
Generation of Domain

Abstractions using

Counterexample-Guided

Abstraction Refinement

Bachelor‘s Thesis – Raphael Kreft

22.07.2022 2

Cost-Optimal Classical Planning

Senders Receipients

22.07.2022 3

SAS+ Planning Formalism

Position of Package A

Position of Truck

Example:Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎

22.07.2022 4

SAS+ Planning Formalism

All packages are at

start location

Trucks are in their base

Example:Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎

22.07.2022 5

SAS+ Planning Formalism

All packages are at

their final destination

It does not care where

the trucks are

Example:Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎

22.07.2022 6

SAS+ Planning Formalism

Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎

Example:

Action load(packageA, truckA)

• Preconditions: packageA and truckA
must be in same location

• Effects: position of packageA is set to
truckA

22.07.2022 7

LL

Example Statespace
𝑉 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒, 𝑡𝑟𝑢𝑐𝑘 ,
dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L,R,T},
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}
𝐴 = {𝑙𝑜𝑎𝑑, 𝑢𝑛𝑙𝑜𝑎𝑑,𝑚𝑜𝑣𝑒}

LL

𝑡𝑟𝑢𝑐𝑘𝑝𝑎𝑐𝑘𝑎𝑔𝑒

LR

TL

TR RR

RL

Initial

State Transition
Goal

State

22.07.2022 8

Heuristics

ℎ: 𝑆 → ℝ0
+ ∪ {∞}

o Estimate optimal goal distance for all states

o „Guides“ a search algorithm

o Handcrafted possible: ex. Manhatten distance

o Many methods to derive automatically

22.07.2022 9

Abstraction Heuristics

ℎ𝛼 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝐿, 𝑡𝑟𝑢𝑐𝑘 → 𝐿 = 2

LL

LR

TL

TR RR

RL

Generation of Domain

Abstractions using

Counterexample-Guided

Abstraction Refinement

Bachelor‘s Thesis – Raphael Kreft

Domain Abstractions

Counterexample-Guided Abstraction Refinement

Constructing Domain Abstractions with CEGAR

Evaluation and Comparison

Conclusion and Future Work

22.07.2022 11

Domain Abstractions

And other abstraction classes

22.07.2022 12

22.07.2022 13

Abstraction Classes

Projections

Domain
Abstractions

Cartesian
Abstractions projection on variable 𝑝𝑎𝑐𝑘𝑎𝑔𝑒

LL

LR

TL

TR RR

RL

22.07.2022 14

Abstraction Classes

Projections

Domain
Abstractions

Cartesian
Abstractions

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T} dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

LL

LR

TL

TR RR

RL

22.07.2022 15

Abstraction Classes

Projections

Domain
Abstractions

Cartesian
Abstractions

LL

LR

TL

TR RR

RL

{L, T} × {𝑅}

{T} × {𝐿}{L} × {𝐿} {R} × {𝐿}

{R} × {𝑅}

Counterexample-guided

Abstraction Refinement

22.07.2022 16

22.07.2022 17

Constructing Domain Abstraction

using CEGAR

Motivation, Algorithm and Parameters

22.07.2022 18

22.07.2022 19

Nothing specific!

22.07.2022 20

Flaws
𝑉 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒, 𝑡𝑟𝑢𝑐𝑘 ,

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L,R,T},
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

𝑠0 = {𝑡𝑟𝑢𝑐𝑘 → 𝐿, 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝐿}
𝐺 = {𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝑅}
𝐴 = {𝑙𝑜𝑎𝑑, 𝑢𝑛𝑙𝑜𝑎𝑑,𝑚𝑜𝑣𝑒}

LL

𝑡𝑟𝑢𝑐𝑘𝑝𝑎𝑐𝑘𝑎𝑔𝑒

LL

LR

TL

TR RR

RL

22.07.2022 21

Initial Domain Abstraction:

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T} dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

LL

LR

TL

TR RR

RL

22.07.2022 22

Flaws

Let 𝑠 be the state where flaw occurred:

Precondition Flaw:

Goal Flaw:

𝑓 = 𝑝𝑟𝑒 𝑎 \ {𝑠}

𝑓 = 𝐺 \ {𝑠}

𝜋 = <>

LL

LR

TL

TR RR

RL

𝜋 = < 𝑚𝑜𝑣𝑒, 𝑙𝑜𝑎𝑑 >

LL

LR

TL

TR RR

RL

22.07.2022 23

Old Abstraction:

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

New Abstraction:

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

LL

LR

TL

TR RR

RL

22.07.2022 24

Adjustable Parameters

1. Initial Abstraction Selection

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

Most Coarse Abstraction Goal Facts initially splitted

LL

LR

TL

TR RR

RL

22.07.2022 25

Adjustable Parameters

2. How many facts to split

Given a flaw with multiple missed assignments: 𝑓 = {𝑣1 → 1, 𝑣4 → 3}

Use one FactPair Use all FactPairs

o Use all fact pairs for refinement

o Implementation: Split as many

as possible

o Choose one fact pair of flaw 𝑓
ex. 𝑣1 → 1

1. Uniformly at Random

2. Max refined domain

3. Least refined domain

22.07.2022 26

Adjustable Parameters

3. How to split according to one assignment

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

Single Value Split Uniform Random Split

Given the flaw from example before: 𝑓 = {𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝑅}

• Additionally missed-value(𝑅),

choose other values from same

equivalence class uniformly at

random

• Move 50% of old equivalence

class to new one

• Only move missed value(𝑅) in a

new equivalence class

• This was the method used in

the Refinement Example

22.07.2022 27

Adjustable Parameters

4. Abstraction Size Limit

o Equals the product of the number of equivalence classes for each variable domain

o Influences the effort of:

o Refinement Loop (Find solution in abstract state space)

o Obtain Heuristic Values

22.07.2022 28

Request heuristic
value for state 𝒔

Obtain abstract
state 𝒔𝜶

corresponding to
𝒔

Obtain abstract
goal distance

1. On Demand

2. Precomputation

Adjustable Parameters

Evaluation

Best Configurations and Comparison to others

22.07.2022 29

22.07.2022 30

Setup

o Algorithms Implementated in Planning System Fast Downward

o Setup Experiments with Downward Lab

o Experiments performed on SciCore(Infai2 Cluster)

o Set of 1827 tasks from 65 different problem domains

For Each Task

o Overall Time Limit: 30min

o Overall Memory Limit: 3.5GB

Performance Evaluation per Parameter!

22.07.2022 31

Maximum Abstraction Size

Lower
- Computational effort
- Accuracy

Higher
- Computational effort
- Accuracy

22.07.2022 32

Split Method

o Single Value Split is superior in

terms of covergae, time and

informativeness

o Configurations using Uniform

Random Split performed worse

in nearly all cases

22.07.2022 33

How many FactPairs to split

o One: Max refined domain is

best

o In General splitting all facts is

superior

22.07.2022 34

How many FactPairs to split

o Same picture for coverage

Better to split all facts of a flaw

(beneficial + faster refinement)

22.07.2022 35

Initial abstraction

o Up to a 2000 statelimit initial

goal split better

o Else most coarse abstraction

superior

Initial goal split good idea

when less refinement

opportunities

22.07.2022 36

Obtain Heuristic values

o Mostly depends on statelimit

o Up to 2000 States and after

16000 States precomputation is

superior

o Else „On demand“ yields best

performing configurations

Tradeoff between search time

and time needed for

backward search

22.07.2022 37

Comparison

Algorithm: 𝑷𝑫𝑩𝑺𝑨 𝑫𝑨𝑶𝑻𝑭 𝑫𝑨𝑷𝒓𝒆𝒄𝒐𝒎𝒑 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑺𝑨

Coverage: 761 765 764 791

o 𝑷𝑫𝐁𝐒𝐀: constructs one single pattern using the cegar principle

o 𝑫𝑨𝑶𝑻𝑭: sizelimit 4000, obtain h-vals on demand, no initial goal split

o 𝑫𝑨𝑷𝒓𝒆𝒄𝒐𝒎𝒑: sizelimit 1024, precomputation, initial goal split

o 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑺𝑨: constructs one single cartesian abstraction using the cegar principle

22.07.2022 38

22.07.2022 39

Comparison with Multi-Abstraction

Methods

Algorithm: 𝑷𝑫𝑩𝒂𝒅𝒅 𝑷𝑫𝑩𝒏𝒂𝒅𝒅 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑴𝑨

Coverage: 862 900 889

o 𝑷𝑫𝑩𝒏𝒂𝒅𝒅, 𝑷𝑫𝑩𝒂𝒅𝒅: Use cegar principle to construct multiple Projections

o 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑴𝑨: constructs multiple cartesian abstractions

Significant performance-gain compared to single abstraction

methods

Algorithm: 𝑷𝑫𝑩𝑺𝑨 𝑫𝑨𝑶𝑻𝑭 𝑫𝑨𝑷𝒓𝒆𝒄𝒐𝒎𝒑 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑺𝑨

Coverage: 761 765 764 791

Conclusion

And Future Work

22.07.2022 40

22.07.2022 41

Conclusion Next Steps

o Developed and Implemented a

capable Algorithm for the

construction of Domain

Abstractions.

o Performance ranks in between

CEGAR-Algorithms for Projections

and Cartesian Abstractions

(Single Abstraction)

o Extend Algorithm for the

construction of multiple

Abstractions

o Split n FactPairs / Goals

o Regroup Values in domains

(Simulated annealing)

o Comprehensive experiments to

compare all possible parameter

combinations

