time needed for backward search

Comparison

Algorithm:	PDB ^{SA}	D A ^{OTF}	DA ^{Precomp}	Cartesian ^{SA}
Coverage:	761	765	764	791

- **PDB**^{SA}: constructs one single pattern using the cegar principle
- **DA**^{OTF}: sizelimit 4000, obtain h-vals on demand, no initial goal split
- **D**A^{Precomp}: sizelimit 1024, precomputation, initial goal split
- *Cartesian^{SA}*: constructs one single cartesian abstraction using the cegar principle

22.07.2022

Comparison with Multi-Abstraction Methods

Algorithm:	PDB ^{SA}	D A ^{OTF}	D A ^{Precomp}	Cartesian ^{SA}
Coverage:	761	765	764	791
lgorithm:	PDB ^{ad}	ld P	DB ^{nadd}	Cartesian ^{MA}
Coverage:	862		900	889

- **PDB**^{nadd}, **PDB**^{add}: Use cegar principle to construct multiple Projections
- *Cartesian^{MA}*: constructs multiple cartesian abstractions

Significant performance-gain compared to single abstraction methods

Conclusion

22.07.2022

Conclusion

- Developed and Implemented a capable Algorithm for the construction of Domain Abstractions.
- Performance ranks in between CEGAR-Algorithms for Projections and Cartesian Abstractions (Single Abstraction)

<u>Next Steps</u>

- Extend Algorithm for the construction of multiple Abstractions
- Split n FactPairs / Goals
- Regroup Values in domains (Simulated annealing)
- Comprehensive experiments to compare all possible parameter combinations