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Cost-Optimal Classical Planning

Senders Receipients
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SAS+ Planning Formalism

Position of Package A

Position of Truck

Example:Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎
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SAS+ Planning Formalism

All packages are at 

start location

Trucks are in their base

Example:Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎
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SAS+ Planning Formalism

All packages are at 

their final destination

It does not care where

the trucks are

Example:Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎
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SAS+ Planning Formalism

Planning task Π =< 𝑉, 𝑠0, 𝐺, 𝐴 > with

• A set of state variables 𝑉 where each 𝑣 ∈ 𝑉 is

associated with a finite, non-empty domain.

o State = total assignment for 𝑉

• A state 𝑠0 which is called the initial state

• A variable assignment 𝐺 which denotes the goal

conditions

• A finite set of actions 𝐴, where each action 𝑎 ∈ A
is associated with:

• two variable assignments, namely Effects

eff 𝒂 and Preconditions pre 𝒂
• Non negative costs 𝒄𝒐𝒔𝒕 𝒂 ∈ ℕ𝟎

Example:

Action load(packageA, truckA)

• Preconditions: packageA and truckA
must be in same location

• Effects: position of packageA is set to 
truckA
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LL

Example Statespace
𝑉 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒, 𝑡𝑟𝑢𝑐𝑘 ,
dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L,R,T},
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}
𝐴 = {𝑙𝑜𝑎𝑑, 𝑢𝑛𝑙𝑜𝑎𝑑,𝑚𝑜𝑣𝑒}

LL

𝑡𝑟𝑢𝑐𝑘𝑝𝑎𝑐𝑘𝑎𝑔𝑒

LR

TL

TR RR

RL

Initial 

State Transition
Goal 

State
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Heuristics

ℎ: 𝑆 → ℝ0
+ ∪ {∞}

o Estimate optimal goal distance for all states

o „Guides“ a search algorithm

o Handcrafted possible: ex. Manhatten distance

o Many methods to derive automatically
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Abstraction Heuristics

ℎ𝛼 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝐿, 𝑡𝑟𝑢𝑐𝑘 → 𝐿 = 2

LL

LR

TL

TR RR

RL
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Domain Abstractions

Counterexample-Guided Abstraction Refinement

Constructing Domain Abstractions with CEGAR

Evaluation and Comparison

Conclusion and Future Work
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Domain Abstractions

And other abstraction classes
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Abstraction Classes

Projections

Domain 
Abstractions

Cartesian
Abstractions projection on variable 𝑝𝑎𝑐𝑘𝑎𝑔𝑒

LL

LR

TL

TR RR

RL
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Abstraction Classes

Projections

Domain 
Abstractions

Cartesian
Abstractions

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T} dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

LL

LR

TL

TR RR

RL
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Abstraction Classes

Projections

Domain 
Abstractions

Cartesian
Abstractions

LL

LR

TL

TR RR

RL

{L, T} × {𝑅}

{T} × {𝐿}{L} × {𝐿} {R} × {𝐿}

{R} × {𝑅}



Counterexample-guided

Abstraction Refinement
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Constructing Domain Abstraction

using CEGAR

Motivation, Algorithm and Parameters
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Nothing specific!
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Flaws
𝑉 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒, 𝑡𝑟𝑢𝑐𝑘 ,

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L,R,T},
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

𝑠0 = {𝑡𝑟𝑢𝑐𝑘 → 𝐿, 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝐿}
𝐺 = {𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝑅}
𝐴 = {𝑙𝑜𝑎𝑑, 𝑢𝑛𝑙𝑜𝑎𝑑,𝑚𝑜𝑣𝑒}

LL

𝑡𝑟𝑢𝑐𝑘𝑝𝑎𝑐𝑘𝑎𝑔𝑒

LL

LR

TL

TR RR

RL
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Initial Domain Abstraction:

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T} dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

LL

LR

TL

TR RR

RL
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Flaws

Let 𝑠 be the state where flaw occurred:

Precondition Flaw:

Goal Flaw:

𝑓 = 𝑝𝑟𝑒 𝑎 \ {𝑠}

𝑓 = 𝐺 \ {𝑠}

𝜋 = <>

LL

LR

TL

TR RR

RL

𝜋 = < 𝑚𝑜𝑣𝑒, 𝑙𝑜𝑎𝑑 >

LL

LR

TL

TR RR

RL
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Old Abstraction:

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

New Abstraction:

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

LL

LR

TL

TR RR

RL
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Adjustable Parameters 

1. Initial Abstraction Selection

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

Most Coarse Abstraction Goal Facts initially splitted

LL

LR

TL

TR RR

RL
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Adjustable Parameters 

2. How many facts to split

Given a flaw with multiple missed assignments: 𝑓 = {𝑣1 → 1, 𝑣4 → 3}

Use one FactPair Use all FactPairs

o Use all fact pairs for refinement

o Implementation: Split as many

as possible

o Choose one fact pair of flaw 𝑓
ex. 𝑣1 → 1

1. Uniformly at Random

2. Max refined domain

3. Least refined domain
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Adjustable Parameters 

3. How to split according to one assignment

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

dom(𝑝𝑎𝑐𝑘𝑎𝑔𝑒) = {L, R, T}
dom 𝑡𝑟𝑢𝑐𝑘 = {𝐿, 𝑅}

Single Value Split Uniform Random Split

Given the flaw from example before:  𝑓 = {𝑝𝑎𝑐𝑘𝑎𝑔𝑒 → 𝑅}

• Additionally missed-value(𝑅), 

choose other values from same 

equivalence class uniformly at 

random

• Move 50% of old equivalence

class to new one

• Only move missed value(𝑅) in a 

new equivalence class

• This was the method used in 

the Refinement Example
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Adjustable Parameters 

4. Abstraction Size Limit

o Equals the product of the number of equivalence classes for each variable domain

o Influences the effort of: 

o Refinement Loop (Find solution in abstract state space)

o Obtain Heuristic Values
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Request heuristic
value for state 𝒔

Obtain abstract
state 𝒔𝜶

corresponding to 
𝒔

Obtain abstract
goal distance

1. On Demand

2. Precomputation

Adjustable Parameters 



Evaluation

Best Configurations and Comparison to others
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Setup

o Algorithms Implementated in Planning System Fast Downward

o Setup Experiments with Downward Lab

o Experiments performed on SciCore(Infai2 Cluster)

o Set of 1827 tasks from 65 different problem domains

For Each Task

o Overall Time Limit: 30min

o Overall Memory Limit: 3.5GB

Performance Evaluation per Parameter! 
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Maximum Abstraction Size

Lower
- Computational effort
- Accuracy

Higher
- Computational effort
- Accuracy
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Split Method

o Single Value Split is superior in 

terms of covergae, time and 

informativeness

o Configurations using Uniform 

Random Split performed worse

in nearly all cases
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How many FactPairs to split

o One: Max refined domain is

best

o In General splitting all facts is

superior
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How many FactPairs to split

o Same picture for coverage

Better to split all facts of a flaw

(beneficial + faster refinement)
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Initial abstraction

o Up to a 2000 statelimit initial 

goal split better

o Else most coarse abstraction

superior

Initial goal split good idea

when less refinement

opportunities
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Obtain Heuristic values

o Mostly depends on statelimit

o Up to 2000 States and after 

16000 States precomputation is

superior

o Else „On demand“ yields best

performing configurations

Tradeoff between search time 

and time needed for

backward search
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Comparison

Algorithm: 𝑷𝑫𝑩𝑺𝑨 𝑫𝑨𝑶𝑻𝑭 𝑫𝑨𝑷𝒓𝒆𝒄𝒐𝒎𝒑 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑺𝑨

Coverage: 761 765 764 791

o 𝑷𝑫𝐁𝐒𝐀: constructs one single pattern using the cegar principle

o 𝑫𝑨𝑶𝑻𝑭: sizelimit 4000, obtain h-vals on demand, no initial goal split

o 𝑫𝑨𝑷𝒓𝒆𝒄𝒐𝒎𝒑: sizelimit 1024, precomputation, initial goal split

o 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑺𝑨: constructs one single cartesian abstraction using the cegar principle
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Comparison with Multi-Abstraction

Methods

Algorithm: 𝑷𝑫𝑩𝒂𝒅𝒅 𝑷𝑫𝑩𝒏𝒂𝒅𝒅 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑴𝑨

Coverage: 862 900 889

o 𝑷𝑫𝑩𝒏𝒂𝒅𝒅, 𝑷𝑫𝑩𝒂𝒅𝒅: Use cegar principle to construct multiple Projections

o 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑴𝑨: constructs multiple cartesian abstractions

Significant performance-gain compared to single abstraction

methods

Algorithm: 𝑷𝑫𝑩𝑺𝑨 𝑫𝑨𝑶𝑻𝑭 𝑫𝑨𝑷𝒓𝒆𝒄𝒐𝒎𝒑 𝑪𝒂𝒓𝒕𝒆𝒔𝒊𝒂𝒏𝑺𝑨

Coverage: 761 765 764 791



Conclusion 

And Future Work
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Conclusion Next Steps

o Developed and Implemented a 

capable Algorithm for the

construction of Domain 

Abstractions.

o Performance ranks in between

CEGAR-Algorithms for Projections

and Cartesian Abstractions

(Single Abstraction)

o Extend Algorithm for the

construction of multiple 

Abstractions

o Split n FactPairs / Goals

o Regroup Values in domains

(Simulated annealing)

o Comprehensive experiments to 

compare all possible parameter

combinations


