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Abstract

Pattern databases are one of the most powerful heuristics in classical planning. They eval-

uate the perfect cost for a simplified sub-problem. The post-hoc optimization heuristic is a

technique on how to optimally combine a set of pattern databases.

In this thesis, we will adapt the post-hoc optimization heuristic for the sliding tile puzzle.

The sliding tile puzzle serves as a benchmark to compare the post-hoc optimization heuristic

to already established methods, which also deal with the combining of pattern databases.

We will then show how the post-hoc optimization heuristic is an improvement over the

already established methods.
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1
Introduction

Heuristic search algorithms are an efficient method for solving state space problems. The

better the given heuristic, the better performs the search algorithm. The heuristic has to

meet different expectations for the different heuristic search algorithms. In case of A∗ the

heuristic must be consistent and admissible. For IDA∗ it must be at least admissible. A

multitude of methods to calculate different admissible heuristics were developed over the

years, each with its improvements. We are using the sliding tile puzzle as a benchmark

to compare different heuristics. First, we will discuss several heuristics which are already

adapted for the sliding tile puzzle. The simpler ones are the Manhattan distance [4] and

linear conflicts [5]. Those can be derived directly from a given state. The difference being,

that the Manhattan distance only considers each element of a state, a variable, by itself

while the linear conflicts heuristics considers them in pairs. It gets interesting using pattern

databases. Pattern databases include the perfect cost estimate for sub-problems [2][3]. The

original approach is to generate multiple pattern databases, evaluate all of them for a state

and choose the maximum value [2]. Korf and Felner [8] introduced a method which makes it

possible to use the information of multiple pattern databases in one heuristic. By partition-

ing the variables into disjoint sets, each variable will only be considered once. Therefore it is

possible to add up all the disjoint pattern database values of a given state and it still being

admissible. This approach is called statically-partitioned additive pattern databases. The

current state of the art, called dynamically-partitioned additive pattern database heuristic

[4], uses a similar approach, but instead of using a static partitioning scheme of the vari-

ables, it uses any set of pattern databases. For each state, all possible additive subsets of the

pattern databases are calculated. The subset with the largest sum has the best heuristics

for the given state.

The next approach is the post-hoc optimization heuristic [10] which is currently only de-

fined for abstract planning tasks. The post-hoc optimization heuristic uses a set of pattern

databases and weights all the variables in a pattern for all given pattern databases using a

linear program. The linear program must be reevaluated for every new state. The sum of

the weighted variables results in an admissible heuristic. Our goal is to adapt the post-hoc

optimization heuristic for the sliding tile puzzle and compare it to the previously mentioned

heuristics. We also discuss possible optimizations for the post-hoc optimization heuristic
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regarding memory and time usage.



2
Planning

To get a conceptual background and to create a deeper understanding in this thesis, we will

briefly explain relevant definitions.

2.1 Planning Task
To understand the working and terminology used further during this thesis, we will first have

to talk about SAS+ planning tasks introduced by Bäckström and Nebel [1]. A planning task

is a tuple Π = �V ,O, s0, s∗, c�, where V is a finite set of state variables v, each assigned to

a domain Dv. A state is a complete assignment of the state variables v ∈ V. O is a set of

operators o, where each operator contains an effect and a precondition. An effect describes

the modification of a state and the precondition includes certain constraints. The operators’

effect can only be applied if the precondition has been met, as result we get a new state, the

successor state. A cost function c : O → R+
0 applies a cost on each operator. The beginning

of a planning task is given by the initial state s0. s∗ is a sub-state, a partial assignment

of the state variables, which includes the information needed for a state to be counted as a

goal state.

The cost of a sequence of operators is the sum of the cost of each operator in the sequence.

An operator sequence that leads to a goal is called a plan. The goal of a planning task is

to find an optimal plan from the given initial state s0 to the given goal s∗, where optimal

means, that the cost must be minimal.

2.2 Heuristic search
There are many methods to optimally solve a planning task and heuristic search is one of

them. A heuristic [9] is a function h : s → R+
0 ∪ {∞} where s is a state. The value serves as

an estimate on how close a state is to the goal state. The smaller a heuristic is, the closer

it thinks we are to a goal state. A heuristic which is exactly the cost of the optimal plan of

given state is called the perfect heuristic. The search algorithm we will be using is IDA∗.

IDA∗ stands for Iterative-Deepening A∗ and as the name suggests, uses the A∗ algorithm.

We are using the iterative-deepening approach of A∗ for its memory efficiency. To be optimal
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we have to use an admissible heuristic. A heuristic is admissible if the heuristic value for

all possible states is less than or equal to the perfect heuristic value of the same state. This

has the effect, that we never overestimate an operator.

2.3 Pattern Database
Instead of calculating the heuristic values on the fly, Culberson and Schaeffer [2] introduced

pattern databases that can be used to preprocess all perfect cost values for a given subset

of variables v ∈ V called a pattern. To evaluate a state only the cost of the variables

included in the pattern is considered. This sub-state is also called an abstract state. We

now calculate the perfect heuristic value, using a breath-first search algorithm and a given

goal state, for all possible abstract states of a given pattern. Using a hash function, we

can generate a unique hash for all abstract states of the given pattern. We then can use

the hash to get the heuristic value and abstract state, or vice versa, use an abstract state

to get the hash of a heuristic. A pattern database can now be reused for solving planning

tasks, as long as the goal state stays the same. This is an important property of pattern

databases, as for each variable added to a pattern the amount of abstract states increases

exponentially and therefore also the computational effort. Being able to reuse them we can

neglect the computational effort in further usages. The heuristic value of a pattern database

is admissible, as it solves a subset of the problem optimally. This leads to a heuristic value

that is less than or equal to the perfect heuristic. Using multiple pattern databases we can

ensure admissibility by taking the maximum value of all pattern database heuristics.

2.3.1 Post-hoc Optimization Heuristic
The post-hoc optimization heuristic was introduced by Pommerening et al. [10]. A char-

acteristic of the post-hoc optimization heuristic is the usage of multiple pattern databases.

For each pattern database heuristic, we consider all operators where their cost is greater

than zero, which means the operator is relevant to the heuristic. Using this information, we

can construct a linear program with the variables Xo.

Definition 1 (Xo). Xo is a variable with o ∈ O, where Xo represents the cost incurred by

o in a fixed, but undefined optimal plan.

Pommerening et al. [10] introduced a specific notation to specify the relevance of an operator.

Definition 2 (Relevant operator partition). Let Π be a planning task with cost function

c. For all i,...,n, let cic be a cost function and hi be an admissible heuristic for Πci . The

relevant operator partition O/ ∼ for h1, ..., hn is the partition of O induced by the equivalence

relation ∼ with:

o ∼ o� iff {i|ci > 0} = {i|ci(o�) > 0}.

Using a linear program we can now evaluate the variables for a given state. The following

definition is according to Definition 2 from Pommerening et al. [10].

Definition 3 (hPhO). Let Π be a planning task with cost function c. For all i = 1, ..., n let

ci ≤ c be a cost function and hi be an admissible heuristic for Πci . Let s be a state of Π.
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The estimate of the post-hoc optimization heuristic hPhO(s) is the objective value of the

linear program:

Minimize
�

[o]∈O/∼
X[o] subject to (2.1)

�

[o]∈O/∼:ci(o)>0

X[o] ≥ hi(s) for all i ∈ {1, ..., n} (2.2)

X[o] ≥ 0 for all [o] ∈ O/ ∼ . (2.3)

Each linear program can also be rewritten into its dual form where each variable gets to be

a constraint and each constraint will be a variable. Pommerening et al. [10] defined the dual

program for the post-hoc optimization as follows.

Definition 4 (Dual program).

Maximize

n�

i=1

Yihi(s) subject to (2.4)

�

i∈{1,...,n}:ci(o)>0

Yi ≤ 1 for all [o] ∈ O/ ∼ (2.5)

Yi ≥ 0 for all i ∈ {1, ..., n}. (2.6)

The variables Yi in the dual program each belong to a heuristic. Each constraint is given by

an operator, where only the heuristic variables are considered, for which the given operator

is relevant. Of course, the heuristic variable must be greater or equal to 0 as we cannot have

a negative heuristic. Both, the primal and dual notation of the linear program, should lead

to the same solution.



3
Sliding Tile Puzzle

The Sliding Tile Puzzle, is a combinatorial puzzle originally invented by Noyes Palmer

Chapman in 1879 [12]. A well-known variant of the Sliding Tile Puzzle is the 15-Puzzle.

Each puzzle is made up of 15 square tiles with incremental numbers from 1 to 15 on them.

Those tiles are now placed in a 4 by 4 square frame, leaving one empty space. The empty

space can now be used to push an adjacent tile into it. A tile cannot leave the 4 by 4 frame

and only tiles adjacent to the empty space can be moved.

Figure 3.1: Goal configuration of the
15-Puzzle.

To solve the puzzle, we can now move the tiles with the given restrictions. Fig. 3.1 shows a

possible goal configuration and the one we will be talking about during this thesis. Hereby

the number zero represents the empty space.

3.1 Sliding Tile Puzzle in Classical Planning
The domains D of the sliding tile puzzle are given by a set of tiles T0 = {0, ..., (width ∗
height − 1)}, where the number zero still represents the blank. Given a sliding tile puzzle

we can construct a planning task Π = �V ,O, so, s∗, c�. V is a finite set of variables v, each

representing a tile t ∈ T0 where T0 is the set of Tiles including the blank. An operator effect
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swaps the position of a tile and the blank. The precondition of the operator is that the to

be swapped tile must be adjacent to the blank. The initial state s0 can be any possible

state of the sliding tile puzzle. The goal s∗ is a full assignment of the state variables v ∈ V
and is shown in Fig. 3.1. Because the sliding tile puzzle has uniform costs for all operators,

the cost function can be simplified to c : O → 1. Therefore, it is also true that the operator

sequence with the minimum number of operators is equal to the operator sequence with the

minimum cost and thus also represents an optimal solution.

3.2 Heuristics of the Sliding Tile Puzzle
Having defined a planning task for the sliding tile puzzle, we have a look at different admis-

sible heuristics adapted for it.

3.2.1 Manhattan Distance
The first and also easiest method we are looking at is the so-called Manhattan distance.

To evaluate the Manhattan distance we sum up the displacement of all tiles to their goal

position [4]. This algorithm assumes that only the currently considered tile is in place and

the rest consists of blanks. Therefore the tile can move along the shortest path possible to

its goal position.

Definition 5 (Manhattan distance). Let s be the current state and t ∈ T a tile.

xlocs(t) is the current x coordinate and ylocs(t) the current y coordinate of t in the state s.

xlocs∗(t) the x coordinate and ylocs∗(t) the y coordinate of the goal position of t. Then the

Manhattan distance can be calculated as followed:

MD(s) =
�

t∈T

��xlocs(t)− xlocs∗(t)
��+

��ylocs(t)− ylocs∗(t)
�� (3.1)

3.2.2 Linear Conflicts
While the Manhattan distance only considers one tile at once, the linear conflict heuristic

considers two. This will naturally lead to a better heuristic value, as we now gather more

information about the current state. The definition of a linear conflict is according to

Hansson et al. [5] which is already specified for the use with STPs. Two tiles tj , tk ∈ T are

in a linear conflict if tj and tk are in the same row or column, the goal position tj,s∗ of tj

and tk,s∗ of tk are also in the same row or column, tj is between tk and tk,s∗ and tj,s∗ is on

the same side of tk,s∗ as tj .

Using the same terminology as in the definition for the Manhattan distance we can write it

down as followed:

Definition 6 (Linear conflict). Let s be the current state and tj , tk ∈ T where T is a set of

tiles.
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Let xlocs(t) be the current x-coordinate and ylocs(t) the current y-coordinate of t in the state

s, xlocs∗(t) the x-coordinate and ylocs∗(t) the y-coordinate of the goal position of t. The two

tiles tj and tk are in linear conflict if one of the following is true.

1.

xlocs(tj) = xlocs(tk) = xlocs∗(tj) = xlocs∗(tk) (3.2)

xlocs∗(tj) < xlocs(tk) < xlocs(tj) and xlocs∗(tj) < xlocs∗(tk) (3.3)

2.

ylocs(tj) = ylocs(tk) = ylocs∗(tj) = ylocs∗(tk) (3.4)

ylocs∗(tj) < ylocs(tk) < ylocs(tj) and ylocs∗(tj) < ylocs∗(tk) (3.5)

Figure 3.2: Linear Conflict between tile 4 and 5.

Example 1. As seen in Fig. 3.2 tile 5 is between tile 4 and its goal position. The goal

position of tile 5 is on the same side of tile 4s goal position as tile 4. Therefore all conditions

are met and we have a linear conflict.

Each linear conflict found has a total cost of two, plus it needs a heuristic value for each

tile, which is provided by the Manhattan distance. The resulting heuristic function for the

linear conflict heuristic is as followed.

Definition 7 (Linear conflict heuristic). Let s be the current state and t ∈ T a tile. Then

the linear conflict heuristic is

hLC(s) = MD(s) + 2 ∗
�

tj∈T
tk∈T\tj

LC(tj , tk) (3.6)

where LC is 1 if there is a linear conflict and 0 if there is not.

3.2.3 Statically-partitioned Additive Pattern Database
Calculating multiple pattern databases, but only considering the maximum each time seems

like a waste of information. Korf and Felner [8] introduced the disjoint pattern databases,
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but we will be using the term statically-partitioned additive pattern databases which Felner

et al. [4] introduced. To ensure that a set of pattern databases is additive, each pattern of

all pattern databases must be disjoint to each other, this means, no tile may be in more than

one pattern. By considering each tile only ones, the sum of all pattern database heuristics

of a given state is still admissible.

For the 15-Puzzle we will use the partitions used by Felner et al. [4]. The blank tile is part

of all the patterns. If we would not consider the blank, all heuristics would be equal to the

Manhattan distance. To keep the pattern databases additive, the cost of all operators using

tiles that are not included in the pattern are equal to zero.

Figure 3.3: 7-8 partitioning Figure 3.4: 5-5-5 partitioning Figure 3.5: 6-6-3 partitioning

Each colour corresponds to a pattern. We can see that the partitioning in Fig. 3.3, Fig. 3.4

and Fig. 3.5 is disjoint and therefore suitable for statically-partitioned additive pattern

databases.

3.2.4 Dynamically-partitioned Additive Pattern Database Heuristic
Instead of using only an additive set of pattern databases, Felner et al. [4] introduced

a method which uses a non-additive set of pattern databases P−. The goal is to find an

additive subset P+ ⊂ P− which maximizes the heuristic value for the current state. Finding

the subset is the hard part. Felner et al. [4] used a method called weighted vertex cover.

The set of pattern databases can be seen as a hyper-graph, where each variable is a vertex

and each pattern database heuristic an edge connecting the variable-vertices included in the

pattern. We now need the minimum sum of these edges, such that all vertices are only

connected to one edge. This problem is proven to be NP-Complete and we will, later on,

discuss a possible solution to it.



4
Adapting Post-hoc Optimization Heuristic for

the Sliding Tile Puzzle

Having defined the planning task in the context of the sliding tile puzzle we have another

look at the definition of the post-hoc optimization heuristic. We can simplify the notation

specifically for the sliding tile puzzle through the recognition of interrelated variables. In

the sliding tile puzzle, all operators which move a tile, move only this specific tile. This

can be useful for finding all relevant operators for a heuristic. Knowing the pattern of

a heuristic, we know the relevant tiles and therefore also the relevant operators. So the

definition for relevant operators [Definition 2] can be reduced to: If the corresponding tile

is in the pattern, the operator is relevant for the given heuristic. Therefore the partitioning

[o] of the operators O/ ∼ has one element per relevant tile.

We can now have another look at the primal and dual program of the post-hoc optimization

heuristic.

Minimize
�

[o]∈O/∼
X[o] subject to (4.1)

�

[o]∈O/∼:ci(o)>0

X[o] ≥ hi(s) for all i ∈ {1, ..., n} (4.2)

X[o] ≥ 0 for all [o] ∈ O/ ∼ . (4.3)

We now know that we have for each operator exactly one tile. For the primal program, this

leads to exactly one operator variable Xo per tile. The constraints Eq. (4.2) are formed from

the Xo matching the patterns of the respective heuristic.

This can also be adapted for the dual program.

Maximize

n�

i=1

Yihi(s) subject to (4.4)

�

i∈{1,...,n}:ci(o)>0

Yi ≤ 1 for all [o] ∈ O/ ∼ (4.5)

Yi ≥ 0 for all i ∈ {1, ..., n}. (4.6)
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To reiterate, each constraint corresponds to exactly one operator and each variable Yi to

a heuristic. For the sliding tile puzzle, this means that all patterns of the variables in a

constraint contain the same constraint specific tile.

4.1 Optimizations for the Post-hoc Optimization Heuristic
Having to solve the linear program for every state we considered costs a lot of time. How

can we reduce the computational effort? Our first approach is to use the resolvability of a

linear program. After solving the linear program for the first time, the so-called warm up

phase, we can update the variables and constraints boundaries. The changes to the linear

program depend on the difference the current state has to the previously solved state. The

linear program solver now will not have to solve the linear program completely for every

iteration, but can check for the changes and only resolve the parts influenced by the changes.

Another optimization lays in the set of pattern databases. Instead of blindly using all the

pattern databases provided, we can filter them according to their heuristics. We partition

the pattern and then check if the additive pattern database heuristics of the partitions are

the same as those of the complete pattern database. We do this for all abstract states. If

there is one partitioning that has the same sum for each abstract state, we can ignore the

pattern database, as it does not contain any information that cannot be obtained from the

partitioned pattern databases.

For an additive partitioning of a pattern database to be exactly as efficient as the combined

pattern database for all abstract states is pretty unlikely. But if we filter the pattern

databases every time we are building the linear program, we must only check for the given

state. It is way more likely for a partition to be as good as the complete pattern databases

if we only consider a single state. Being able to remove a heuristic from the linear program

would mean one less constraint in the primal program or one less variable in the dual

program.

4.2 Using an Integer Program to Solve Weighted Vertex Cover
The dynamically-partitioned additive pattern database heuristic using weighted vertex cover

is pretty similar to the post-hoc optimization heuristic, especially if we have a closer look

at the dual program (Definition 4) as an integer program. But what is an integer program?

Instead of solving the objective function by assigning real numbers to the variables, the

integer program solves it using only integers. The integer program derived from Definition 4

corresponds one to one to the hypergraph described in Section 3.2.4. The vertices of the

hypergraph as well as the constraints of the dual program correspond to the tiles of the

sliding tile puzzle. The edges and the vertices connected to them are given by the pattern

databases, if a vertex is in the pattern, the edge will connect to it. The weight of an

edge is given by the heuristic. The same applies to the dual program, where each variable

corresponds to a heuristic and is only added to the constraint if the corresponding tile is

included in its pattern. Given that we are solving the dual program as an integer program,

the variables can only be assigned 0 or 1 and only one variable can be 1 per constraint.
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Because the heuristics are multiplied with their corresponding variable before being summed

up, only the heuristics assigned 1 are considered. The others will be multiplied by 0 and

therefore cancelled out. With only one heuristic assigned per constraint, and a constraint

being corresponding to a tile, only one heuristic per tile can be chosen. All heuristics that

have now been selected must therefore be disjoint from each other.

The only difference between the weighted vertex cover and the dual program of the post-hoc

optimization heuristic is, that the linear program can assign values between 0 and 1, while

the integer program can only assign 0 or 1 to a variable.



5
Experimental Evaluation

In the experiments, we test over 1000 randomly generated solvable initial states from the

15-puzzle. We will use the partitioning shown in Fig. 3.3, Fig. 3.4, Fig. 3.5 for the statically-

partitioned additive pattern database heuristic. For the dynamically-partitioned additive

pattern database heuristic and the post-hoc optimization heuristic, we will be using the

same set of pattern databases. This set consists of all possible patterns up to a size of four

variables. All experiments are carried out on the grid at the University of Basel using 2×10

Core Intel Xeon Silver 4114 2.2 GHz processors. Each instance being solved is limited to 30

minutes and can use at max 6354MB memory per CPU. The algorithms are implemented

using a modified version of Nathan Sturtevants Hog2 [13] system written in C++. For

solving the linear programs given by the post-hoc optimization heuristic and the weighted

vertex cover will use the linear program solver provided by IBM, CPLEX version 12.9.0 [7].

We used the linear program solver interface provided by the Fast Downward planner [6]

[11] to use CPLEX. Our complement is the addition of the post-hoc optimization heuristic.

We will not be able to compare the values directly to Felner et al. [4] results, as we are

not using the same planner, the same system nor the same states. We will compare the

heuristic functions according to the initial heuristic value (the heuristic of the initial state),

the number of expanded nodes , their total experiment coverage, the amount of generated

nodes, the path length and the time needed to solve a problem. We will also have a look at

the optimizations described in Section 4.1 and discuss how well they worked.

5.1 1000 Random 15-Puzzle Instances
We tested each algorithm on the same 1000 initial states for the 15-puzzle to get a comparison

of the performance of each algorithm. The collected data is summarised in Table 5.1. To

keep the tables clear, we will introduce some abbreviations. Instead of writing the full

algorithm name, we will only use the defining word of the algorithm name. The statically-

partitioned additive pattern database heuristic will be referred to as ’Static [partitioning],

the dynamically-partitioned additive pattern database heuristic will be referred to as just

’Dynamic’ and the post-hoc optimization heuristic as just ’Post-hoc [primal/dual].

Comparing the initial heuristic values and the expansions from the table it is visible that
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Heuristic Function coverage expansions generated initial path length time
Manhattan distance 501 8906606.52 26680999.63 37201 19439 6.16
Linear conflicts 501 1201084.15 3581314.78 39285 19439 1.96
Static 5-5-5 501 65007.99 199955.80 42179 19439 0.12
Static 6-6-3 501 47161.61 146258.18 42857 19439 0.10
Static 7-8 501 4773.86 15168.42 45753 19439 0.01
Dynamic 381 4067.01 12901.91 44647 19439 504.95
Post-hoc Primal 473 4774.21 15189.47 44855 19439 85.67
Post-hoc Dual 474 4774.21 15189.47 44855 19439 90.62

Table 5.1: The coverage shows how many instances of the 1000 were solved given the
previously describe restrictions of the experiment suite. Expansions denote the geometric
mean of the expanded states. A lower value indicates a better-informed heuristic. Generated
is the geometric mean of the generated states. Initial is the sum of the initial heuristic values,
the higher the value, the better the initial values. Path length is the sum of all path lengths
for all instances solved by every algorithm. The time shows the arithmetic mean on how
long an algorithm took to solve a puzzle instance.

the Manhattan distance is performing the worst, second is the linear conflict heuristic with

still a very high average on expanded states. The performance of the two heuristics is so

poor that we will ignore them for the following tests. We still wanted to evaluate them to

show how much pattern databases are compared to more basic heuristics. Next, we will

have a look at the statically-partitioned additive pattern databases and how the different

partitions performed. The 5-5-5 partitioning performed the worst of all three, then the

6-6-3 partitioning and last but not least the 7-8 partitioning. This can be explained by

the sizes of the respective patterns. We can even see that the 7-8 partitioning performed

better on average than the post-hoc optimization heuristic. This shows that the two pat-

tern databases used by the 7-8 partitioning include more information than all the pattern

databases up to the pattern size of 4 used by the post-hoc optimization heuristic. What

stands out is the dynamically-partitioned additive pattern database heuristic, which given

the expansions performed the best. Theoretically, it cannot be better than the post-hoc op-

timization heuristic. The integer program solved should only be able to evaluate a heuristic

as good or worse than the linear program. One possibility for the lower expansions using

the integer program over the linear program could be the tie-breaking situations. Having a

look at the initial heuristic value of the dynamic algorithm we see that on average they are

worse than the initial heuristic of the post-hoc algorithm. As expected, you can see that

both, the primal and dual programs, performed equally well. As both heuristics perform

equally well only one will be used for further evaluation. We decided to use the post-hoc

dual as we are using the dual program as an integer program for the weighted vertex cover.

5.1.1 Initial Heuristic Value
We compare the initial heuristic values of the static 7-8 additive partitioning, the dynamically-

partitioned additive pattern database heuristic and the post-hoc optimization heuristic using

scatter plots. Each point in the graph is a different task. To reiterate, as all heuristics used

are admissible, a higher initial value is better. The value in the axis description includes a

value showing how well it performed compared to the other heuristic.
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Figure 5.1: Initial heuristic comparison dual program vs static 7-8

As seen in Fig. 5.1, none of the two is strictly better than the other heuristic. But the

post-hoc dual was worse than the static 7-8 partitioning in 231 cases while the static 7-8

partitioning was only worse in 78 cases, which can be seen on the axis description. This

strengthens the assumption, that the 7-8 partitioning of the 15-puzzle includes more in-

formation on the planning task than the set of pattern databases used for the post-hoc

optimization heuristic.
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Figure 5.2: Initial heuristic comparison post-hoc dual vs dynamic
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Looking at the comparison of the post-hoc optimization heuristic and the dynamically-

partitioned additive pattern database heuristic seen in Fig. 5.2, as one would expect, the

post-hoc optimization heuristic never performed worse than the dynamic heuristic. As

previously mentioned, this is very easy to explain. If the weighted vertex cover would find

the perfect heuristic using the integer program then the linear program would find it too,

as both algorithms use the same objective function, variables and constraints. But the

post-hoc optimization heuristic may find a heuristic value that the integer program can only

approach, but not calculate exactly.

5.1.2 Expansion
We compare the expansions of the static 7-8 additive partitioning, weighted vertex cover and

post-hoc optimization heuristic using scatter plots. Each point in the graph is a different

task. The fewer expansions an algorithm has, the better it performed.
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Figure 5.3: Expansion comparison dual program vs static 7-8

Not surprising is the fact, that the static 7-8 additive partitioning has on average a lower

expansion for a task. We already saw that the initial heuristic of the 7-8 additive partitioning

is on average better than the initial heuristic of the dual program. Interestingly, the dual

program can nearly keep up with the 7-8 partitioning, as seen in Fig. 5.3, even though it

uses pattern databases which by itself include way less information over the entire planning

task.
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Figure 5.4: Expansion comparison post-hoc dual program vs dynamically-partitioning ad-
ditive pattern database heuristic

The dynamically-partitioned additive pattern database heuristic has surprisingly on average

fewer expansions than the post-hoc optimization heuristic. It performed better in ∼77% of

the 381 instances solved with the dynamic approach. We have not found a clear explanation

for this and could only guess.

5.2 Resolving the Linear Programs
We are testing if the resolvability of the linear and integer programs can be used to decrease

the computation time needed for the post-hoc optimization and dynamically-partitioned

additive pattern database heuristic. We are using the set of 1000 different states to compare

the resolve approach with its corresponding non-resolving approach.

Heuristic Function Time
Post-hoc Primal 48.58
Post-hoc Primal Resolved 48.80
Post-hoc Dual 48.43
Post-hoc Dual Resolved 48.51
Dynamic 262.07
Dynamic Resolved 262.07

Table 5.2: Average time for solving 1000 different sliding tile puzzle instances.

Comparing the times seen in Table 5.2 between the original linear/integer program and the

ones using resolve we see, that there seems to be no improvement. We could not find a clear

explanation for this behaviour.
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5.3 Post-hoc: Filtering Non-Improving Heuristics
We are testing how many heuristics are deemed non-improving using 1000 different states to

evaluate. To reiterate from Section 4.1, our first approach was to filter the pattern databases

comparing all possible abstract state heuristics. We could not find any case where a partition

was as good as the complete set. Therefore we went on with our next idea, to filter the

pattern database for only the given state while generating the linear program.

Heuristic Function Total Constraints
Post-hoc Primal 1940000
Post-hoc Primal Filtered 46608

The post-hoc primal total constraints are the unfiltered amount of constraints for the given

1000 states. post-hoc primal filtered shows the number of runs for the given 1000 states

that have an improvement across their possible partitionings. It is visible, that for most

heuristics an additive partition existed, whose heuristic was as good as the originals. On

average, 97.6% of the constraints in a linear program are not necessary. This also means we

do not have to load 97.6% of the pattern databases into the memory.

But there still is a problem. The time needed to solve a single sliding tile puzzle using the

filtered approach has increased enormously. Evaluating all possible partitions for all pattern

databases is very time-consuming by itself, but it has to be done every time we want to

evaluate a heuristic. So far that we could not conduct the complete experiments in time.



6
Conclusion

In this thesis, we adapted the post-hoc optimization heuristic for the sliding tile puzzle. We

described different methods on how to optimize the post-hoc optimization heuristic. We

discussed a method on how to solve the weighted vertex cover problem using the post-hoc

optimization heuristics linear program. We compared the post-hoc optimization heuristic

with different admissible heuristics for the sliding tile puzzle and showed how the combina-

tion of pattern databases using the post-hoc optimisation heuristic improves on previously

established heuristics.

6.1 Future Work
Our approach to resolving the linear program is very primitive. We just update the con-

straints and variables and hope for the best. It would be interesting to see if there is a

possibility to decide when to resolve the linear program or to generate it from scratch.

The filtering of the pattern databases used for the post-hoc optimization during every it-

eration can discard a lot of pattern databases per state, but it is too expensive in time as

we have to evaluate all pattern databases each time we solve a linear program. It would be

exciting if we could introduce a more efficient method to filter the pattern databases. If we

had more time we could have tried to filter the pattern databases again as a pre-processing

step, but instead of only removing a pattern database if a partitioning exists which is equal

for all abstract states, we could remove a pattern database if for all abstract states at least

one partitioning exists which is equal to the complete pattern. If this would filter enough

pattern databases, we could combine it with the currently used method to filter every time

we solve a linear program and may be able to decrease memory and time needed to evaluate

the post-hoc optimization heuristic.

The could not explain the results from Fig. 5.4. It would be exciting to have another look

at both heuristics and the algorithms and see where and why exactly the dynamically-

partitioned additive pattern database heuristic approach takes a better turn than the post-

hoc optimization heuristic.
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[1] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-

putational Intelligence, 11(4):625–655, 1995.

[2] Joseph C Culberson and Jonathan Schaeffer. Pattern databases. Computational Intel-

ligence, 14(3):318–334, 1998.

[3] Stefan Edelkamp. Planning with pattern databases. In Sixth European Conference on

Planning, pages 84–90, 2001.

[4] Ariel Felner, Richard E Korf, and Sarit Hanan. Additive pattern database heuristics.

Journal of Artificial Intelligence Research, 22:279–318, 2004.

[5] Othar Hansson, Andrew Mayer, and Moti Yung. Criticizing solutions to relaxed models

yields powerful admissible heuristics. Information Sciences, 63(3):207–227, 1992.

[6] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[7] IBM. Cplex optimization studio, 2021. URL https://www.ibm.com/products/

ilog-cplex-optimization-studio.

[8] Richard E Korf and Ariel Felner. Disjoint pattern database heuristics. Artificial intel-

ligence, 134(1-2):9–22, 2002.

[9] Judea Pearl. Heuristics: intelligent search strategies for computer problem solving.

1984.
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